1
|
Meng D, Dong Y, Shang Q, Sun Z. Anti-tumor effect and hepatotoxicity mechanisms of psoralen. Front Pharmacol 2024; 15:1442700. [PMID: 39161897 PMCID: PMC11331265 DOI: 10.3389/fphar.2024.1442700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/18/2024] [Indexed: 08/21/2024] Open
Abstract
In recent years, natural products have gradually become an important source for new drug development due to their advantages of multi-components, multi-targets, and good safety profiles. Psoralen, a furanocoumarin compound extracted from the traditional Chinese medicine psoralea corylifolia, is widely distributed among various plants. It has attracted widespread attention in the research community due to its pharmacological activities, including antitumor, anti-inflammatory, antioxidant, and neuroprotective effects. Studies have shown that psoralen has broad spectrum anti-tumor activities, offering resistance to malignant tumors such as breast cancer, liver cancer, glioma, and osteosarcoma, making it a natural, novel potential antitumor drug. Psoralen mainly exerts its antitumor effects by inhibiting tumor cell proliferation, inducing apoptosis, inhibiting tumor cell migration, and reversing multidrug resistance, presenting a wide application prospect in the field of antitumor therapy. With the deepening research on psoralea corylifolia, its safety has attracted attention, and reports on the hepatotoxicity of psoralen have gradually increased. Therefore, this article reviews recent studies on the mechanism of antitumor effects of psoralen and focuses on the molecular mechanisms of its hepatotoxicity, providing insights for the clinical development of low-toxicity, high-efficiency antitumor drugs and the safety of clinical medication.
Collapse
Affiliation(s)
- Dandan Meng
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yanling Dong
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Qingxin Shang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ziyuan Sun
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
2
|
Bi Q, Lu F, Wu J, Liu X, Han X, Wang W, Zhao J. Combination of Bacillus tequilensis with difenoconazole to control pear black spot and the related synergistic mechanism. Front Microbiol 2024; 15:1405039. [PMID: 38894972 PMCID: PMC11183105 DOI: 10.3389/fmicb.2024.1405039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Background Pear black spot (PBS) is caused by Alternaria alternata and causes severe damage worldwide. It is particularly important to screen for synergistic fungicide combinations to address issues associated with the low efficacy of biocontrol agents, high dosage requirements and poor sustained effectiveness of chemical fungicides. Methods In vitro and in vivo studies were performed to determine the efficacy of a treatment for this important disease. Additionally, transcriptomic and metabolomic analyses were performed to determine the main molecular and biochemical mechanisms involved in the interaction. Results Bacillus tequilensis 2_2a has a significant synergistic effect with difenoconazole, causing hyphal entanglement and spore lysis and inhibiting the formation of PBS lesions in vitro. In the field, the control effect of the combination was greater than 95%. The pathways associated with the synergistic effect on the mycelia of A. alternata were divided into two main types: one included glycolysis, oxidative phosphorylation, and MAPK signal transduction, while the other included glycolysis, the TCA cycle, coenzyme A biosynthesis, sterol synthesis, and fatty acid degradation. Both types of pathways jointly affect the cell cycle. The main functions of the key genes and metabolites that have been verified as being affected are glucose synthesis and oxidative respiration, as well as citric acid synthesis, acetyl-CoA synthesis, and sterol synthesis. Both functions involve intracellular pyridine nucleotide metabolism and adenine nucleotide transformation. Conclusion This study helps to reveal the synergistic mechanisms underlying the combined efficacy of biological and chemical agents, providing a scientific basis for field applications.
Collapse
Affiliation(s)
- Qiuyan Bi
- Key Laboratory of Integrated Pest Management on Crops in the Northern Region of North China, IPM Center of Hebei Province, Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Ministry of Agriculture, Baoding, China
| | | | | | | | | | | | - Jianjiang Zhao
- Key Laboratory of Integrated Pest Management on Crops in the Northern Region of North China, IPM Center of Hebei Province, Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Ministry of Agriculture, Baoding, China
| |
Collapse
|
3
|
Liu Y, Zhou Y, Ahodantin J, Jin Y, Zhu J, Sun Z, Wu X, Su L, Yang Y. Generation and characterization of mature hepatocyte organoids for liver metabolic studies. J Cell Sci 2024; 137:jcs261961. [PMID: 38700490 PMCID: PMC11166457 DOI: 10.1242/jcs.261961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/12/2024] [Indexed: 05/05/2024] Open
Abstract
Hepatocyte organoids (HOs) generated in vitro are powerful tools for liver regeneration. However, previously reported HOs have mostly been fetal in nature with low expression levels of metabolic genes characteristic of adult liver functions, hampering their application in studies of metabolic regulation and therapeutic testing for liver disorders. Here, we report development of novel culture conditions that combine optimized levels of triiodothyronine (T3) with the removal of growth factors to enable successful generation of mature hepatocyte organoids (MHOs) of both mouse and human origin with metabolic functions characteristic of adult livers. We show that the MHOs can be used to study various metabolic functions including bile and urea production, zonal metabolic gene expression, and metabolic alterations in both alcoholic liver disease and non-alcoholic fatty liver disease, as well as hepatocyte proliferation, injury and cell fate changes. Notably, MHOs derived from human fetal hepatocytes also show improved hepatitis B virus infection. Therefore, these MHOs provide a powerful in vitro model for studies of human liver physiology and diseases. The human MHOs are potentially also a robust research tool for therapeutic development.
Collapse
Affiliation(s)
- Yuchen Liu
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave, Boston, MA 02115, USA
| | - Yaxing Zhou
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave, Boston, MA 02115, USA
| | - James Ahodantin
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, Departments of Pharmacology and Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yu Jin
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave, Boston, MA 02115, USA
| | - Juanjuan Zhu
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave, Boston, MA 02115, USA
| | - Zhonghe Sun
- Cancer Research Technology Program, Frederick National Laboratory for Cancer, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Xiaolin Wu
- Cancer Research Technology Program, Frederick National Laboratory for Cancer, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Lishan Su
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, Departments of Pharmacology and Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Program in Gastrointestinal Malignancies, Dana-Farber/Harvard Cancer Center, 188 Longwood Ave, Boston, MA 02115, USA
- Program in Gastrointestinal Malignancies, Dana-Farber/Harvard Cancer Center, 188 Longwood Ave, Boston, MA 02115, USA
| |
Collapse
|
4
|
Messelmani T, Le Goff A, Soncin F, Souguir Z, Merlier F, Maubon N, Legallais C, Leclerc E, Jellali R. Coculture model of a liver sinusoidal endothelial cell barrier and HepG2/C3a spheroids-on-chip in an advanced fluidic platform. J Biosci Bioeng 2024; 137:64-75. [PMID: 37973520 DOI: 10.1016/j.jbiosc.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023]
Abstract
The liver is one of the main organs involved in the metabolism of xenobiotics and a key organ in toxicity studies. Prior to accessing the hepatocytes, xenobiotics pass through the hepatic sinusoid formed by liver sinusoidal endothelial cells (LSECs). The LSECs barrier regulates the kinetics and concentrations of the xenobiotics before their metabolic processing by the hepatocytes. To mimic this physiological situation, we developed an in vitro model reproducing an LSECs barrier in coculture with a hepatocyte biochip, using a fluidic platform. This technology made dynamic coculture and tissue crosstalk possible. SK-HEP-1 and HepG2/C3a cells were used as LSECs and as hepatocyte models, respectively. We confirmed the LSECs phenotype by measuring PECAM-1 and stabilin-2 expression levels and the barrier's permeability/transport properties with various molecules. The tightness of the SK-HEP-1 barrier was enhanced in the dynamic coculture. The morphology, albumin secretion, and gene expression levels of markers of HepG2/C3a were not modified by coculture with the LSECs barrier. Using acetaminophen, a well-known hepatotoxic drug, to study tissue crosstalk, there was a reduction in the expression levels of the LSECs markers stabilin-2 and PECAM-1, and a modification of those of CLEC4M and KDR. No HepG2/C3a toxicity was observed. The metabolisation of acetaminophen by HepG2/C3a monocultures and cocultures was confirmed. Although primary cells are required to propose a fully relevant model, the present approach highlights the potential of our system for investigating xenobiotic metabolism and toxicity.
Collapse
Affiliation(s)
- Taha Messelmani
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu, CS 60319, 60203 Compiègne Cedex, France
| | - Anne Le Goff
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu, CS 60319, 60203 Compiègne Cedex, France
| | - Fabrice Soncin
- CNRS/IIS/Centre Oscar Lambret/Lille University SMMiL-E Project, CNRS Délégation Hauts-de-France, 43 Avenue le Corbusier, 59800 Lille, France; CNRS, IRL2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Zied Souguir
- HCS Pharma, 250 rue Salvador Allende, Biocentre Fleming Bâtiment A, 59120 Loos, France
| | - Franck Merlier
- Université de Technologie de Compiègne, UPJV, CNRS, Enzyme and Cell Engineering, Centre de Recherche Royallieu, Cedex CS 60319, 60203 Compiègne, France
| | - Nathalie Maubon
- HCS Pharma, 250 rue Salvador Allende, Biocentre Fleming Bâtiment A, 59120 Loos, France
| | - Cécile Legallais
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu, CS 60319, 60203 Compiègne Cedex, France
| | - Eric Leclerc
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu, CS 60319, 60203 Compiègne Cedex, France; CNRS, IRL2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Rachid Jellali
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu, CS 60319, 60203 Compiègne Cedex, France.
| |
Collapse
|
5
|
Liang J, Wei X, Hou W, Wang H, Ma R, Gao Y, Du Y, Zhang Q. Liver metabolomics reveals potential mechanism of Jieduan-Niwan formula against acute-on-chronic liver failure (ACLF) by improving mitochondrial damage and TCA cycle. Chin Med 2023; 18:157. [PMID: 38037150 PMCID: PMC10691013 DOI: 10.1186/s13020-023-00858-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Acute-on-chronic liver failure (ACLF) is a refractory disease with high mortality, which is characterized by a pathophysiological process of inflammation-related dysfunction of energy metabolism. Jieduan-Niwan formula (JDNWF) is a eutherapeutic Chinese medicine formula for ACLF. However, the intrinsic mechanism of its anti-ACLF effect still need to be studied systematically. PURPOSE This study aimed to investigate the mechanism of JDNWF against ACLF based on altered substance metabolic profile in ACLF the expression levels of related molecules. MATERIALS AND METHODS The chemical characteristics of JDNWF were characterized using ultra performance liquid chromatography (UPLC) coupled with triple quadrupole mass spectrometry. Wistar rats subjected to a long-term CCL4 stimulation followed by a combination of an acute attack with LPS/D-GalN were used to establish the ACLF model. Liver metabolites were analyzed by LC-MS/MS and multivariate analysis. Liver function, coagulation function, histopathology, mitochondrial metabolic enzyme activity and mitochondrial damage markers were evaluated. The protein expression of mitochondrial quality control (MQC) was investigated by western blot. RESULTS Liver function, coagulation function, inflammation, oxidative stress and mitochondrial enzyme activity were significantly improved by JDNWF. 108 metabolites are considered as biomarkers of JDNWF in treating ACLF, which were closely related to TCA cycle. It was further suggested that JDNWF alleviated mitochondrial damage and MQC may be potential mechanism of JDNWF improving mitochondrial function. CONCLUSIONS Metabolomics revealed that TCA cycle was impaired in ACLF rats, and JDNWF had a regulatory effect on it. The potential mechanism may be improving the mitochondrial function through MQC pathway, thus restoring energy metabolism.
Collapse
Affiliation(s)
- Jiajun Liang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Xiaoyi Wei
- Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Weixin Hou
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Hanjing Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Ruimin Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Yanbin Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, 100069, China.
| | - Yuqiong Du
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, 100069, China.
| | - Qiuyun Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, 100069, China.
| |
Collapse
|
6
|
Aki T, Tanaka H, Funakoshi T, Unuma K, Uemura K. Excessive N-acetylcysteine exaggerates glutathione redox homeostasis and apoptosis during acetaminophen exposure in Huh-7 human hepatoma cells. Biochem Biophys Res Commun 2023; 676:66-72. [PMID: 37487439 DOI: 10.1016/j.bbrc.2023.07.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 06/25/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023]
Abstract
Acetaminophen (APAP) hepatotoxicity is one of the biggest drawbacks of this relatively safe and widely used drug. In addition to its hepatotoxicity, APAP also cause comparable levels of toxicity on human hepatoma cells. Here we show activation of the intrinsic caspase-9/3 pathway of apoptosis followed by gasdermin E (GSDME) cleavage and subsequent ballooning in APAP (10 mM, 72 h)-treated Huh-7 human hepatocarcinoma cells. N-acetylcysteine (NAC), an antioxidant currently used as an antidote for APAP overdose, does not alleviate APAP toxicity in Huh-7 cells; NAC overdose (10 mM) rather aggravates APAP toxicity. NAC overdose not only aggravates cell death, but also decreases the cellular GSH/GSSG ratio, an indicator of redox homeostasis of glutathione. These results show for the first time that APAP-induced apoptosis in hepatoma cells is followed by secondary necrosis via the caspase-3/GSDME pathway. NAC overdose (10 mM) not only worsens the glutathione redox status, but also accelerates this pathway.
Collapse
Affiliation(s)
- Toshihiko Aki
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Hiroki Tanaka
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeshi Funakoshi
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kana Unuma
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koichi Uemura
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
7
|
Ribeiro GDS, Martins DHN, Gomes JVD, Davies NW, Fagg CW, Simeoni LA, Homem-de-Mello M, Magalhães PO, Silveira D, Fonseca-Bazzo YM. Hepatoprotective Effects of Four Brazilian Savanna Species on Acetaminophen-Induced Hepatotoxicity in HepG2 Cells. PLANTS (BASEL, SWITZERLAND) 2023; 12:3393. [PMID: 37836133 PMCID: PMC10574628 DOI: 10.3390/plants12193393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
We investigated four Cerrado plant species, i.e., Cheiloclinium cognatum (Miers) A.C.Sm, Guazuma ulmifolia Lam., Hancornia speciosa Gomes, and Hymenaea stigonocarpa Mart. ex Hayne, against acetaminophen toxicity using an in vitro assay with HepG2 cells. The activity against acetaminophen toxicity was evaluated using different protocols, i.e., pre-treatment, co-treatment, and post-treatment of the cells with acetaminophen and the plant extracts. HepG2 cell viability after treatment with acetaminophen was 39.61 ± 5.59% of viable cells. In the pre-treatment protocol, the extracts could perform protection with viability ranging from 50.02 ± 15.24% to 78.75 ± 5.61%, approaching the positive control silymarin with 75.83 ± 5.52%. In the post-treatment protocol, all extracts and silymarin failed to reverse the acetaminophen damage. In the co-treatment protocol, the extracts showed protection ranging from 50.92 ± 11.14% to 68.50 ± 9.75%, and silymarin showed 77.87 ± 4.26%, demonstrating that the aqueous extracts of the species also do not increase the toxic effect of acetaminophen. This protection observed in cell viability was accompanied by a decrease in ROS. The extracts' hepatoprotection can be related to antioxidant compounds, such as rutin and mangiferin, identified using HPLC-DAD and UPLC-MS/MS. The extracts were shown to protect HepG2 cells against future APAP toxicity and may be candidates for supplements that could be used to prevent liver damage. In the concomitant treatment using the extracts with APAP, it was demonstrated that the extracts do not present a synergistic toxicity effect, with no occurrence of potentiation of toxicity. The extracts showed considerable cytoprotective effects and important antioxidant characteristics.
Collapse
Affiliation(s)
- Gislane dos Santos Ribeiro
- Pharmacy Department, Health Sciences School, University of Brasília, Brasilia 70910-900, Brazil; (G.d.S.R.); (D.H.N.M.); (J.V.D.G.); (L.A.S.); (M.H.-d.-M.); (P.O.M.); (D.S.)
| | - Diegue Henrique Nascimento Martins
- Pharmacy Department, Health Sciences School, University of Brasília, Brasilia 70910-900, Brazil; (G.d.S.R.); (D.H.N.M.); (J.V.D.G.); (L.A.S.); (M.H.-d.-M.); (P.O.M.); (D.S.)
| | - João Victor Dutra Gomes
- Pharmacy Department, Health Sciences School, University of Brasília, Brasilia 70910-900, Brazil; (G.d.S.R.); (D.H.N.M.); (J.V.D.G.); (L.A.S.); (M.H.-d.-M.); (P.O.M.); (D.S.)
| | - Noel William Davies
- Central Science Laboratory, University of Tasmania, Hobart, TAS 7005, Australia;
| | - Christopher William Fagg
- Department of Botany, Institute of Biological Science, University of Brasília, Brasilia 70910-900, Brazil;
| | - Luiz Alberto Simeoni
- Pharmacy Department, Health Sciences School, University of Brasília, Brasilia 70910-900, Brazil; (G.d.S.R.); (D.H.N.M.); (J.V.D.G.); (L.A.S.); (M.H.-d.-M.); (P.O.M.); (D.S.)
| | - Mauricio Homem-de-Mello
- Pharmacy Department, Health Sciences School, University of Brasília, Brasilia 70910-900, Brazil; (G.d.S.R.); (D.H.N.M.); (J.V.D.G.); (L.A.S.); (M.H.-d.-M.); (P.O.M.); (D.S.)
| | - Pérola Oliveira Magalhães
- Pharmacy Department, Health Sciences School, University of Brasília, Brasilia 70910-900, Brazil; (G.d.S.R.); (D.H.N.M.); (J.V.D.G.); (L.A.S.); (M.H.-d.-M.); (P.O.M.); (D.S.)
| | - Dâmaris Silveira
- Pharmacy Department, Health Sciences School, University of Brasília, Brasilia 70910-900, Brazil; (G.d.S.R.); (D.H.N.M.); (J.V.D.G.); (L.A.S.); (M.H.-d.-M.); (P.O.M.); (D.S.)
| | - Yris Maria Fonseca-Bazzo
- Pharmacy Department, Health Sciences School, University of Brasília, Brasilia 70910-900, Brazil; (G.d.S.R.); (D.H.N.M.); (J.V.D.G.); (L.A.S.); (M.H.-d.-M.); (P.O.M.); (D.S.)
| |
Collapse
|
8
|
Zheng Y, Wang J, Ling Z, Zhang J, Zeng Y, Wang K, Zhang Y, Nong L, Sang L, Xu Y, Liu X, Li Y, Huang Y. A diagnostic model for sepsis-induced acute lung injury using a consensus machine learning approach and its therapeutic implications. J Transl Med 2023; 21:620. [PMID: 37700323 PMCID: PMC10498641 DOI: 10.1186/s12967-023-04499-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/01/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND A significant proportion of septic patients with acute lung injury (ALI) are recognized late due to the absence of an efficient diagnostic test, leading to the postponed treatments and consequently higher mortality. Identifying diagnostic biomarkers may improve screening to identify septic patients at high risk of ALI earlier and provide the potential effective therapeutic drugs. Machine learning represents a powerful approach for making sense of complex gene expression data to find robust ALI diagnostic biomarkers. METHODS The datasets were obtained from GEO and ArrayExpress databases. Following quality control and normalization, the datasets (GSE66890, GSE10474 and GSE32707) were merged as the training set, and four machine learning feature selection methods (Elastic net, SVM, random forest and XGBoost) were applied to construct the diagnostic model. The other datasets were considered as the validation sets. To further evaluate the performance and predictive value of diagnostic model, nomogram, Decision Curve Analysis (DCA) and Clinical Impact Curve (CIC) were constructed. Finally, the potential small molecular compounds interacting with selected features were explored from the CTD database. RESULTS The results of GSEA showed that immune response and metabolism might play an important role in the pathogenesis of sepsis-induced ALI. Then, 52 genes were identified as putative biomarkers by consensus feature selection from all four methods. Among them, 5 genes (ARHGDIB, ALDH1A1, TACR3, TREM1 and PI3) were selected by all methods and used to predict ALI diagnosis with high accuracy. The external datasets (E-MTAB-5273 and E-MTAB-5274) demonstrated that the diagnostic model had great accuracy with AUC value of 0.725 and 0.833, respectively. In addition, the nomogram, DCA and CIC showed that the diagnostic model had great performance and predictive value. Finally, the small molecular compounds (Curcumin, Tretinoin, Acetaminophen, Estradiol and Dexamethasone) were screened as the potential therapeutic agents for sepsis-induced ALI. CONCLUSION This consensus of multiple machine learning algorithms identified 5 genes that were able to distinguish ALI from septic patients. The diagnostic model could identify septic patients at high risk of ALI, and provide potential therapeutic targets for sepsis-induced ALI.
Collapse
Affiliation(s)
- Yongxin Zheng
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
- State Key Laboratory of Respiratory Diseases, Guangzhou, 510120, China
| | - Jinping Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong,, China
| | - Zhaoyi Ling
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
- State Key Laboratory of Respiratory Diseases, Guangzhou, 510120, China
| | - Jiamei Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
- State Key Laboratory of Respiratory Diseases, Guangzhou, 510120, China
| | - Yuan Zeng
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
- State Key Laboratory of Respiratory Diseases, Guangzhou, 510120, China
| | - Ke Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
- State Key Laboratory of Respiratory Diseases, Guangzhou, 510120, China
| | - Yu Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
- State Key Laboratory of Respiratory Diseases, Guangzhou, 510120, China
| | - Lingbo Nong
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
- State Key Laboratory of Respiratory Diseases, Guangzhou, 510120, China
| | - Ling Sang
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
- State Key Laboratory of Respiratory Diseases, Guangzhou, 510120, China
| | - Yonghao Xu
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
- State Key Laboratory of Respiratory Diseases, Guangzhou, 510120, China
| | - Xiaoqing Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
- State Key Laboratory of Respiratory Diseases, Guangzhou, 510120, China
| | - Yimin Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China.
- State Key Laboratory of Respiratory Diseases, Guangzhou, 510120, China.
| | - Yongbo Huang
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
- Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China.
- State Key Laboratory of Respiratory Diseases, Guangzhou, 510120, China.
| |
Collapse
|
9
|
Chu YD, Chen CW, Lai MW, Lim SN, Lin WR. Bioenergetic alteration in gastrointestinal cancers: The good, the bad and the ugly. World J Gastroenterol 2023; 29:4499-4527. [PMID: 37621758 PMCID: PMC10445009 DOI: 10.3748/wjg.v29.i29.4499] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/23/2023] [Accepted: 07/03/2023] [Indexed: 08/02/2023] Open
Abstract
Cancer cells exhibit metabolic reprogramming and bioenergetic alteration, utilizing glucose fermentation for energy production, known as the Warburg effect. However, there are a lack of comprehensive reviews summarizing the metabolic reprogramming, bioenergetic alteration, and their oncogenetic links in gastrointestinal (GI) cancers. Furthermore, the efficacy and treatment potential of emerging anticancer drugs targeting these alterations in GI cancers require further evaluation. This review highlights the interplay between aerobic glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (OXPHOS) in cancer cells, as well as hypotheses on the molecular mechanisms that trigger this alteration. The role of hypoxia-inducible transcription factors, tumor suppressors, and the oncogenetic link between hypoxia-related enzymes, bioenergetic changes, and GI cancer are also discussed. This review emphasizes the potential of targeting bioenergetic regulators for anti-cancer therapy, particularly for GI cancers. Emphasizing the potential of targeting bioenergetic regulators for GI cancer therapy, the review categorizes these regulators into aerobic glycolysis/ lactate biosynthesis/transportation and TCA cycle/coupled OXPHOS. We also detail various anti-cancer drugs and strategies that have produced pre-clinical and/or clinical evidence in treating GI cancers, as well as the challenges posed by these drugs. Here we highlight that understanding dysregulated cancer cell bioenergetics is critical for effective treatments, although the diverse metabolic patterns present challenges for targeted therapies. Further research is needed to comprehend the specific mechanisms of inhibiting bioenergetic enzymes, address side effects, and leverage high-throughput multi-omics and spatial omics to gain insights into cancer cell heterogeneity for targeted bioenergetic therapies.
Collapse
Affiliation(s)
- Yu-De Chu
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chun-Wei Chen
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Ming-Wei Lai
- Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Siew-Na Lim
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Wey-Ran Lin
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
10
|
Kiseleva OI, Kurbatov IY, Arzumanian VA, Ilgisonis EV, Zakharov SV, Poverennaya EV. The Expectation and Reality of the HepG2 Core Metabolic Profile. Metabolites 2023; 13:908. [PMID: 37623852 PMCID: PMC10456947 DOI: 10.3390/metabo13080908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023] Open
Abstract
To represent the composition of small molecules circulating in HepG2 cells and the formation of the "core" of characteristic metabolites that often attract researchers' attention, we conducted a meta-analysis of 56 datasets obtained through metabolomic profiling via mass spectrometry and NMR. We highlighted the 288 most commonly studied compounds of diverse chemical nature and analyzed metabolic processes involving these small molecules. Building a complete map of the metabolome of a cell, which encompasses the diversity of possible impacts on it, is a severe challenge for the scientific community, which is faced not only with natural limitations of experimental technologies, but also with the absence of transparent and widely accepted standards for processing and presenting the obtained metabolomic data. Formulating our research design, we aimed to reveal metabolites crucial to the Hepg2 cell line, regardless of all chemical and/or physical impact factors. Unfortunately, the existing paradigm of data policy leads to a streetlight effect. When analyzing and reporting only target metabolites of interest, the community ignores the changes in the metabolomic landscape that hide many molecular secrets.
Collapse
Affiliation(s)
- Olga I. Kiseleva
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, 119121 Moscow, Russia (E.V.I.); (E.V.P.)
| | - Ilya Y. Kurbatov
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, 119121 Moscow, Russia (E.V.I.); (E.V.P.)
| | - Viktoriia A. Arzumanian
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, 119121 Moscow, Russia (E.V.I.); (E.V.P.)
| | - Ekaterina V. Ilgisonis
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, 119121 Moscow, Russia (E.V.I.); (E.V.P.)
| | - Svyatoslav V. Zakharov
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory Street, 1/3, 119991 Moscow, Russia;
| | - Ekaterina V. Poverennaya
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, 119121 Moscow, Russia (E.V.I.); (E.V.P.)
| |
Collapse
|
11
|
Enguita FJ, Pereira S, Leitão AL. Transcriptomic Analysis of Acetaminophen Biodegradation by Penicillium chrysogenum var. halophenolicum and Insights into Energy and Stress Response Pathways. J Fungi (Basel) 2023; 9:jof9040408. [PMID: 37108863 PMCID: PMC10146002 DOI: 10.3390/jof9040408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
(1) Background: Acetaminophen (APAP), an active component of many analgesic and antipyretic drugs, is one of the most concerning trace contaminants in the environment and is considered as an emergent pollutant of marine and aquatic ecosystems. Despite its biodegradability, APAP has become a recalcitrant compound due to the growth of the global population, the ease of availability, and the inefficient wastewater treatment applied. (2) Methods: In this study, we used a transcriptomic approach to obtain functional and metabolic insights about the metabolization of APAP by a phenol-degrading fungal strain, Penicillium chrysogenum var. halophenolicum. (3) Results: We determined that the transcriptomic profile exhibited by the fungal strain during APAP degradation was very dynamic, being characterized by an abundance of dysregulated transcripts which were proportional to the drug metabolization. Using a systems biology approach, we also inferred the protein functional interaction networks that could be related to APAP degradation. We proposed the involvement of intracellular and extracellular enzymes, such as amidases, cytochrome P450, laccases, and extradiol-dioxygenases, among others. (4) Conclusions: Our data suggested that the fungus could metabolize APAP via a complex metabolic pathway, generating nontoxic metabolites, which demonstrated its potential in the bioremediation of this drug.
Collapse
|
12
|
Prather BL, Ji S, Zhao Y, Shajan FJ, Zhao M, Buuh ZY, Maloney R, Zhang R, Cohen C, Wang RE. Fluorine-thiol displacement probes for acetaminophen's hepatotoxicity. Acta Pharm Sin B 2023; 13:204-212. [PMID: 36815027 PMCID: PMC9939312 DOI: 10.1016/j.apsb.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/01/2022] [Accepted: 07/28/2022] [Indexed: 11/19/2022] Open
Abstract
Chemicals possessing reactive electrophiles can denature innate proteins leading to undesired toxicity, and the overdose-induced liver injury by drugs containing electrophiles has been one of the major causes of non-approval and withdraw by the US Food and Drug Administration (FDA). Elucidating the associated proteins could guide the future development of therapeutics to circumvent these drugs' toxicities, but was largely limited by the current probing tools due to the steric hindrance of chemical tags including the common "click chemistry" labels. Taking the widely used non-steroidal anti-inflammatory drug acetaminophen (APAP) as an example, we hereby designed and synthesized an APAP analogue using fluorine as a steric-free label. Cell toxicity studies indicated our analogue has similar activity to the parent drug. This analogue was applied to the mouse hepatocellular proteome together with the corresponding desthiobiotin-SH probe for subsequent fluorine-thiol displacement reactions (FTDRs). This set of probes has enabled the labeling and pull-down of hepatocellular target proteins of the APAP metabolite as validated by Western blotting. Our preliminary validation results supported the interaction of APAP with the thioredoxin protein, which is an important redox protein for normal liver function. These results demonstrated that our probes confer minimal steric perturbation and mimic the compounds of interest, allowing for global profiling of interacting proteins. The fluorine-thiol displacement probing system could emerge as a powerful tool to enable the investigation of drug-protein interactions in complex biological environments.
Collapse
|
13
|
Cho E, Jung S, Kim J, Ko KS. The Relationship between Prohibitin 1 Expression, Hepatotoxicity Induced by Acetaminophen, and Hepatoprotection by S-Adenosylmethionine in AML12 Cells. J Microbiol Biotechnol 2022; 32:1447-1453. [PMID: 36310362 PMCID: PMC9720076 DOI: 10.4014/jmb.2207.07035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/29/2022]
Abstract
Prohibitin 1 (Phb1) is a pleiotropic protein, located mainly in the mitochondrial inner membrane and involved in the regulation of cell proliferation and the stabilization of mitochondrial protein. Acetaminophen (APAP) is one of the most commonly used over-the-counter analgesics worldwide. However, at high dose, the accumulation of N-acetyl-p-benzoquinone imine (NAPQI) can lead to APAP-induced hepatotoxicity. In this study, we sought to understand the regulation of mRNA expression in relation to APAP and GSH metabolism by Phb1 in normal mouse AML12 hepatocytes. We used two different Phb1 silencing levels: high-efficiency (HE, >90%) and low-efficiency (LE, 50-60%). In addition, the siRNA-transfected cells were further pretreated with 0.5 mM of S-adenosylmethionine (SAMe) for 24 h before treatment with APAP at different doses (1-2 mM) for 24 h. The expression of APAP metabolism-related and antioxidant genes such as Cyp2e1 and Ugt1a1 were increased during SAMe pretreatment. Moreover, SAMe increased intracellular GSH concentration and it was maintained after APAP treatment. To sum up, Phb1 silencing and APAP treatment impaired the metabolism of APAP in hepatocytes, and SAMe exerted a protective effect against hepatotoxicity by upregulating antioxidant genes.
Collapse
Affiliation(s)
- Eunhye Cho
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Soohan Jung
- Department of Integrated Biomedical and Life Science, Korea University, Seoul 02841, Republic of Korea
| | - Jina Kim
- Department of Human Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Kwang Suk Ko
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea,Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea,Corresponding author Phone: +82-2-3277-6859 E-mail:
| |
Collapse
|
14
|
A new strategy for the rapid identification and validation of direct toxicity targets of psoralen-induced hepatotoxicity. Toxicol Lett 2022; 363:11-26. [PMID: 35597499 DOI: 10.1016/j.toxlet.2022.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/14/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022]
Abstract
The interaction between small-molecule compounds of traditional Chinese medicine and their direct targets is the molecular initiation event, which is the key factor for toxicity efficacy. Psoralen, an active component of Fructus Psoraleae, is toxic to the liver and has various pharmacological properties. Although the mechanism of psoralen-induced hepatotoxicity has been studied, the direct target of psoralen remains unclear. Thus, the aim of this study was to discover direct targets of psoralen. To this end, we initially used proteomics based on drug affinity responsive target stability (DARTS) technology to identify the direct targets of psoralen. Next, we used surface plasmon resonance (SPR) analysis and verified the affinity effect of the 'component-target protein'. This method combines molecular docking technology to explore binding sites between small molecules and proteins. SPR and molecular docking confirmed that psoralen and tyrosine-protein kinase ABL1 could be stably combined. Based on the above experimental results, ABL1 is a potential direct target of psoralen-induced hepatotoxicity. Finally, the targets Nrf2 and mTOR, which are closely related to the hepatotoxicity caused by psoralen, were predicted by integrating proteomics and network pharmacology. The direct target ABL1 is located upstream of Nrf2 and mTOR, Nrf2 can influence the expression of mTOR by affecting the level of reactive oxygen species. Immunofluorescence experiments and western blot results showed that psoralen could affect ROS levels and downstream Nrf2 and mTOR protein changes, whereas the ABL1 inhibitor imatinib and ABL1 agonist DPH could enhance or inhibit this effect. In summary, we speculated that when psoralen causes hepatotoxicity, it acts on the direct target ABL1, resulting in a decrease in Nrf2 expression, an increase in ROS levels and a reduction in mTOR expression, which may cause cell death. We developed a new strategy for predicting and validating the direct targets of psoralen. This strategy identified the toxic target, ABL1, and the potential toxic mechanism of psoralen.
Collapse
|
15
|
Lecante LL, Leverrier-Penna S, Gicquel T, Giton F, Costet N, Desdoits-Lethimonier C, Lesné L, Fromenty B, Lavoué V, Rolland AD, Mazaud-Guittot S. Acetaminophen (APAP, Paracetamol) Interferes With the First Trimester Human Fetal Ovary Development in an Ex Vivo Model. J Clin Endocrinol Metab 2022; 107:1647-1661. [PMID: 35147701 PMCID: PMC9113793 DOI: 10.1210/clinem/dgac080] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Indexed: 11/23/2022]
Abstract
CONTEXT Acetaminophen (APAP, paracetamol) is widely used by pregnant women. Although long considered safe, growing evidence indicates that APAP is an endocrine disruptor since in utero exposure may be associated with a higher risk of male genital tract abnormalities. In rodents, fetal exposure has long-term effects on the reproductive function of female offspring. Human studies have also suggested harmful APAP exposure effects. OBJECTIVE Given that disruption of fetal ovarian development may impact women's reproductive health, we investigated the effects of APAP on fetal human ovaries in culture. DESIGN AND SETTING Human ovarian fragments from 284 fetuses aged 7 to 12 developmental weeks (DW) were cultivated ex vivo for 7 days in the presence of human-relevant concentrations of APAP (10-8 to 10-3 M) or vehicle control. MAIN OUTCOME MEASURES Outcomes included examination of postculture tissue morphology, cell viability, apoptosis, and quantification of hormones, APAP, and APAP metabolites in conditioned culture media. RESULTS APAP reduced the total cell number specifically in 10- to 12-DW ovaries, induced cell death, and decreased KI67-positive cell density independently of fetal age. APAP targeted subpopulations of germ cells and disrupted human fetal ovarian steroidogenesis, without affecting prostaglandin or inhibin B production. Human fetal ovaries were able to metabolize APAP. CONCLUSIONS Our data indicate that APAP can impact first trimester human fetal ovarian development, especially during a 10- to 12-DW window of heightened sensitivity. Overall, APAP behaves as an endocrine disruptor in the fetal human ovary.
Collapse
Affiliation(s)
- Laetitia L Lecante
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), Rennes, France
| | - Sabrina Leverrier-Penna
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), Rennes, France
| | - Thomas Gicquel
- Inserm, Inrae, Univ Rennes, Institut NuMeCan (Nutrition Metabolism and Cancer), Rennes, France
- Clinical and forensic Toxicology Laboratory Rennes University Hospital, Rennes, France
| | - Frank Giton
- AP-HP, Pôle Biologie-Pathologie Henri Mondor, Créteil, France
- Inserm IMRB, Faculté de Santé, Créteil, France
| | - Nathalie Costet
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), Rennes, France
| | | | - Laurianne Lesné
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), Rennes, France
| | - Bernard Fromenty
- Inserm, Inrae, Univ Rennes, Institut NuMeCan (Nutrition Metabolism and Cancer), Rennes, France
| | - Vincent Lavoué
- CHU Rennes, Service Gynécologie et Obstétrique, Rennes, France
| | - Antoine D Rolland
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), Rennes, France
| | - Séverine Mazaud-Guittot
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), Rennes, France
| |
Collapse
|
16
|
Wang T, Liu X, Qu X, Li Y, Liang X, Wu J. Lipid response of hepatocellular carcinoma cells to anticancer drug detected on nanostructure-assisted LDI-MS platform. Talanta 2021; 235:122817. [PMID: 34517673 DOI: 10.1016/j.talanta.2021.122817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/25/2022]
Abstract
High heterogeneity of hepatocellular carcinoma (HCC) tumor has become an obstacle to select effective therapy for the treatment of HCC patients. Methods that can guide the decision on therapy choice for HCC treatment are highly demanded. Evaluating the drug response of heterogeneous tumor cells at the molecular level can help to reveal the toxicity mechanism of anticancer drugs and provide more information than current cell-based chemosensitivity assays. In the present work, nanostructure-assisted laser desorption/ionization mass spectrometry (NALDI-MS) was used to investigate the lipid response of HCC cells to anticancer drugs. Three types of HCC cells (LM3, Hep G2, Huh7) were treated with sorafenib, doxorubicin hydro-chloride, and cisplatin. We found that the lipid profiles of HCC cells changed a lot after the drug treatment, and the degree of lipid changes was related to the cell viability. Two pairs of fatty acids C16:1/C16:0 and C18:1/C18:0 were found to be strongly related to the viability of HCC cells after drug treatment, and were more sensitive than Methyl-thiazolyl tetrazolium (MTT) assay. Accordingly, they can act as sensitive and comprehensive indexes to evaluate the drug susceptibility of HCC cells. In addition, the peak ratio of several neighboring phospholipids displayed high correlation with drug response of specific cell subtype to specific drug. The ratio of neighboring lipids may be traced back to the activity of enzyme and gene expression which regulate the lipidomic pathway. This method provides drug response of heterogenous tumor cells at molecular level and could be a potential candidate to precise tumor chemosensitivity assay.
Collapse
Affiliation(s)
- Tao Wang
- Institution of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Xingyue Liu
- Institution of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Xuetong Qu
- Institution of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yuexin Li
- Institution of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Xiao Liang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| | - Jianmin Wu
- Institution of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
17
|
Dargue R, Zia R, Lau C, Nicholls AW, Dare TO, Lee K, Jalan R, Coen M, Wilson ID. Metabolism and Effects on Endogenous Metabolism of Paracetamol (Acetaminophen) in a Porcine Model of Liver Failure. Toxicol Sci 2021; 175:87-97. [PMID: 32061126 PMCID: PMC7197950 DOI: 10.1093/toxsci/kfaa023] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The metabolic fate, toxicity, and effects on endogenous metabolism of paracetamol (acetaminophen, APAP) in 22 female Landrace cross large white pigs were evaluated in a model of acute liver failure (ALF). Anesthetized pigs were initially dosed at 250 mg/kg via an oroduodenal tube with APAP serum concentrations maintained above 300 mg/l using maintenance doses of 0.5–4 g/h until ALF. Studies were undertaken to determine both the metabolic fate of APAP and its effects on the endogenous metabolic phenotype of ALF in using 1H NMR spectroscopy. Increased concentrations of citrate combined with pre-ALF increases in circulating lactate, pyruvate, and alanine in plasma suggest mitochondrial dysfunction and a switch in hepatic energy metabolism to glycolysis in response to APAP treatment. A specific liquid chromatography-tandem mass spectrometry assay was used to quantify APAP and metabolites. The major circulating and urinary metabolite of APAP was the phenolic glucuronide (APAP-G), followed by p-aminophenol glucuronide (PAP-G) formed from N-deacetylated APAP. The PAP produced by N-deacetylation was the likely cause of the methemoglobinemia and kidney toxicity observed in this, and previous, studies in the pig. The phenolic sulfate of APAP, and the glutathione-derived metabolites of the drug were only found as minor components (with the cysteinyl conjugate detected but not the mercapturate). Given its low sulfation, combined with significant capacity for N-deacetylation the pig may represent a poor translational model for toxicology studies for compounds undergoing significant metabolism by sulfation, or which contain amide bonds which when hydrolyzed to unmask an aniline lead to toxicity. However, the pig may provide a useful model where extensive amide hydrolysis is seen for drugs or environmental chemicals in humans, but not in, eg, the rat and dog which are the preclinical species normally employed for safety assessment.
Collapse
Affiliation(s)
- Rebecca Dargue
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Rabiya Zia
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Chungho Lau
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington, London SW7 2AZ, UK
| | | | | | - Karla Lee
- Department of Clinical Science and Services, Royal Veterinary College, University of London, Hertfordshire AL9 7TA, UK
| | - Rajiv Jalan
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, London NW3 2PF, UK
| | - Muireann Coen
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington, London SW7 2AZ, UK.,Oncology Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Ian D Wilson
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington, London SW7 2AZ, UK
| |
Collapse
|
18
|
Toda A, Shimizu M, Uehara S, Sasaki T, Miura T, Mogi M, Utoh M, Suemizu H, Yamazaki H. Plasma and hepatic concentrations of acetaminophen and its primary conjugates after oral administrations determined in experimental animals and humans and extrapolated by pharmacokinetic modeling. Xenobiotica 2020; 51:316-323. [PMID: 33179995 DOI: 10.1080/00498254.2020.1849872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Plasma concentrations of acetaminophen, its glucuronide and sulfate conjugates, and cysteinyl acetaminophen were experimentally determined after oral administrations of 10 mg/kg in humanised-liver mice, control mice, rats, common marmosets, cynomolgus monkeys, and minipigs; the results were compared with reported human pharmacokinetic data. Among the animals tested, only rats predominantly converted acetaminophen to sulfate conjugates, rather than glucuronide conjugates. In contrast, the values of area under the plasma concentration curves of acetaminophen, its glucuronide and sulfate conjugates, and cysteinyl acetaminophen after oral administration of acetaminophen in marmosets and minipigs were consistent with those reported in humans under the present conditions. Physiologically based pharmacokinetic (PBPK) models (consisting of the gut, liver, and central compartments) for acetaminophen and its primary metabolite could reproduce and estimate, respectively, the plasma and hepatic concentrations of acetaminophen in experimental animals and humans after single virtual oral doses. The values of area under the curves of hepatic concentrations of acetaminophen estimated using PBPK models were correlated with the measured levels of cysteinyl acetaminophen (a deactivated metabolite) in plasma fractions in these species. Consequently, using simple PBPK models and plasma data to predict hepatic chemical concentrations after oral doses could be helpful as an indicator of in vivo possible hepatotoxicity of chemicals such as acetaminophen.
Collapse
Affiliation(s)
- Akiko Toda
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Wakayama , Japan
| | - Makiko Shimizu
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University , Tokyo , Japan
| | - Shotaro Uehara
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University , Tokyo , Japan.,Laboratory Animal Research Department, Central Institute for Experimental Animals , Kawasaki , Japan
| | - Tatsuro Sasaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University , Tokyo , Japan
| | - Tomonori Miura
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University , Tokyo , Japan
| | - Masayuki Mogi
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Wakayama , Japan.,Drug Safety Research Laboratories, Shin Nippon Biomedical Laboratories, Ltd., Kagoshima , Japan
| | - Masahiro Utoh
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Wakayama , Japan.,Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University , Tokyo , Japan.,Scientific Affairs Division, Shin Nippon Biomedical Laboratories, Ltd., Tokyo , Japan
| | - Hiroshi Suemizu
- Laboratory Animal Research Department, Central Institute for Experimental Animals , Kawasaki , Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University , Tokyo , Japan
| |
Collapse
|
19
|
Liu F, Wang X, Duan C, Zhang J, Li X. Hepatoxicity mechanism of cantharidin-induced liver LO2 cells by LC-MS metabolomics combined traditional approaches. Toxicol Lett 2020; 333:49-61. [PMID: 32726682 DOI: 10.1016/j.toxlet.2020.07.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/18/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022]
Abstract
Hepatotoxicity induced by Mylabris has been reported in both clinical and animal experiments. Cantharidin (CTD), the main active compound of Mylabris was responsible for the hepatotoxicity, which aroused widespread concern. However, the mechanism of CTD hepatotoxicity remained unclear. In this study, LO2 cells were exposed to two doses of CTD (6.25 and 25 μM) for 12 h, the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) were measured. The metabolites in LO2 cells were profiled by LC-MS. Partial least squares discriminant analysis and orthogonal partial least squares discriminant analysis were used for screening potential biomarkers. The MetPA software was used for clustering and pathway analysis. Network pharmacology was used to predict the genes acted with potential biomarkers. Compared with the control group, the levels of ALT, AST, and LDH was significantly increased after CTD treatment. A total of 46 potential biomarkers for hepatotoxicity induced by CTD were identified. And downregulated potential biomarkers reflected the inhibitory effects of CTD toxicity on metabolism of LO2. Moreover, CTD-induced liver toxicity of LO2 cells is mainly related to three pathways: cysteine and methionine metabolism; glutathione metabolism; and glycine, serine, and threonine metabolism. Furtherly, the mRNA expression of CES2, DNMT1, NOS1, NOS3, S1PR2, and CES1 screened by network pharmacology were regulated by CTD. These studies provide valuable mechanistic insights into CTD-associated hepatotoxicity that will aid in the development of therapeutic prevention and treatment options for this liver disease.
Collapse
Affiliation(s)
- Fang Liu
- Basic Medical School, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiaoning Wang
- School of pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Cancan Duan
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jianyong Zhang
- School of pharmacy, Zunyi Medical University, Zunyi, Guizhou, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China.
| | - Xiaofei Li
- Basic Medical School, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
20
|
Moritani C, Kawakami K, Shimoda H, Hatanaka T, Suzaki E, Tsuboi S. Protective Effects of Rice Peptide Oryza Peptide-P60 against Oxidative Injury through Activation of Nrf2 Signaling Pathway In Vitro and In Vivo. ACS OMEGA 2020; 5:13096-13107. [PMID: 32548495 PMCID: PMC7288566 DOI: 10.1021/acsomega.0c01016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/11/2020] [Indexed: 05/07/2023]
Abstract
We previously showed that commercially available rice peptide Oryza Peptide-P60 (OP60) increased the intracellular glutathione levels. This study aimed to evaluate the antioxidant potential of this peptide and assess its mechanism of action. Pretreatment of HepG2 cells with OP60 reduced the cytotoxicity caused by H2O2 or acetaminophen (APAP) (47.7 ± 1.3% or 12.2 ± 1.3% of the cytotoxicity for 5 mg/mL OP60 pretreatment compared to that in H2O2- or APAP-treated groups, respectively; p < 0.01) through the restoration of glutathione homeostasis. Moreover, OP60 elevated the mRNA level of genes encoding heavy and light subunits of γ-glutamylcysteine synthetase (γ-GCS) by 2.9 ± 0.1-fold and 2.7 ± 0.2-fold (p < 0.001), respectively, at 8 h and also increased the level of mRNA encoding other antioxidant enzymes. Besides, OP60 promoted Nrf2 nuclear translocation by 2.2 ± 0.3-fold (p < 0.05) after 8 h. Conversely, knockdown of Nrf2 inhibited the increase of the intracellular glutathione levels and suppressed the induction of antioxidant enzyme expression by OP60. In animal studies, OP60 prevented APAP-induced liver injury by suppressing glutathione depletion (from 0.19 ± 0.02 mmol/mg protein to 0.90 ± 0.02 mmol/mg protein; p < 0.01, by pretreatment with 500 mg/kg OP60) and increasing heavy subunit of γ-GCS and heme oxygenase-1 expression in the liver. Our results indicated that OP60 exhibits a cytoprotective effect via the Nrf2 signaling pathway and is one of the few peptides with excellent antioxidant properties.
Collapse
Affiliation(s)
- Chie Moritani
- School
of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Okayama 703-8516, Japan
| | - Kayoko Kawakami
- School
of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Okayama 703-8516, Japan
| | - Hiroshi Shimoda
- Research
and Development Division, Oryza Oil and
Fat Chemical Co. Ltd., 1 Numata, Kitagata-cho, Ichinomiya-shi, Aichi 493-8001, Japan
| | - Tadashi Hatanaka
- Okayama
Prefectural Technology Center for Agriculture, Forestry, and Fisheries,
Research Institute for Biological Sciences (RIBS), 7549-1 Yoshikawa, Kibi-chuo, Okayama 716-1241, Japan
| | - Etsuko Suzaki
- School
of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Okayama 703-8516, Japan
| | - Seiji Tsuboi
- School
of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Okayama 703-8516, Japan
- . Tel/Fax: +81-86-271-8349
| |
Collapse
|
21
|
Fromenty B. Inhibition of mitochondrial fatty acid oxidation in drug-induced hepatic steatosis. LIVER RESEARCH 2019. [DOI: 10.1016/j.livres.2019.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
22
|
Pirozzi C, Lama A, Annunziata C, Cavaliere G, De Caro C, Citraro R, Russo E, Tallarico M, Iannone M, Ferrante MC, Mollica MP, Mattace Raso G, De Sarro G, Calignano A, Meli R. Butyrate prevents valproate-induced liver injury: In vitro and in vivo evidence. FASEB J 2019; 34:676-690. [PMID: 31914696 DOI: 10.1096/fj.201900927rr] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/29/2022]
Abstract
Sodium valproate (VPA), an antiepileptic drug, may cause dose- and time-dependent hepatotoxicity. However, its iatrogenic molecular mechanism and the rescue therapy are disregarded. Recently, it has been demonstrated that sodium butyrate (NaB) reduces hepatic steatosis, improving respiratory capacity and mitochondrial dysfunction in obese mice. Here, we investigated the protective effect of NaB in counteracting VPA-induced hepatotoxicity using in vitro and in vivo models. Human HepG2 cells and primary rat hepatocytes were exposed to high VPA concentration and treated with NaB. Mitochondrial function, lipid metabolism, and oxidative stress were evaluated, using Seahorse analyzer, spectrophotometric, and biochemical determinations. Liver protection by NaB was also evaluated in VPA-treated epileptic WAG/Rij rats, receiving NaB for 6 months. NaB prevented VPA toxicity, limiting cell oxidative and mitochondrial damage (ROS, malondialdehyde, SOD activity, mitochondrial bioenergetics), and restoring fatty acid oxidation (peroxisome proliferator-activated receptor α expression and carnitine palmitoyl-transferase activity) in HepG2 cells, primary hepatocytes, and isolated mitochondria. In vivo, NaB confirmed its activity normalizing hepatic biomarkers, fatty acid metabolism, and reducing inflammation and fibrosis induced by VPA. These data support the protective potential of NaB on VPA-induced liver injury, indicating it as valid therapeutic approach in counteracting this common side effect due to VPA chronic treatment.
Collapse
Affiliation(s)
- Claudio Pirozzi
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Adriano Lama
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Chiara Annunziata
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Gina Cavaliere
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Carmen De Caro
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Rita Citraro
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Emilio Russo
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Martina Tallarico
- CNR, Institute of Neurological Sciences, Pharmacology Section, Roccelletta di Borgia, Catanzaro, Italy
| | - Michelangelo Iannone
- CNR, Institute of Neurological Sciences, Pharmacology Section, Roccelletta di Borgia, Catanzaro, Italy
| | - Maria Carmela Ferrante
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | | | | | | | - Antonio Calignano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Rosaria Meli
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
23
|
Rifampicin activates AMPK and alleviates oxidative stress in the liver as mediated with Nrf2 signaling. Chem Biol Interact 2019; 315:108889. [PMID: 31678598 DOI: 10.1016/j.cbi.2019.108889] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 10/15/2019] [Accepted: 10/28/2019] [Indexed: 01/01/2023]
Abstract
Although rifampicin could have a hepatic toxic effect, it has also been shown that this chemical acts as a cellular protectant against oxidative stress. Therefore, we wondered whether rifampicin has a beneficial effect such as an anti-oxidant in the liver, because the efficacy of some drugs sometimes relates with their toxicity as well as protective effects. The present study aimed to investigate the antioxidant effect of rifampicin against arachidonic acid (AA) plus iron (AA + iron) cotreatment and against acetaminophen (APAP, 500 mg/kg)-induced oxidative stress, in vitro and in vivo, respectively. In vivo, oral administration of rifampicin (100 or 200 mg/kg) attenuated elevation of serum alanine aminotransferase (ALT) and aspartate transaminase (AST), serum liver injury markers, against APAP treatment and, histologically, ameliorated tissue damage. Under in vitro examination, MTT assays were used to assess the cell death inhibitory effect of rifampicin against AA + iron-induced oxidative stress. In addition, DCFH-DA and Rh 123 staining showed that rifampicin treatment reduced reactive oxygen species (ROS) production and mitochondrial membrane damage, which had been induced by AA + iron treatment. Further, we explored whether rifampicin treatment enhanced phosphorylation of AMP-activated protein kinase (AMPK) by activation of liver kinase B1 (LKB1), the upstream kinase of AMPKα. Activated AMPKα induced activation of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), which are proteins functioning in redox balance. Moreover, we confirmed a reversed cell protective effect of rifampicin under compound C (an AMPK inhibitor) treatment. Overall, our data demonstrate that rifampicin effectively protects the liver against cellular oxidative stress through AMPKα and Nrf2 pathway.
Collapse
|
24
|
Honokiol alleviates acetaminophen-induced hepatotoxicity via decreasing generation of acetaminophen-protein adducts in liver. Life Sci 2019; 230:97-103. [DOI: 10.1016/j.lfs.2019.05.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023]
|
25
|
Bravo-Santano N, Ellis JK, Calle Y, Keun HC, Behrends V, Letek M. Intracellular Staphylococcus aureus Elicits the Production of Host Very Long-Chain Saturated Fatty Acids with Antimicrobial Activity. Metabolites 2019; 9:metabo9070148. [PMID: 31330837 PMCID: PMC6680556 DOI: 10.3390/metabo9070148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/10/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022] Open
Abstract
As a facultative intracellular pathogen, Staphylococcus aureus is able to invade and proliferate within many types of mammalian cells. Intracellular bacterial replication relies on host nutrient supplies and, therefore, cell metabolism is closely bound to intracellular infection. Here, we investigated how S. aureus invasion affects the host membrane-bound fatty acids. We quantified the relative levels of fatty acids and their labelling pattern after intracellular infection by gas chromatography-mass spectrometry (GC-MS). Interestingly, we observed that the levels of three host fatty acids—docosanoic, eicosanoic and palmitic acids—were significantly increased in response to intracellular S. aureus infection. Accordingly, labelling carbon distribution was also affected in infected cells, in comparison to the uninfected control. In addition, treatment of HeLa cells with these three fatty acids showed a cytoprotective role by directly reducing S. aureus growth.
Collapse
Affiliation(s)
| | - James K Ellis
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London W12 0HS, UK
| | - Yolanda Calle
- Health Sciences Research Centre, University of Roehampton, London SW15 4JD, UK
| | - Hector C Keun
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London W12 0HS, UK
| | - Volker Behrends
- Health Sciences Research Centre, University of Roehampton, London SW15 4JD, UK.
| | - Michal Letek
- Health Sciences Research Centre, University of Roehampton, London SW15 4JD, UK.
| |
Collapse
|