1
|
Liotta A, Loroch S, Wallach I, Klewe K, Marcus K, Berndt N. Metabolic Adaptation in Epilepsy: From Acute Response to Chronic Impairment. Int J Mol Sci 2024; 25:9640. [PMID: 39273587 PMCID: PMC11395010 DOI: 10.3390/ijms25179640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Epilepsy is characterized by hypersynchronous neuronal discharges, which are associated with an increased cerebral metabolic rate of oxygen and ATP demand. Uncontrolled seizure activity (status epilepticus) results in mitochondrial exhaustion and ATP depletion, which potentially generate energy mismatch and neuronal loss. Many cells can adapt to increased energy demand by increasing metabolic capacities. However, acute metabolic adaptation during epileptic activity and its relationship to chronic epilepsy remains poorly understood. We elicited seizure-like events (SLEs) in an in vitro model of status epilepticus for eight hours. Electrophysiological recording and tissue oxygen partial pressure recordings were performed. After eight hours of ongoing SLEs, we used proteomics-based kinetic modeling to evaluate changes in metabolic capacities. We compared our findings regarding acute metabolic adaptation to published proteomic and transcriptomic data from chronic epilepsy patients. Epileptic tissue acutely responded to uninterrupted SLEs by upregulating ATP production capacity. This was achieved by a coordinated increase in the abundance of proteins from the respiratory chain and oxidative phosphorylation system. In contrast, chronic epileptic tissue shows a 25-40% decrease in ATP production capacity. In summary, our study reveals that epilepsy leads to dynamic metabolic changes. Acute epileptic activity boosts ATP production, while chronic epilepsy reduces it significantly.
Collapse
Affiliation(s)
- Agustin Liotta
- Department of Anesthesiology and Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Institute of Computer-Assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Stefan Loroch
- Medizinisches Proteom-Center, Center for Protein Diagnostics (PRODI), Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany
- QC-MS/Fa. Dr. Loroch, BioMedizinZentrum, Otto-Hahn-Straße 15, 44227 Dortmund, Germany
| | - Iwona Wallach
- Institute of Computer-Assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Kristoffer Klewe
- QC-MS/Fa. Dr. Loroch, BioMedizinZentrum, Otto-Hahn-Straße 15, 44227 Dortmund, Germany
| | - Katrin Marcus
- Medizinisches Proteom-Center, Center for Protein Diagnostics (PRODI), Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Nikolaus Berndt
- Institute of Computer-Assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Department of Molecular Toxicology, 14558 Nuthetal, Germany
| |
Collapse
|
2
|
Tejerina Álvarez EE, Lorente Balanza JÁ. Temperature management in acute brain injury: A narrative review. Med Intensiva 2024; 48:341-355. [PMID: 38493062 DOI: 10.1016/j.medine.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/10/2024] [Indexed: 03/18/2024]
Abstract
Temperature management has been used in patients with acute brain injury resulting from different conditions, such as post-cardiac arrest hypoxic-ischaemic insult, acute ischaemic stroke, and severe traumatic brain injury. However, current evidence offers inconsistent and often contradictory results regarding the clinical benefit of this therapeutic strategy on mortality and functional outcomes. Current guidelines have focused mainly on active prevention and treatment of fever, while therapeutic hypothermia (TH) has fallen into disuse, although doubts persist as to its effectiveness according to the method of application and appropriate patient selection. This narrative review presents the most relevant clinical evidence on the effects of TH in patients with acute neurological damage, and the pathophysiological concepts supporting its use.
Collapse
Affiliation(s)
- Eva Esther Tejerina Álvarez
- Servicio de Medicina Intensiva. Hospital Universitario de Getafe, Getafe, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.
| | - José Ángel Lorente Balanza
- Servicio de Medicina Intensiva. Hospital Universitario de Getafe, Getafe, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain; Departamento de Bioingeniería, Universidad Carlos III de Madrid, Leganés, Madrid, Spain; Departamento de Medicina, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| |
Collapse
|
3
|
Schoknecht K, Maechler M, Wallach I, Dreier JP, Liotta A, Berndt N. Isoflurane lowers the cerebral metabolic rate of oxygen and prevents hypoxia during cortical spreading depolarization in vitro: An integrative experimental and modeling study. J Cereb Blood Flow Metab 2024; 44:1000-1012. [PMID: 38140913 PMCID: PMC11318408 DOI: 10.1177/0271678x231222306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/23/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023]
Abstract
Cortical spreading depolarization (SD) imposes a massive increase in energy demand and therefore evolves as a target for treatment following acute brain injuries. Anesthetics are empirically used to reduce energy metabolism in critical brain conditions, yet their effect on metabolism during SD remains largely unknown. We investigated oxidative metabolism during SD in brain slices from Wistar rats. Extracellular potassium ([K+]o), local field potential and partial tissue oxygen pressure (ptiO2) were measured simultaneously. The cerebral metabolic rate of oxygen (CMRO2) was calculated using a reaction-diffusion model. By that, we tested the effect of clinically relevant concentrations of isoflurane on CMRO2 during SD and modeled tissue oxygenation for different capillary pO2 values. During SD, CMRO2 increased 2.7-fold, resulting in transient hypoxia in the slice core. Isoflurane decreased CMRO2, reduced peak [K+]o, and prolonged [K+]o clearance, which indicates reduced synaptic transmission and sodium-potassium ATPase inhibition. Modeling tissue oxygenation during SD illustrates the need for increased capillary pO2 levels to prevent hypoxia. In the absence thereof, isoflurane could improve tissue oxygenation by lowering CMRO2. Therefore, isoflurane is a promising candidate for pre-clinical studies on neuronal survival in conditions involving SD.
Collapse
Affiliation(s)
- Karl Schoknecht
- Carl-Ludwig-Institute of Physiology, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Mathilde Maechler
- Department of Anesthesiology and Intensive Care, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Computer-Assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
| | - Iwona Wallach
- Institute of Computer-Assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jens P Dreier
- Centre for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Centre for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Centre for Neurosciences Berlin, Berlin, Germany
| | - Agustin Liotta
- Department of Anesthesiology and Intensive Care, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Computer-Assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Health at Charité – Universitätsmedizin Berlin, Berlin
- Neuroscience Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nikolaus Berndt
- Institute of Computer-Assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Department of Molecular Toxicology, Nuthetal, Germany
| |
Collapse
|
4
|
Ebrahimi M, Dabbagh A, Madadi F. Propofol-induced hippocampal Neurotoxicity: A mitochondrial perspective. Brain Res 2024; 1831:148841. [PMID: 38428475 DOI: 10.1016/j.brainres.2024.148841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Propofol is a frequently used anesthetic. It can induce neurodegeneration and inhibit neurogenesis in the hippocampus. This effect may be temporary. It can, however, become permanent in vulnerable populations, such as the elderly, who are more susceptible to Alzheimer's disease, and neonates and children, whose brains are still developing and require neurogenesis. Current clinical practice strategies have failed to provide an effective solution to this problem. In addition, the molecular mechanism of this toxicity is not fully understood. Recent advances in molecular research have revealed that apoptosis, in close association with mitochondria, is a crucial mechanism through which propofol contributes to hippocampal toxicity. Preventing the toxicity of propofol on the hippocampus has shown promise in in-vivo, in-vitro, and to a lesser extent human studies. This study seeks to provide a comprehensive literature review of the effects of propofol toxicity on the hippocampus via mitochondria and to suggest translational suggestions based on these molecular results.
Collapse
Affiliation(s)
- Moein Ebrahimi
- Department of Anesthesiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Dabbagh
- Department of Anesthesiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Firoozeh Madadi
- Department of Anesthesiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Barra ME, Iracheta C, Tolland J, Jehle J, Minova L, Li K, Amatangelo M, Krause P, Batra A, Vaitkevicius H. Multidisciplinary Approach to Sedation and Early Mobility of Intubated Critically Ill Neurologic Patients Improves Mobility at Discharge. Neurohospitalist 2023; 13:351-360. [PMID: 37701262 PMCID: PMC10494812 DOI: 10.1177/19418744231182897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Background and Purpose Over-sedation may confound neurologic assessment in critically ill neurologic patients and prolong duration of mechanical ventilation (MV). Decreased sedative use may facilitate early functional independence when combined with early mobility. The objective of this study was to evaluate the impact of a stepwise, multidisciplinary analgesia-first sedation pathway and early mobility protocol on medication use and mobility in the neuroscience intensive care unit (ICU). Methods We performed a single-center prospective cohort study with adult patients admitted to a neuroscience ICU between March and June 2016-2018 who required MV for greater than 48 hours. Patients were included from three separate phases of the study: Phase I - historical controls (2016); Phase II - analgesia-first pathway (2017); Phase III - early mobility protocol (2018). Primary outcomes included propofol requirements during MV, total rehabilitation therapy provided, and functional mobility during ICU admission. Results 156 patients were included in the analysis. Decreasing propofol exposure was observed during Phase I, II, and III (median 2243.7 mg/day vs 2065.6 mg/day vs 1360.8 mg/day, respectively; P = .04 between Phase I and III). Early mobility was provided in 59.7%, 40%, and 81.6% of patients while admitted to the ICU in Phase I, II, and III, respectively (P < .01). An increased proportion of patients in Phase III were walking or ambulating at ICU discharge (26.7%; 8/30) compared to Phase I (7.9%, 3/38, P = .05). Conclusions An interdisciplinary approach with an analgesia-first sedation pathway with early mobility protocol was associated with less sedative use, increased rehabilitation therapy, and improved functional mobility status at ICU discharge.
Collapse
Affiliation(s)
- Megan E. Barra
- Department of Pharmacy, Massachusetts General Hospital, Boston, MA USA
| | - Christine Iracheta
- Department of Rehabilitation Services, Brigham and Women’s Hospital, Boston, MA USA
| | - Joseph Tolland
- Department of Rehabilitation Services, Brigham and Women’s Hospital, Boston, MA USA
| | - Johnathan Jehle
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA USA
- Department of Adult Palliative Care, Brigham and Women’s Hospital, Boston, MA USA
| | - Ljubica Minova
- Department of Pharmacy, Massachusetts General Hospital, Boston, MA USA
| | - Karen Li
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA USA
| | - Mary Amatangelo
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA USA
| | - Patricia Krause
- Department of Pharmacy, Brigham and Women’s Hospital, Boston, MA USA
| | - Ayush Batra
- Department of Neurology & Pathology, Northwestern University Feinberg School of Medicine, Chicago IL USA
| | | |
Collapse
|
6
|
Hu C, Wang B, Liu Z, Chen Q, Ishikawa M, Lin H, Lian Q, Li J, Li JV, Ma D. Sevoflurane but not propofol enhances ovarian cancer cell biology through regulating cellular metabolic and signaling mechanisms. Cell Biol Toxicol 2023; 39:1395-1411. [PMID: 36207479 PMCID: PMC10425485 DOI: 10.1007/s10565-022-09766-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/26/2022] [Indexed: 11/02/2022]
Abstract
Perioperative risk factors, including the choice of anesthetics, may influence ovarian cancer recurrence after surgery. Inhalational anesthetic sevoflurane and intravenous agent propofol might affect cancer cell metabolism and signaling, which, in turn, may influence the malignancy of ovarian cancer cells. The different effects between sevoflurane and propofol on ovarian cancer cell biology and underlying mechanisms were studied. Cultured ovarian cancer cells were exposed to 2.5% sevoflurane, 4 μg/mL propofol, or sham condition as the control for 2 h followed by 24-h recovery. Glucose transporter 1 (GLUT1), mitochondrial pyruvate carrier 1 (MPC1), glutamate dehydrogenase 1 (GLUD1), pigment epithelium-derived factor (PEDF), p-Erk1/2, and hypoxia-inducible factor 1-alpha (HIF-1α) expressions were determined with immunostaining and/or Western blot. Cultured media were collected for 1H-NMR spectroscopy-based metabolomics analysis. Principal component analysis (PCA) and orthogonal projections to latent structures discriminant analysis (OPLS-DA) were used to analyze metabolomics data. Sevoflurane increased the GLUT1, MPC1, GLUD1, p-Erk1/2, and HIF-1α expressions but decreased the PEDF expression relative to the controls. In contrast to sevoflurane, propofol decreased GLUT1, MPC1, GLUD1, p-Erk1/2, and HIF-1α but increased PEDF expression. Sevoflurane increased metabolite isopropanol and decreased glucose and glutamine energy substrates in the media, but the opposite changes were found after propofol treatment. Our data indicated that, unlike the pro-tumor property of sevoflurane, propofol negatively modulated PEDF/Erk/HIF-1α cellular signaling pathway and inhibited ovarian cancer metabolic efficiency and survival, and hence decreased malignancy. The translational value of this work warrants further study. • Sevoflurane promoted but propofol inhibited ovarian cancer cell biology. • Sevoflurane upregulated but propofol downregulated the GLUT1, MPC1, and GLUD1 expressions of ovarian cancer cells. • Sevoflurane enhanced but propofol inhibited ovarian cancer cellular glucose. metabolism and glutaminolysis. • Sevoflurane downregulated PEDF but upregulated the Erk pathway and HIF-1α, while propofol had the adverse effects on ovarian cancer cells.
Collapse
Affiliation(s)
- Cong Hu
- Zhejiang Province Key Lab of Anesthesiology, Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, SW10 9NH UK
| | - Bincheng Wang
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, SW10 9NH UK
| | - Zhigang Liu
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ UK
| | - Qiling Chen
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ UK
| | - Masashi Ishikawa
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, SW10 9NH UK
| | - Han Lin
- Zhejiang Province Key Lab of Anesthesiology, Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
| | - Qingquan Lian
- Zhejiang Province Key Lab of Anesthesiology, Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
| | - Jun Li
- Zhejiang Province Key Lab of Anesthesiology, Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
| | - Jia V. Li
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ UK
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, SW10 9NH UK
| | - The ESA-IC Onco-Anaesthesiology Research Group
- Zhejiang Province Key Lab of Anesthesiology, Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, SW10 9NH UK
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ UK
| |
Collapse
|
7
|
Zhang J, Li Y. Propofol-Induced Developmental Neurotoxicity: From Mechanisms to Therapeutic Strategies. ACS Chem Neurosci 2023; 14:1017-1032. [PMID: 36854650 DOI: 10.1021/acschemneuro.2c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Propofol is the most commonly used intravenous general anesthetic in clinical anesthesia, and it is also widely used in general anesthesia for pregnant women and infants. Some clinical and preclinical studies have found that propofol causes damage to the immature nervous system, which may lead to neurodevelopmental disorders and cognitive dysfunction in infants and children. However, its potential molecular mechanism has not been fully elucidated. Recent in vivo and in vitro studies have found that some exogenous drugs and interventions can effectively alleviate propofol-induced neurotoxicity. In this review, we focus on the relevant preclinical studies and summarize the latest findings on the potential mechanisms and therapeutic strategies of propofol-induced developmental neurotoxicity.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao 266000, China.,Department of Medicine, Qingdao University, Qingdao 266000, China
| | - Yu Li
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
8
|
Therapeutic Hypothermia Following Cardiac Arrest After the TTM2 trial - More Questions Raised Than Answered. Curr Probl Cardiol 2023; 48:101046. [PMID: 34780867 DOI: 10.1016/j.cpcardiol.2021.101046] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/05/2021] [Indexed: 02/06/2023]
Abstract
For almost 20 years, therapeutic hypothermia has been a cornerstone of modern post-cardiac arrest care lowering mortality, and improvin neurologic outcome compared to conventional therapy. This was challenged by the first TTM-trial in 2013, which did not show a benefit for hypothermia at 33°C compared to controlled normothermia at 36°C. Now, the TTM2 trial showed no benefit of hypothermia compared to fever prevention alone. While TTM1 and TTM2 suggest that hypothermia might not be helpful, a deep dive into the trials reveals that this conclusion does not hold true. Here, we focus on patient selection, suboptimal application of hypothermia, interaction of standard sedation with hypothermia, high incidence of post-arrest fever, and withdrawal of life support based on per-protocol neurologic prognostication in the TTM2-trial. Of particular interest, contemporary trials and registries using intravascular cooling in TTM-like patients repeatedly reported much lower mortality rates than those described in both TTM1 and TTM2.
Collapse
|
9
|
Li P, Sun Z, Tian T, Yu D, Tian H, Gong P. Recent developments and controversies in therapeutic hypothermia after cardiopulmonary resuscitation. Am J Emerg Med 2023; 64:1-7. [PMID: 36435004 DOI: 10.1016/j.ajem.2022.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/23/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022] Open
Abstract
Therapeutic hypothermia was recommended as the only neuroprotective treatment in comatose patients after return of spontaneous circulation (ROSC). With new evidence suggesting a similar neuroprotective effect of 36 °C and 33 °C, the term "therapeutic hypothermia" was substituted by "targeted temperature management" in 2011, which in turn was replaced by the term "temperature control" in 2022 because of new evidence of the similar effects of target normothermia and 33 °C. However, there is no clear consensus on the efficacy of therapeutic hypothermia. In this article, we provide an overview of the recent evidence from basic and clinical research related to therapeutic hypothermia and re-evaluate its application as a post-ROSC neuroprotective intervention in clinical settings.
Collapse
Affiliation(s)
- Peijuan Li
- Department of Emergency, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China; Dalian Medical University, Dalian, Liaoning, China
| | - Zhangping Sun
- Department of Emergency, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China; Dalian Medical University, Dalian, Liaoning, China
| | - Tian Tian
- Department of Emergency, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China; Dalian Medical University, Dalian, Liaoning, China
| | - Dongping Yu
- Department of Emergency, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Hui Tian
- Department of Emergency, Dalian Municipal Central Hospital, Dalian, Liaoning, China
| | - Ping Gong
- Department of Emergency, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China; Department of Emergency, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
10
|
Zheng Z, Su Y, Fan X, Zhang W, Li J, Xue S. BIS feedback closed-loop target-controlled infusion of propofol or etomidate in elderly patients with spinal surgery. Am J Transl Res 2023; 15:1231-1238. [PMID: 36915771 PMCID: PMC10006804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/02/2023] [Indexed: 03/16/2023]
Abstract
OBJECTIVE To investigate the safety of etomidate anesthesia induction combined with Bispectral index (BIS) feedback closed-loop target-controlled infusion of propofol for spinal surgery in elderly patients. METHODS Clinical data of 90 elderly patients who underwent elective spinal surgery were retrospectively analyzed. The patients were assigned to an etomidate group (n=48) and a propofol group (n=42) according to the different anesthesia methods. The etomidate group was anesthetized with etomidate combined with BIS feedback closed-loop target-controlled infusion, and the propofol group was anesthetized with closed-loop target-controlled infusion induced by propofol. The mean arterial pressure (MAP) and heart rate (HR) of the two groups were statistically analyzed 5 min after admission to the operating room (T0), the moment of the intubation (T1), 3 min after intubation (T2), 1 min before prone position (T3), 3 min after prone position (T4), the end of suture skin (T5) and 3 min after supine position (T6). In addition, the vasoactive drug application, awakening time, tracheal tube extraction time and incidence of postoperative complications were compared between the two groups. RESULTS There were significant changes in MAP and HR from T0 to T1 in both groups (MAP: etomidate group t=5.677, P<0.001, propofol group t=8.093, P<0.001; HR: etomidate group t=2.731, P=0.008, propofol group t=3.967, P<0.001). MAP changes in etomidate group from T0 to T1 were less (MAP: t=4.236, P<0.001; t=2.082, P=0.040), and there was no significant difference in HR between the two groups (P>0.05). There were fewer patients receiving vasoactive drugs in the etomidate group (χ2=5.070, P=0.024), but no significant difference was found in the incidence of complications between the two groups, χ2=3.670, P=0.055. CONCLUSION Compared to propofol, the application of etomidate combined with BIS feedback closed-loop target-controlled infusion in spinal surgery anesthesia for elderly patients can keep hemodynamics in a stable state, without affecting postoperative resuscitation, showing high safety, so it is worthy of clinical application.
Collapse
Affiliation(s)
- Zhonglei Zheng
- Department of Anesthesia, The Second Affiliated Hospital of Xi'an Medical University Xi'an 710038, Shaanxi, China
| | - Yuqiang Su
- Department of Anesthesia, The Second Affiliated Hospital of Xi'an Medical University Xi'an 710038, Shaanxi, China
| | - Xiaoying Fan
- Department of Anesthesia, The Second Affiliated Hospital of Xi'an Medical University Xi'an 710038, Shaanxi, China
| | - Wanping Zhang
- Department of Anesthesia, The Second Affiliated Hospital of Xi'an Medical University Xi'an 710038, Shaanxi, China
| | - Jing Li
- Department of Anesthesia, The Second Affiliated Hospital of Xi'an Medical University Xi'an 710038, Shaanxi, China
| | - Sha Xue
- Department of Anesthesia, The Second Affiliated Hospital of Xi'an Medical University Xi'an 710038, Shaanxi, China
| |
Collapse
|
11
|
Liang Y, Huang Y, Shao R, Xiao F, Lin F, Dai H, Pan L. Propofol produces neurotoxicity by inducing mitochondrial apoptosis. Exp Ther Med 2022; 24:630. [PMID: 36160898 PMCID: PMC9468839 DOI: 10.3892/etm.2022.11567] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Propofol is a fast and short-acting intravenous anesthetic widely used in clinical anesthesia and intensive care unit sedation. However, its use can cause abnormal effects on the central nervous system. Thus, the purpose of this study was to investigate the mechanism of propofol on primary hippocampal neuron injury. In addition, we aimed to determine whether a correlation exists between propofol and mitochondrial apoptosis-induced neurotoxicity. Hippocampal neurons cultured for 4 days were exposed to different drugs. The treatment groups were divided according to drug exposure into propofol, a rotenone inhibitor, and a coenzyme Q10 agonist groups. The final concentrations of propofol were 1, 10 and 100 µM. The content of ATP and reactive oxygen species (ROS) in the neurons of each group were detected using commercial kits in the culture supernatant after 3 h of drug exposure. Western blotting was used to analyze the expression of apoptosis-related proteins. The JC-1 kit was used to detect the mitochondrial membrane potential. The results revealed that, compared with the non-propofol treatment groups, the expression of apoptosis-related proteins, ATP content, and mitochondrial membrane potential were significantly decreased while the ROS content was markedly increased in the propofol treatment group. In conclusion, propofol treatment promoted damage to hippocampal neuronal mitochondria in a dose-dependent manner. This damage may lead to neuronal apoptosis and neurotoxicity by inducing the inhibition of mitochondrial respiratory chain complex I.
Collapse
Affiliation(s)
- Yubing Liang
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yu Huang
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Rongge Shao
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Fei Xiao
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Fei Lin
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Huijun Dai
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Linghui Pan
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
12
|
Safavynia SA, Goldstein PA, Evered LA. Mitigation of perioperative neurocognitive disorders: A holistic approach. Front Aging Neurosci 2022; 14:949148. [PMID: 35966792 PMCID: PMC9363758 DOI: 10.3389/fnagi.2022.949148] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022] Open
Abstract
William Morton introduced the world to ether anesthesia for use during surgery in the Bullfinch Building of the Massachusetts General Hospital on October 16, 1846. For nearly two centuries, the prevailing wisdom had been that the effects of general anesthetics were rapidly and fully reversible, with no apparent long-term adverse sequelae. Despite occasional concerns of a possible association between surgery and anesthesia with dementia since 1887 (Savage, 1887), our initial belief was robustly punctured following the publication in 1998 of the International Study of Post-Operative Cognitive Dysfunction [ISPOCD 1] study by Moller et al. (1998) in The Lancet, in which they demonstrated in a prospective fashion that there were in fact persistent adverse effects on neurocognitive function up to 3 months following surgery and that these effects were common. Since the publication of that landmark study, significant strides have been made in redefining the terminology describing cognitive dysfunction, identifying those patients most at risk, and establishing the underlying etiology of the condition, particularly with respect to the relative contributions of anesthesia and surgery. In 2018, the International Nomenclature Consensus Working Group proposed new nomenclature to standardize identification of and classify perioperative cognitive changes under the umbrella of perioperative neurocognitive disorders (PND) (Evered et al., 2018a). Since then, the new nomenclature has tried to describe post-surgical cognitive derangements within a unifying framework and has brought to light the need to standardize methodology in clinical studies and motivate such studies with hypotheses of PND pathogenesis. In this narrative review, we highlight the relevant literature regarding recent key developments in PND identification and management throughout the perioperative period. We provide an overview of the new nomenclature and its implications for interpreting risk factors identified by clinical association studies. We then describe current hypotheses for PND development, using data from clinical association studies and neurophysiologic data where appropriate. Finally, we offer broad clinical guidelines for mitigating PND in the perioperative period, highlighting the role of Brain Enhanced Recovery After Surgery (Brain-ERAS) protocols.
Collapse
Affiliation(s)
- Seyed A. Safavynia
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States
| | - Peter A. Goldstein
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
- Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Lisbeth A. Evered
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States
- Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
- Department of Anaesthesia and Acute Pain Medicine, St. Vincent’s Hospital, Melbourne, VIC, Australia
- Department of Critical Care, The University of Melbourne, Melbourne, VIC, Australia
- *Correspondence: Lisbeth A. Evered,
| |
Collapse
|
13
|
An Integrative Bioinformatics Analysis of the Potential Mechanisms Involved in Propofol Affecting Hippocampal Neuronal Cells. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:4911773. [PMID: 35515499 PMCID: PMC9064519 DOI: 10.1155/2022/4911773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 12/18/2022]
Abstract
The aim of this study is to probe the possible molecular mechanisms underlying the effects of propofol on HT22 cells. HT22 cells treated with different concentrations were sequenced, and then the results of the sequencing were analyzed for dynamic trends. Expression pattern clustering analysis was performed to demonstrate the expression of genes in the significant trend modules in each group of samples. We first chose the genes related to the trend module for WGCNA analysis, then constructed the PPI network of module genes related to propofol treatment group, and screened the key genes. Finally, GSEA analysis was performed on the key genes. Overall, 2,506 genes showed a decreasing trend with increasing propofol concentration, and 1,871 genes showed an increasing trend with increasing propofol concentration. WGCNA analysis showed that among them, turquoise panel genes were negatively correlated with propofol treatment, and genes with Cor R >0.9 in the turquoise panel were selected for PPI network construction. The MCC algorithm screened a total of five key genes (CD86, IL10RA, PTPRC, SPI1, and ITGAM). GSEA analysis showed that CD86, IL10RA, PTPRC, SPI1, and ITGAM are involved in the PRION_DISEASES pathway. Our study showed that propofol sedation can affect mRNA expression in the hippocampus, providing new ideas to identify treatment of nerve injury induced by propofol anesthesia.
Collapse
|
14
|
Chen Z, Ding Y, Zeng Y, Zhang XP, Chen JY. Dexmedetomidine reduces propofol-induced hippocampal neuron injury by modulating the miR-377-5p/Arc pathway. BMC Pharmacol Toxicol 2022; 23:18. [PMID: 35337381 PMCID: PMC8957152 DOI: 10.1186/s40360-022-00555-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/08/2022] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Propofol and dexmedetomidine (DEX) are widely used in general anesthesia, and exert toxic and protective effects on hippocampal neurons, respectively. The study sought to investigate the molecular mechanisms of DEX-mediated neuroprotection against propofol-induced hippocampal neuron injury in mouse brains. METHODS Hippocampal neurons of mice and HT22 cells were treated with propofol, DEX, and propofol+DEX. In addition, transfection of miR-377-5p mimics or inhibitors was performed in HT22 cells. Neuronal apoptosis was evaluated by a means of terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) or Hochest 33,258 staining; Arc positive expression in hippocampus tissues was detected using a microscope in immunohistochemistry assays; miRNA-377-5p expression was quantified by RT-qPCR; the protein levels of Arc, DNMT3A, and DNMT3B were determined using western blot; Cell Counting Kit-8 (CCK-8) assay was used to detect the viability and apoptotic rate of the neurons; methylation analysis in the miR-377-5p promoter was performed through methylated DNA immunoprecipitation (MeDIP) assay; dual luciferase reporter assay was performed to confirm whether Arc was under targeted regulation of miR-377-5p. RESULTS In the current study, both in vitro and in vivo, propofol treatment induced hippocampal neuron apoptosis and suppressed cell viability. DNMT3A and DNMT3B expression levels were decreased following propofol treatment, resulting in lowered methylation in the miR-377-5p promoter region and then enhanced expression of miR-377-5p, leading to a decrease in the expression of downstream Arc. Conversely, the expression levels of DNMT3A and DNMT3B were increased following DEX treatment, thus methylation in miR-377-5p promoter region was improved, and miR-377-5p expression was decreased, leading to an increase in the expression of downstream Arc. Eventually, DEX pretreatment protected hippocampal neurons against propofol-induced neurotoxicity by recovering the expression levels of DNMT3A, miR-377-5p, and Arc to the normal levels. Additionally, DNMT3A knockdown improved miR-377-5p expression but reduced Arc expression, and DNMT3A overexpression exerted the opposite effects. Dual luciferase reporter assay revealed a binding target between miR-377-5p and Arc 3'UTR. The neuroprotective effect of DEX against propofol-induced neuronal apoptosis was diminished after Arc knockdown. Silencing Arc independently triggered the apoptosis of HT22 cells, which was alleviated through transfection of miR-377-5p inhibitors. CONCLUSIONS DEX reduced propofol-induced hippocampal neuron injury via the miR-377-5p/Arc signaling pathway.
Collapse
Affiliation(s)
- Zong Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, NO.19 Nonglin Road, Yuexiu District, Guangzhou, Guangdong Province, China
| | - Yong Ding
- Department of Anesthesiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, NO.19 Nonglin Road, Yuexiu District, Guangzhou, Guangdong Province, China
| | - Ying Zeng
- Department of Anesthesiology, Shenzhen Shajin Hospital Affiliated to Guangzhou Medical University, Shenzhen, China
| | - Xue-Ping Zhang
- Department of Anesthesiology, Shenzhen People's Hospital, Shenzhen Anesthesiology Engineering Center, The Second Clinical Medical College of Jinan University, NO. 1017 Dongmen North Road, Luohu District, Shenzhen, Guangdong Province, China.
| | - Jian-Yan Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, NO.19 Nonglin Road, Yuexiu District, Guangzhou, Guangdong Province, China.
- Department of Anesthesiology, Shenzhen Shajin Hospital Affiliated to Guangzhou Medical University, Shenzhen, China.
| |
Collapse
|
15
|
Sevoflurane Effects on Neuronal Energy Metabolism Correlate with Activity States While Mitochondrial Function Remains Intact. Int J Mol Sci 2022; 23:ijms23063037. [PMID: 35328453 PMCID: PMC8949020 DOI: 10.3390/ijms23063037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 12/04/2022] Open
Abstract
During general anesthesia, alterations in neuronal metabolism may induce neurotoxicity and/or neuroprotection depending on the dose and type of the applied anesthetic. In this study, we investigate the effects of clinically relevant concentrations of sevoflurane (2% and 4%, i.e., 1 and 2 MAC) on different activity states in hippocampal slices of young Wistar rats. We combine electrophysiological recordings, partial tissue oxygen (ptiO2) measurements, and flavin adenine dinucleotide (FAD) imaging with computational modeling. Sevoflurane minimally decreased the cerebral metabolic rate of oxygen (CMRO2) while decreasing synaptic transmission in naive slices. During pharmacologically induced gamma oscillations, sevoflurane impaired network activity, thereby decreasing CMRO2. During stimulus-induced neuronal activation, sevoflurane decreased CMRO2 and excitability while basal metabolism remained constant. In this line, stimulus-induced FAD transients decreased without changes in basal mitochondrial redox state. Integration of experimental data and computer modeling revealed no evidence for a direct effect of sevoflurane on key enzymes of the citric acid cycle or oxidative phosphorylation. Clinically relevant concentrations of sevoflurane generated a decent decrease in energy metabolism, which was proportional to the present neuronal activity. Mitochondrial function remained intact under sevoflurane, suggesting a better metabolic profile than isoflurane or propofol.
Collapse
|
16
|
Malla B, Liotta A, Bros H, Ulshöfer R, Paul F, Hauser AE, Niesner R, Infante-Duarte C. Teriflunomide Preserves Neuronal Activity and Protects Mitochondria in Brain Slices Exposed to Oxidative Stress. Int J Mol Sci 2022; 23:ijms23031538. [PMID: 35163469 PMCID: PMC8835718 DOI: 10.3390/ijms23031538] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 12/24/2022] Open
Abstract
Teriflunomide (TFN) limits relapses in relapsing–remitting multiple sclerosis (RRMS) by reducing lymphocytic proliferation through the inhibition of the mitochondrial enzyme dihydroorotate dehydrogenase (DHODH) and the subsequent modulation of de novo pyrimidine synthesis. Alterations of mitochondrial function as a consequence of oxidative stress have been reported during neuroinflammation. Previously, we showed that TFN prevents alterations of mitochondrial motility caused by oxidative stress in peripheral axons. Here, we aimed to validate TFN effects on mitochondria and neuronal activity in hippocampal brain slices, in which cellular distribution and synaptic circuits are largely preserved. TFN effects on metabolism and neuronal activity were investigated by assessing oxygen partial pressure and local field potential in acute slices. Additionally, we imaged mitochondria in brain slices from the transgenic Thy1-CFP/COX8A)S2Lich/J (mitoCFP) mice using two-photon microscopy. Although TFN could not prevent oxidative stress-related depletion of ATP, it preserved oxygen consumption and neuronal activity in CNS tissue during oxidative stress. Furthermore, TFN prevented mitochondrial shortening and fragmentation of puncta-shaped and network mitochondria during oxidative stress. Regarding motility, TFN accentuated the decrease in mitochondrial displacement and increase in speed observed during oxidative stress. Importantly, these effects were not associated with neuronal viability and did not lead to axonal damage. In conclusion, during conditions of oxidative stress, TFN preserves the functionality of neurons and prevents morphological and motility alterations of mitochondria.
Collapse
Affiliation(s)
- Bimala Malla
- Institute for Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.M.); (H.B.); (R.U.)
| | - Agustin Liotta
- Klinik für Anästhesiologie mit Schwerpunkt Operative Intensivmedizin, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany;
| | - Helena Bros
- Institute for Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.M.); (H.B.); (R.U.)
| | - Rebecca Ulshöfer
- Institute for Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.M.); (H.B.); (R.U.)
- Experimental and Clinical Research Center (ECRC), MDC for Molecular Medicine and Charité—Universitätsmedizin Berlin, Lindenberger Weg 80, 13125 Berlin, Germany;
| | - Friedemann Paul
- Experimental and Clinical Research Center (ECRC), MDC for Molecular Medicine and Charité—Universitätsmedizin Berlin, Lindenberger Weg 80, 13125 Berlin, Germany;
- NeuroCure Clinical Research Center, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Anja E. Hauser
- Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, 10117 Berlin, Germany; (A.E.H.); (R.N.)
- Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Raluca Niesner
- Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, 10117 Berlin, Germany; (A.E.H.); (R.N.)
- Dynamic and Functional In Vivo Imaging, Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Carmen Infante-Duarte
- Institute for Medical Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (B.M.); (H.B.); (R.U.)
- Experimental and Clinical Research Center (ECRC), MDC for Molecular Medicine and Charité—Universitätsmedizin Berlin, Lindenberger Weg 80, 13125 Berlin, Germany;
- Correspondence:
| |
Collapse
|
17
|
Firdaus R, Theresia S, Austin R, Tiara R. Propofol effects in rodent models of traumatic brain injury: a systematic review. ASIAN BIOMED 2021; 15:253-265. [PMID: 37551361 PMCID: PMC10321222 DOI: 10.2478/abm-2021-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background Traumatic brain injury (TBI) causes high mortality and disability worldwide. Animal models have been developed to explore the complex processes in TBI. Propofol is used to manage head injuries during surgical intervention and mechanical ventilation in patients with TBI. Many studies have investigated the neuroprotective effect of propofol on TBI. However, other studies have shown neurotoxic effects. Objectives To review systematically the literature regarding the neuroprotective and neurotoxic effects of propofol in rodent models of TBI. Methods Data from rodents as models of TBI with propofol as one of the intervention agents, and/or comparing the neuroprotective effects of propofol with the other substances in rodent models of TBI, were obtained from PubMed, EBSCO Host, and ProQuest databases. The PRISMA 2020 statement recommendations were followed and research questions were developed based on PICOS guidelines. Data was extracted from the literature using a standardized Cochrane method. Results We analyzed data from 12 articles on physiological changes of experimental animals before and after trauma, the effects of propofol administration, and the observed neurotoxic effects. The effects of propofol administration were observed in terms of changes in traumatic lesion volume, the release of antioxidants and inflammatory factors, and the neurological function of rodent models of TBI. Conclusion Propofol has neuroprotective and neurotoxic effects via several mechanisms, and various doses have been used in research to determine its effects. The timing of administration, the dose administered, and the duration of administration contribute to determine the effect of propofol in rodent models of TBI. However, the doses that produce neuroprotective and neurotoxic effects are not yet clear and further research is needed to determine them.
Collapse
Affiliation(s)
- Riyadh Firdaus
- Department of Anesthesiology and Intensive Therapy, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo Hospital, Jakarta10430, Indonesia
| | - Sandy Theresia
- Department of Anesthesiology and Intensive Therapy, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo Hospital, Jakarta10430, Indonesia
| | - Ryan Austin
- Department of Anesthesiology and Intensive Therapy, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo Hospital, Jakarta10430, Indonesia
| | - Rani Tiara
- Department of Anesthesiology and Intensive Therapy, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo Hospital, Jakarta10430, Indonesia
| |
Collapse
|
18
|
Pinna A, Colasanti A. The Neurometabolic Basis of Mood Instability: The Parvalbumin Interneuron Link-A Systematic Review and Meta-Analysis. Front Pharmacol 2021; 12:689473. [PMID: 34616292 PMCID: PMC8488267 DOI: 10.3389/fphar.2021.689473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/18/2021] [Indexed: 12/23/2022] Open
Abstract
The neurobiological bases of mood instability are poorly understood. Neuronal network alterations and neurometabolic abnormalities have been implicated in the pathophysiology of mood and anxiety conditions associated with mood instability and hence are candidate mechanisms underlying its neurobiology. Fast-spiking parvalbumin GABAergic interneurons modulate the activity of principal excitatory neurons through their inhibitory action determining precise neuronal excitation balance. These interneurons are directly involved in generating neuronal networks activities responsible for sustaining higher cerebral functions and are especially vulnerable to metabolic stress associated with deficiency of energy substrates or mitochondrial dysfunction. Parvalbumin interneurons are therefore candidate key players involved in mechanisms underlying the pathogenesis of brain disorders associated with both neuronal networks' dysfunction and brain metabolism dysregulation. To provide empirical support to this hypothesis, we hereby report meta-analytical evidence of parvalbumin interneurons loss or dysfunction in the brain of patients with Bipolar Affective Disorder (BPAD), a condition primarily characterized by mood instability for which the pathophysiological role of mitochondrial dysfunction has recently emerged as critically important. We then present a comprehensive review of evidence from the literature illustrating the bidirectional relationship between deficiency in mitochondrial-dependent energy production and parvalbumin interneuron abnormalities. We propose a mechanistic explanation of how alterations in neuronal excitability, resulting from parvalbumin interneurons loss or dysfunction, might manifest clinically as mood instability, a poorly understood clinical phenotype typical of the most severe forms of affective disorders. The evidence we report provides insights on the broader therapeutic potential of pharmacologically targeting parvalbumin interneurons in psychiatric and neurological conditions characterized by both neurometabolic and neuroexcitability abnormalities.
Collapse
Affiliation(s)
- Antonello Pinna
- School of Life Sciences, University of Sussex, Brighton, United Kingdom.,Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Alessandro Colasanti
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
19
|
Berndt N, Kovács R, Schoknecht K, Rösner J, Reiffurth C, Maechler M, Holzhütter HG, Dreier JP, Spies C, Liotta A. Low neuronal metabolism during isoflurane-induced burst suppression is related to synaptic inhibition while neurovascular coupling and mitochondrial function remain intact. J Cereb Blood Flow Metab 2021; 41:2640-2655. [PMID: 33899556 PMCID: PMC8504408 DOI: 10.1177/0271678x211010353] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Deep anaesthesia may impair neuronal, vascular and mitochondrial function facilitating neurological complications, such as delirium and stroke. On the other hand, deep anaesthesia is performed for neuroprotection in critical brain diseases such as status epilepticus or traumatic brain injury. Since the commonly used anaesthetic propofol causes mitochondrial dysfunction, we investigated the impact of the alternative anaesthetic isoflurane on neuro-metabolism. In deeply anaesthetised Wistar rats (burst suppression pattern), we measured increased cortical tissue oxygen pressure (ptiO2), a ∼35% drop in regional cerebral blood flow (rCBF) and burst-associated neurovascular responses. In vitro, 3% isoflurane blocked synaptic transmission and impaired network oscillations, thereby decreasing the cerebral metabolic rate of oxygen (CMRO2). Concerning mitochondrial function, isoflurane induced a reductive shift in flavin adenine dinucleotide (FAD) and decreased stimulus-induced FAD transients as Ca2+ influx was reduced by ∼50%. Computer simulations based on experimental results predicted no direct effects of isoflurane on mitochondrial complexes or ATP-synthesis. We found that isoflurane-induced burst suppression is related to decreased ATP consumption due to inhibition of synaptic activity while neurovascular coupling and mitochondrial function remain intact. The neurometabolic profile of isoflurane thus appears to be superior to that of propofol which has been shown to impair the mitochondrial respiratory chain.
Collapse
Affiliation(s)
- Nikolaus Berndt
- Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Richard Kovács
- Institute for Neurophysiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Karl Schoknecht
- Carl-Ludwig-Institute for Physiology, University Leipzig, Leipzig, Germany
| | - Jörg Rösner
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Clemens Reiffurth
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Mathilde Maechler
- Institute for Neurophysiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Hermann-Georg Holzhütter
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Jens P Dreier
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Bernstein center for Computational Neuroscience, Charité - Universitätsmedizin, Humboldt-Universität zu Berlin and Technische Universität Berlin, Berlin, Germany.,Einstein Center for Neuroscience, Charité - Universitätsmedizin Berlin, the Freie Universität Berlin, the Humboldt-Universität zu Berlin and the Technische Universität Berlin, Berlin, Germany
| | - Claudia Spies
- Department of Anesthesiology and Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Agustin Liotta
- Institute for Neurophysiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Anesthesiology and Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
20
|
A synthetic peptide rescues rat cortical neurons from anesthetic-induced cell death, perturbation of growth and synaptic assembly. Sci Rep 2021; 11:4567. [PMID: 33633281 PMCID: PMC7907385 DOI: 10.1038/s41598-021-84168-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Anesthetics are deemed necessary for all major surgical procedures. However, they have also been found to exert neurotoxic effects when tested on various experimental models, but the underlying mechanisms remain unknown. Earlier studies have implicated mitochondrial fragmentation as a potential target of anesthetic-induced toxicity, although clinical strategies to protect their structure and function remain sparse. Here, we sought to determine if preserving mitochondrial networks with a non-toxic, short-life synthetic peptide—P110, would protect cortical neurons against both inhalational and intravenous anesthetic-induced neurotoxicity. This study provides the first direct and comparative account of three key anesthetics (desflurane, propofol, and ketamine) when used under identical conditions, and demonstrates their impact on neonatal, rat cortical neuronal viability, neurite outgrowth and synaptic assembly. Furthermore, we discovered that inhibiting Fis1-mediated mitochondrial fission reverses anesthetic-induced aberrations in an agent-specific manner. This study underscores the importance of designing mitigation strategies invoking mitochondria-mediated protection from anesthetic-induced toxicity in both animals and humans.
Collapse
|
21
|
Hsieh VC, Niezgoda J, Sedensky MM, Hoppel CL, Morgan PG. Anesthetic Hypersensitivity in a Case-Controlled Series of Patients With Mitochondrial Disease. Anesth Analg 2021; 133:924-932. [PMID: 33591116 DOI: 10.1213/ane.0000000000005430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Children with mitochondrial disease undergo anesthesia for a wide array of surgical procedures. However, multiple medications used for their perioperative care can affect mitochondrial function. Defects in function of the mitochondrial electron transport chain (ETC) can lead to a profound hypersensitivity to sevoflurane in children. We studied the sensitivities to sevoflurane, during mask induction and maintenance of general anesthesia, in children presenting for muscle biopsies for diagnosis of mitochondrial disease. METHODS In this multicenter study, 91 children, aged 6 months to 16 years, presented to the operating room for diagnostic muscle biopsy for presumptive mitochondrial disease. General anesthesia was induced by a slow increase of inhaled sevoflurane concentration. The primary end point, end-tidal (ET) sevoflurane necessary to achieve a bispectral index (BIS) of 60, was recorded. Secondary end points were maximal sevoflurane used to maintain a BIS between 40 and 60 during the case, and maximum and minimum heart rate and blood pressures. After induction, general anesthesia was maintained according to the preferences of the providers directing the cases. Primary data were analyzed comparing data from patients with complex I deficiencies to other groups using nonparametric statistics in SPSS v.27. RESULTS The median sevoflurane concentration to reach BIS of 60 during inductions (ET sevoflurane % [BIS = 60]) was significantly lower for patients with complex I defects (0.98%; 95% confidence interval [CI], 0.5-1.4) compared to complex II (1.95%; 95% CI, 1.2-2.7; P < .001), complex III (2.0%; 95% CI, 0.7-3.5; P < .001), complex IV (2.0%; 95% CI, 1.7-3.2; P < .001), and normal groups (2.2%; 95% CI, 1.8-3.0; P < .001). The sevoflurane sensitivities of complex I patients did not reach significance when compared to patients diagnosed with mitochondrial disease but without an identifiable ETC abnormality (P = .172). Correlation of complex I activity with ET sevoflurane % (BIS = 60) gave a Spearman's coefficient of 0.505 (P < .001). The differences in sensitivities between groups were less during the maintenance of the anesthetic than during induction. CONCLUSIONS The data indicate that patients with complex I dysfunction are hypersensitive to sevoflurane compared to normal patients. Hypersensitivity was less common in patients presenting with other mitochondrial defects or without a mitochondrial diagnosis.
Collapse
Affiliation(s)
- Vincent C Hsieh
- From the Department of Anesthesiology and Perioperative Medicine, University of Washington and Seattle Children's Hospital, Seattle, Washington
| | - Julie Niezgoda
- Department of Pediatric Anesthesiology, Cleveland Clinic, Cleveland, Ohio
| | - Margaret M Sedensky
- From the Department of Anesthesiology and Perioperative Medicine, University of Washington and Seattle Children's Hospital, Seattle, Washington
| | - Charles L Hoppel
- Department of Pharmacology and Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Philip G Morgan
- From the Department of Anesthesiology and Perioperative Medicine, University of Washington and Seattle Children's Hospital, Seattle, Washington
| |
Collapse
|
22
|
Flavin Adenine Dinucleotide Fluorescence as an Early Marker of Mitochondrial Impairment During Brain Hypoxia. Int J Mol Sci 2020; 21:ijms21113977. [PMID: 32492921 PMCID: PMC7312830 DOI: 10.3390/ijms21113977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 12/31/2022] Open
Abstract
Multimodal continuous bedside monitoring is increasingly recognized as a promising option for early treatment stratification in patients at risk for ischemia during neurocritical care. Modalities used at present are, for example, oxygen availability and subdural electrocorticography. The assessment of mitochondrial function could be an interesting complement to these modalities. For instance, flavin adenine dinucleotide (FAD) fluorescence permits direct insight into the mitochondrial redox state. Therefore, we explored the possibility of using FAD fluorometry to monitor consequences of hypoxia in brain tissue in vitro and in vivo. By combining experimental results with computational modeling, we identified the potential source responsible for the fluorescence signal and gained insight into the hypoxia-associated metabolic changes in neuronal energy metabolism. In vitro, hypoxia was characterized by a reductive shift of FAD, impairment of synaptic transmission and increasing interstitial potassium [K+]o. Computer simulations predicted FAD changes to originate from the citric acid cycle enzyme α-ketoglutarate dehydrogenase and pyruvate dehydrogenase. In vivo, the FAD signal during early hypoxia displayed a reductive shift followed by a short oxidation associated with terminal spreading depolarization. In silico, initial tissue hypoxia followed by a transient re-oxygenation phase due to glucose depletion might explain FAD dynamics in vivo. Our work suggests that FAD fluorescence could be readily used to monitor mitochondrial function during hypoxia and represents a potential diagnostic tool to differentiate underlying metabolic processes for complementation of multimodal brain monitoring.
Collapse
|
23
|
Turnbull D. Postoperative cognitive dysfunction: opportunities for interdisciplinary research. Minerva Anestesiol 2020; 86:800-801. [PMID: 32420717 DOI: 10.23736/s0375-9393.20.14615-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- David Turnbull
- Anaesthetic Department, Royal Hallamshire Hospital, Sheffield, UK -
| |
Collapse
|
24
|
He L, Wang X, Zheng S. Inhibition of the electron transport chain in propofol induced neurotoxicity in zebrafish embryos. Neurotoxicol Teratol 2020; 78:106856. [PMID: 31923456 DOI: 10.1016/j.ntt.2020.106856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 01/20/2023]
Abstract
Fetal and neonatal exposure to propofol can lead to neuronal death and long-term neurobehavioral deficiencies in both rodents and nonhuman primates. Zebrafish embryo, which is fertilized ex-utero, has provided us a new model species to study the effects of general anesthetics on developing brain. Inhibited electron transport chain leads to mitochondrial dysfunction and insufficient energy production. The aim of this study was to dissect the role of electron transport chain in propofol-induced neurotoxicity. 6 h post fertilization (hpf) zebrafish embryos were exposed to control or 1, 2 or 4 μg/ml propofol until 48hpf. Acridine orange staining was used to assess cell apoptosis in the brain of zebrafish embryos. The activity of mitochondrial electron transport chain complex was assessed using colorimetric method. Expression of key subunit of cytochrome c oxidase was assessed by western blot and transcription level of cox4i1 was assessed by quantitative real time-PCR. The mitochondrial membrane potential and ATP content were assessed. Exposure to 1, 2 and 4 μg/ml propofol induced significant increases in cell apoptosis in the brain of zebrafish embryos in a dose-dependent manner and led to significant decreases in electron transport chain complex IV activity from (0.161 ± 0.023)μmol/mg/min in blank control-treated group to (0.096 ± 0.015)μmol/mg/min, (0.083 ± 0.013)μmol/mg/min and (0.045 ± 0.014)μmol/mg/min respectively, accompanied by decreased expression of key regulatory subunit of cytochrome c oxidase-subunit IV and decreased transcription level of cox4i1. Propofol exposure also decreased the mitochondrial membrane potential and ATP content. Our findings demonstrate that inhibition of the electron transport chain is involved in the mechanisms by which propofol induces neurotoxicity in the developing brain.
Collapse
Affiliation(s)
- Lin He
- Department of Anesthesiology, Children's Hospital of Fudan University, Shanghai, China
| | - Xuan Wang
- Department of Anesthesiology, Children's Hospital of Fudan University, Shanghai, China
| | - Shan Zheng
- Department of Surgery, Children's Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
25
|
Koch S, Stegherr AM, Rupp L, Kruppa J, Prager C, Kramer S, Fahlenkamp A, Spies C. Emergence delirium in children is not related to intraoperative burst suppression - prospective, observational electrography study. BMC Anesthesiol 2019; 19:146. [PMID: 31395011 PMCID: PMC6688308 DOI: 10.1186/s12871-019-0819-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/31/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Emergence-delirium is the most frequent brain dysfunction in children recovering from general anaesthesia, though the pathophysiological background remains unclear. The presented study analysed an association between emergence delirium and intraoperative Burst Suppression activity in the electroencephalogram, a period of very deep hypnosis during general anaesthesia. METHODS In this prospective, observational cohort study at the Charité - university hospital in Berlin / Germany children aged 0.5 to 8 years, undergoing planned surgery, were included between September 2015 and February 2017. Intraoperative bi-frontal electroencephalograms were recorded. Occurrence and duration of Burst Suppression periods were visually analysed. Emergence delirium was assessed using the Pediatric Assessment of Emergence Delirium Score. RESULTS From 97 children being analysed within this study, 40 children developed emergence delirium, and 57 children did not. Overall 52% of the children displayed intraoperative Burst Suppression periods; however, occurrence and duration of Burst Suppression (Emergence delirium group 55% / 261 + 462 s vs. Non-emergence delirium group 49% / 318 + 531 s) did not differ significantly between both groups. CONCLUSIONS Our data reveal no correlation between the occurrence and duration of intraoperative Burst Suppression activity and the incidence of emergence delirium. Burst Suppression occurrence is frequent; however, it does not seem to have an unfavourable impact on cerebral function at emergence from general anaesthesia in children. TRAIL REGISTRATION NCT02481999, June 25, 2015.
Collapse
Affiliation(s)
- Susanne Koch
- Department of Anaesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Augustenburger Platz 1, 13353, Berlin, Germany. .,Berlin Institute of Health (BIH), Anna-Louisa-Karsch 2, 10178, Berlin, Germany.
| | - Anna-Maria Stegherr
- Department of Anaesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Leopold Rupp
- Department of Anaesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Jochen Kruppa
- Charité-Universitätsmedizin BerlinInstitute of Biometry and Clinical Epidemiology, Campus Charité Mitte, Charitéplatz 1, 10117, Berlin, Germany.,Berlin Institute of Health (BIH), Anna-Louisa-Karsch 2, 10178, Berlin, Germany
| | - Christine Prager
- Department of Paediatria and Neurology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Sylvia Kramer
- Department of Anaesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Astrid Fahlenkamp
- Department of Anaesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Claudia Spies
- Department of Anaesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
26
|
Iqbal F, Thompson AJ, Riaz S, Pehar M, Rice T, Syed NI. Anesthetics: from modes of action to unconsciousness and neurotoxicity. J Neurophysiol 2019; 122:760-787. [PMID: 31242059 DOI: 10.1152/jn.00210.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Modern anesthetic compounds and advanced monitoring tools have revolutionized the field of medicine, allowing for complex surgical procedures to occur safely and effectively. Faster induction times and quicker recovery periods of current anesthetic agents have also helped reduce health care costs significantly. Moreover, extensive research has allowed for a better understanding of anesthetic modes of action, thus facilitating the development of more effective and safer compounds. Notwithstanding the realization that anesthetics are a prerequisite to all surgical procedures, evidence is emerging to support the notion that exposure of the developing brain to certain anesthetics may impact future brain development and function. Whereas the data in support of this postulate from human studies is equivocal, the vast majority of animal research strongly suggests that anesthetics are indeed cytotoxic at multiple brain structure and function levels. In this review, we first highlight various modes of anesthetic action and then debate the evidence of harm from both basic science and clinical studies perspectives. We present evidence from animal and human studies vis-à-vis the possible detrimental effects of anesthetic agents on both the young developing and the elderly aging brain while discussing potential ways to mitigate these effects. We hope that this review will, on the one hand, invoke debate vis-à-vis the evidence of anesthetic harm in young children and the elderly, and on the other hand, incentivize the search for better and less toxic anesthetic compounds.
Collapse
Affiliation(s)
- Fahad Iqbal
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrew J Thompson
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Neuroscience, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Saba Riaz
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marcus Pehar
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tiffany Rice
- Department of Anesthesiology, Perioperative and Pain Medicine, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Naweed I Syed
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|