1
|
Willoquet B, Mirey G, Labat O, Garofalo M, Puel S, Penary M, Soler L, Vettorazzi A, Vignard J, Oswald IP, Payros D. Roles of cytochromes P450 and ribosome inhibition in the interaction between two preoccupying mycotoxins, aflatoxin B1 and deoxynivalenol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176937. [PMID: 39437909 DOI: 10.1016/j.scitotenv.2024.176937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/24/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
Mycotoxins are a threat to human and animal health. Climate change increases their occurrence and our dietary exposure. Although humans and animals are concomitantly exposed to several mycotoxins, their combined effects are poorly characterised. This study investigated the interaction between aflatoxin B1 (AFB1), the most potent natural carcinogen, and deoxynivalenol (DON), which is among the most prevalent mycotoxins. AFB1 is associated with hepatocellular carcinoma through its bioactivation by cytochrome P450 (CYP450) enzymes; while DON induces ribotoxic stress leading to an alteration of intestinal, immune and hepatic functions. Analysis of DNA damage biomarkers γ-H2AX and 53BP1 revealed that DON reduces the genotoxicity of AFB1. This effect was mimicked with cycloheximide (CHX), another ribosome inhibitor; moreover DOM-1, a DON-derivative lacking ribosome inhibition, did not affect DNA damage. Exposure to DON, alone or in combination with AFB1, decreased the protein levels and/or activities of CYP1A2 and CYP3A4 in a time- and dose-dependent manner. A similar reduction of CYP1A2 and CYP3A4 activities was also observed with CHX. Altogether, these results revealed an original interaction between DON and AFB1, DON inhibiting the genotoxicity of AFB1. The underlying mechanism involves ribosome inhibition by DON and the subsequent impairment of CYP450s, responsible for the bioactivation of AFB1. This work highlights the importance of studying mycotoxins not only individually but also in mixture and of considering food contaminants as part of the exposome.
Collapse
Affiliation(s)
- B Willoquet
- INRAE, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
| | - G Mirey
- INRAE, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
| | - O Labat
- INRAE, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
| | - M Garofalo
- INRAE, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
| | - S Puel
- INRAE, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
| | - M Penary
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - L Soler
- INRAE, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
| | - A Vettorazzi
- Department of Pharmacology and Toxicology, Research Group MITOX, School of Pharmacy and Nutrition, Universidad de Navarra, 31008 Pamplona, Spain
| | - J Vignard
- INRAE, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
| | - I P Oswald
- INRAE, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France.
| | - D Payros
- INRAE, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France.
| |
Collapse
|
2
|
Szentirmay A, Molnár Z, Plank P, Mézes M, Sajgó A, Martonos A, Buzder T, Sipos M, Hruby L, Szőke Z, Sára L. The Potential Influence of the Presence of Mycotoxins in Human Follicular Fluid on Reproductive Outcomes. Toxins (Basel) 2024; 16:509. [PMID: 39728767 PMCID: PMC11728479 DOI: 10.3390/toxins16120509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
The effect of mycotoxin exposure on follicular fluid composition and reproductive outcomes in women undergoing in vitro fertilisation (IVF) was investigated in this study. Twenty-five patients were included, and follicular fluid and serum samples were analysed for various mycotoxins. Principal observations:1. Mycotoxin presence: All examined mycotoxins were detected in follicular fluid. Follicular fluid (ff) levels: Deoxynivalenol (DON), alfa-Zearalenol (α-ZOL), Zearalenone (ZEN), and total aflatoxin (AFs) were significantly higher in follicular fluid than in serum. 2. Follicular fluid and reproductive outcomes: A positive correlation was observed between the ratio of oocytes to total follicles and the follicular Fumonisin B1 (FB1) levels. Multiple linear regression analysis revealed a significant relationship between DON and T-2/HT-2 toxins (T2/HT2) levels in the follicular fluid. 3. Hormone levels: Follicular 17-beta estradiol (E2) and progesterone (P4) levels were higher than the serum levels. Follicular P4 correlated with serum P4 and Anti-Müllerian hormone (AMH) levels. In contrast, follicular E2 did not correlate with plasma E2 levels. 4. Mycotoxin-hormone interactions: A positive correlation was observed between follicular P4 and T2/HT2 toxin levels, whereas a negative correlation was found between ffE2 and ffT2/HT2, and a positive correlation was found between ZEN and E2. Conclusion: This study elucidated the presence of various mycotoxins in the follicular fluid and their potential influence on reproductive outcomes. Further research is warranted to clarify the specific mechanisms underlying these effects and develop strategies for detecting mycotoxin exposure in women undergoing IVF.
Collapse
Affiliation(s)
- Apolka Szentirmay
- Department of Obstetrics and Gynecology, Semmelweis University, 1088 Budapest, Hungary;
| | - Zsófia Molnár
- Department of Animal Biotechnology, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (Z.M.); (P.P.)
| | - Patrik Plank
- Department of Animal Biotechnology, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (Z.M.); (P.P.)
| | - Miklós Mézes
- Department of Feed Safety, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary;
| | - Attila Sajgó
- Central of Assisted Reproduction, Semmelweis University, 1097 Budapest, Hungary; (A.S.); (T.B.); (M.S.)
| | - Attila Martonos
- Central of Assisted Reproduction, Semmelweis University, 1097 Budapest, Hungary; (A.S.); (T.B.); (M.S.)
| | - Tímea Buzder
- Central of Assisted Reproduction, Semmelweis University, 1097 Budapest, Hungary; (A.S.); (T.B.); (M.S.)
| | - Miklós Sipos
- Central of Assisted Reproduction, Semmelweis University, 1097 Budapest, Hungary; (A.S.); (T.B.); (M.S.)
| | - Lili Hruby
- Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany;
| | - Zsuzsanna Szőke
- Department of Animal Biotechnology, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (Z.M.); (P.P.)
| | - Levente Sára
- Department of Obstetrics and Gynecology, Semmelweis University, 1088 Budapest, Hungary;
- Department of Animal Biotechnology, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (Z.M.); (P.P.)
| |
Collapse
|
3
|
Wang Y, Zhang M, Li K, Zhang C, Tian H, Luo Y. Investigation of Deoxynivalenol Contamination in Local Area and Evaluation of Its Multiple Intestinal Toxicity. Toxins (Basel) 2024; 16:353. [PMID: 39195763 PMCID: PMC11359542 DOI: 10.3390/toxins16080353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/27/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024] Open
Abstract
Deoxynivalenol (DON) is a mycotoxin produced by Fusarium fungi widespread in wheat, corn, barley and other grain crops, posing the potential for being toxic to human and animal health, especially in the small intestine, which is the primary target organ for defense against the invasion of toxins. This study firstly investigated DON contamination in a local area of a wheat production district in China. Subsequently, the mechanism of DON toxicity was analyzed through cellular molecular biology combining with intestinal flora and gene transcription analysis; the results indicated that DON exposure can decrease IPEC-J2 cell viability and antioxidant capacity, stimulate the secretion and expression of proinflammatory factors, destroy the gut microbiota and affect normal functions of the body. It is illustrated that DON could induce intestinal damage through structural damage, functional injury and even intestinal internal environment disturbance, and, also, these intestinal toxicity effects are intrinsically interrelated. This study may provide multifaceted information for the treatment of intestinal injury induced by DON.
Collapse
Affiliation(s)
- Yebo Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (Y.W.); (M.Z.); (K.L.)
| | - Minjie Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (Y.W.); (M.Z.); (K.L.)
| | - Ke Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (Y.W.); (M.Z.); (K.L.)
| | - Chune Zhang
- Ningxia Hui Autonomous Region Grain and Oil Product Quality Inspection Center, Yinchuan 750001, China;
| | - Honglei Tian
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (Y.W.); (M.Z.); (K.L.)
| | - Ying Luo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (Y.W.); (M.Z.); (K.L.)
| |
Collapse
|
4
|
Guo C, Wen J, Sun Y, Liang G, Wang Z, Pan L, Huang J, Liao Y, Wang Z, Chen Q, Mu P, Deng Y. Pyrroloquinoline quinone production defines the ability of Devosia species to degrade deoxynivalenol. Food Funct 2024; 15:6134-6146. [PMID: 38767386 DOI: 10.1039/d4fo00024b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Deoxynivalenol (DON) is a prevalent mycotoxin that primarily contaminates cereal crops and animal feed, posing a significant risk to human and animal health. In recent years, an increasing number of Devosia strains have been identified as DON degradation bacteria, and significant efforts have been made to explore their potential applications in the food and animal feed industries. However, the characteristics and mechanisms of DON degradation in Devosia strains are still unclear. In this study, we identified a novel DON degrading bacterium, Devosia sp. D-G15 (D-G15), from soil samples. The major degradation products of DON in D-G15 were 3-keto-DON, 3-epi-DON and an unidentified product, compound C. The cell viability assay showed that the DON degradation product of D-G15 revealed significantly reduced toxicity to HEK293T cells compared to DON. Three enzymes for DON degradation were further identified, with G15-DDH converting DON to 3-keto-DON and G15-AKR1/G15-AKR6 reducing 3-keto-DON to 3-epi-DON. Interestingly, genome comparison of Devosia strains showed that the pyrroloquinoline quinone (PQQ) synthesis gene cluster is a unique feature of DON degradation strains. Subsequently, adding PQQ to the cultural media of Devosia strains without PQQ synthesis genes endowed them with DON degradation activity. Furthermore, a novel DON-degrading enzyme G13-DDH (<30% homology with known DON dehydrogenase) was identified from a Devosia strain that lacks PQQ synthesis ability. In summary, a novel DON degrading Devosia strain and its key enzymes were identified, and PQQ production was found as a distinct feature among Devosia strains with DON degradation activity, which is important for developing Devosia strain-based technology in DON detoxification.
Collapse
Affiliation(s)
- Chongwen Guo
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China.
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Jikai Wen
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China.
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Yu Sun
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China.
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Guoqiang Liang
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China.
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Zijiao Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China.
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Lulu Pan
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China.
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Jiarun Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China.
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Yuanxin Liao
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China.
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Zeyuan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China.
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Qingmei Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China.
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Peiqiang Mu
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China.
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Yiqun Deng
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China.
- Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, P. R. China
| |
Collapse
|
5
|
Wang Y, Shang J, Cai M, Liu Y, Yang K. Detoxification of mycotoxins in agricultural products by non-thermal physical technologies: a review of the past five years. Crit Rev Food Sci Nutr 2023; 63:11668-11678. [PMID: 35791798 DOI: 10.1080/10408398.2022.2095554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mycotoxins produced by Aspergillus spp., Penicillium spp. and Fusarium spp. with small molecular weight and thermal stability, are highly toxic and carcinogenic secondary metabolites. Mycotoxins have caused widespread concern regarding food safety internationally because of their adverse effects on the health of humans and animals, and the major economic losses they cause. There is an urgent need to find ways to reduce or eliminate the impact of mycotoxins in food and feed without introducing new safety issues, or reducing nutritional quality. Non-thermal physical technology is the basis for new techniques to degrade mycotoxins, with great potential for practical detoxification applications in the food industry. Compared with conventional thermal treatments, non-thermal physical detoxification technologies are easier to apply and effective, with less adverse impact on the nutritional value of agricultural products. The advantages, limitations and development prospects of these new detoxification technologies are discussed. Further studies are recommended to standardize the treatment conditions for each detoxification technology, evaluate the safety of the degradation products, and to combine different detoxification technologies to achieve synergistic effects. This will facilitate realization of the great potential of the new technologies and the development of practical applications.
Collapse
Affiliation(s)
- Yan Wang
- College of Food science and Technology, Zhejiang University of Technology/Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, Zhejiang, P. R. China
| | - Jie Shang
- College of Food science and Technology, Zhejiang University of Technology/Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, Zhejiang, P. R. China
| | - Ming Cai
- College of Food science and Technology, Zhejiang University of Technology/Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, Zhejiang, P. R. China
| | - Yang Liu
- School of Food Science and Engineering, Foshan University/South China Food Safety Research Center, Foshan, Guangdong, P. R. China
| | - Kai Yang
- College of Food science and Technology, Zhejiang University of Technology/Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, Zhejiang, P. R. China
| |
Collapse
|
6
|
Gan F, Lin Z, Tang J, Chen X, Huang K. Deoxynivalenol at No-Observed Adverse-Effect Levels Aggravates DSS-Induced Colitis through the JAK2/STAT3 Signaling Pathway in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4144-4152. [PMID: 36847760 DOI: 10.1021/acs.jafc.3c00252] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The etiology of inflammatory bowel diseases (IBDs) involves complex genetic and environmental factors such as mycotoxin contamination. Deoxynivalenol (DON), a well-known mycotoxin, contaminates food and feed and can induce intestinal injury and inflammatory response. The dose of DON in many foods is also below the limit, although the dose of DON exceeds the limit. The present study aims to evaluate the effects of the nontoxic dose of DON on colitis induced by dextran sodium sulfate (DSS) and the mechanism in mice. The results showed a nontoxic dose of DON at 50 μg/kg bw per day exacerbated DSS-induced colitis in mice as demonstrated by increased disease activity index, decreased colon length, increased morphological damage, decreased occludin and mucoprotein 2 expression, increased IL-1β and TNF-α expression, and decreased IL-10 expression. DON at 50 μg/kg bw per day enhanced JAK2/STAT3 phosphorylation induced by DSS. Adding JAK2 inhibitor AG490 attenuated the aggravating effects of DON on DSS-induced colitis by reversing the morphological damage, occludin and mucoprotein 2 expression increased, IL-1β and TNF-α expression increased, and IL-10 expression decreased. Taken together, a nontoxic dose of DON could aggravate DSS-induced colitis via the JAK2/STAT3 signaling pathway. This suggests that DON, below the standard limit dose, is also a risk for IBD and may be harmful to the health of humans and animals, which could provide the basis for establishing limits for DON.
Collapse
Affiliation(s)
- Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
| | - Ziman Lin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
| | - Jiangyu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
| |
Collapse
|
7
|
Zhang C, Zhang KF, Chen FJ, Chen YH, Yang X, Cai ZH, Jiang YB, Wang XB, Zhang GP, Wang FY. Deoxynivalenol triggers porcine intestinal tight junction disorder: Insights from mitochondrial dynamics and mitophagy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114291. [PMID: 36395652 DOI: 10.1016/j.ecoenv.2022.114291] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/25/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Deoxynivalenol (DON) is universally detected trichothecene in most cereal commodities, which is considered as a major hazardous material for human and animal health. Intestine is the most vulnerable organ with higher concentration of DON than other organs, owing to the first defense barrier function to exogenous substances. However, the underling mechanisms about DON-induced intestinal toxicity remain poorly understood. Here, DON poisoning models of IPEC-J2 cells was established to explore adverse effect and the potential mechanism of DON-induced enterotoxicity. Results showed that DON exposure destroyed IPEC-J2 cells morphology. Results showed that DON exposure destroyed IPEC-J2 cells morphology. Intestinal epithelial barrier injury was caused by DON with increasing LDH release, decreasing cell viability as well decreasing tight junction protein expressions (Occludin, N-Cad, ZO-1, Claudin-1 and Claudin-3). Moreover, DON caused mitochondrial dysfunction by opening mitochondrial permeability transition pore and eliminating mitochondrial membrane potential. DON exposure upregulated protein and mRNA expression of mitochondrial fission factors (Drp1, Fis1, MIEF1 and MFF) and mitophagy factors (PINK1, Parkin and LC3), downregulated mitochondrial fusion factors (Mfn1, Mfn2, except OPA1), resulting in mitochondrial dynamics imbalance and mitophagy. Overall, these findings suggested that DON induced tight junction dysfunction in IPEC-J2 cells was related to mitochondrial dynamics-mediated mitophagy.
Collapse
Affiliation(s)
- Cong Zhang
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, Henan, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Ke-Fei Zhang
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, Henan, China
| | - Feng-Juan Chen
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, Henan, China
| | - Yun-He Chen
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, Henan, China
| | - Xu Yang
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, Henan, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Zi-Hui Cai
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, Henan, China
| | - Yi-Bao Jiang
- College of Animal Science and Technology, Henan Agricultural University, 450046, Zhengzhou, Henan, China
| | - Xue-Bing Wang
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, Henan, China
| | - Gai-Ping Zhang
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, Henan, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Fang-Yu Wang
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China.
| |
Collapse
|
8
|
Maher A, Nowak A. Chemical Contamination in Bread from Food Processing and Its Environmental Origin. Molecules 2022; 27:5406. [PMID: 36080171 PMCID: PMC9457569 DOI: 10.3390/molecules27175406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/14/2022] [Accepted: 08/21/2022] [Indexed: 12/03/2022] Open
Abstract
Acrylamide (AA), furan and furan derivatives, polycyclic aromatic amines (PAHs), monochloropropanediols (MCPDs), glycidol, and their esters are carcinogens that are being formed in starchy and high-protein foodstuffs, including bread, through baking, roasting, steaming, and frying due to the Maillard reaction. The Maillard reaction mechanism has also been described as the source of food processing contaminants. The above-mentioned carcinogens, especially AA and furan compounds, are crucial substances responsible for the aroma of bread. The other groups of bread contaminants are mycotoxins (MTs), toxic metals (TMs), and pesticides. All these contaminants can be differentiated depending on many factors such as source, the concentration of toxicant in the different wheat types, formation mechanism, metabolism in the human body, and hazardous exposure effects to humans. The following paper characterizes the most often occurring contaminants in the bread from each group. The human exposure to bread contaminants and their safe ranges, along with the International Agency for Research on Cancer (IARC) classification (if available), also have been analyzed.
Collapse
Affiliation(s)
- Agnieszka Maher
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Adriana Nowak
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| |
Collapse
|
9
|
Sun Y, Jiang J, Mu P, Lin R, Wen J, Deng Y. Toxicokinetics and metabolism of deoxynivalenol in animals and humans. Arch Toxicol 2022; 96:2639-2654. [PMID: 35900469 DOI: 10.1007/s00204-022-03337-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/12/2022] [Indexed: 11/26/2022]
Abstract
Deoxynivalenol (DON) is the most widespread mycotoxin in food and feedstuffs, posing a persistent health threat to humans and farm animals. The susceptibilities of DON vary significantly among animals, following the order of pigs, mice/rats and poultry from the most to least susceptible. However, no study comprehensively disentangles factors shaping species-specific sensitivity. In this review, the toxicokinetics and metabolism of DON are summarized in animals and humans. Generally, DON is fast-absorbed and widely distributed in multiple organs. DON is first enriched in the plasma, liver and kidney and subsequently accumulates in the intestine. There are also key variations among animals. Pigs and humans are highly sensitive to DON, and they have similar absorption rates (1 h < tmax < 4 h), high bioavailability (> 55%) and long clearance time (2 h < t1/2 < 4 h). Also, both species lack detoxification microorganisms and mainly depend on liver glucuronidation and urine excretion. Mice and rats have similar toxicokinetics (tmax < 0.5 h, t1/2 < 1 h). However, a higher proportion of DON is excreted by feces as DOM-1 in rats than in mice, suggesting an important role of gut microbiota in rats. Poultry is least sensitive to DON due to their fast absorption rate (tmax < 1 h), low oral bioavailability (5-30%), broadly available detoxification gut microorganisms and short clearance time (t1/2 < 1 h). Aquatic animals have significantly slower plasma clearance of DON than land animals. Overall, studies on toxicokinetics provide valuable information for risk assessment, prevention and control of DON contamination.
Collapse
Affiliation(s)
- Yu Sun
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, 510642, People's Republic of China
- Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Jun Jiang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, 510642, People's Republic of China
- Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Peiqiang Mu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, 510642, People's Republic of China
- Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Ruqin Lin
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, 510642, People's Republic of China
- Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Jikai Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, 510642, People's Republic of China.
- Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, 510642, People's Republic of China.
- Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
| |
Collapse
|
10
|
Furian AF, Fighera MR, Royes LFF, Oliveira MS. RECENT ADVANCES IN ASSESSING THE EFFECTS OF MYCOTOXINS USING ANIMAL MODELS. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Fæste CK, Solhaug A, Gaborit M, Pierre F, Massotte D. Neurotoxic Potential of Deoxynivalenol in Murine Brain Cell Lines and Primary Hippocampal Cultures. Toxins (Basel) 2022; 14:48. [PMID: 35051025 PMCID: PMC8778863 DOI: 10.3390/toxins14010048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 01/04/2023] Open
Abstract
Chronic exposure to the mycotoxin deoxynivalenol (DON) from grain-based food and feed affects human and animal health. Known consequences include entereopathogenic and immunotoxic defects; however, the neurotoxic potential of DON has only come into focus more recently due to the observation of behavioural disorders in exposed farm animals. DON can cross the blood-brain barrier and interfere with the homeostasis/functioning of the nervous system, but the underlying mechanisms of action remain elusive. Here, we have investigated the impact of DON on mouse astrocyte and microglia cell lines, as well as on primary hippocampal cultures by analysing different toxicological endpoints. We found that DON has an impact on the viability of both glial cell types, as shown by a significant decrease of metabolic activity, and a notable cytotoxic effect, which was stronger in the microglia. In astrocytes, DON caused a G1 phase arrest in the cell cycle and a decrease of cyclic-adenosine monophosphate (cAMP) levels. The pro-inflammatory cytokine tumour necrosis factor (TNF)-α was secreted in the microglia in response to DON exposure. Furthermore, the intermediate filaments of the astrocytic cytoskeleton were disturbed in primary hippocampal cultures, and the dendrite lengths of neurons were shortened. The combined results indicated DON's considerable potential to interfere with the brain cell physiology, which helps explain the observed in vivo neurotoxicological effects.
Collapse
Affiliation(s)
| | - Anita Solhaug
- Toxinology Research Group, Norwegian Veterinary Institute, 1433 Ås, Norway;
| | - Marion Gaborit
- Centre de la Recherche Nationale Scientifique, Institut des Neurosciences Cellulaires et Intégratives, University of Strasbourg, 67000 Strasbourg, France; (M.G.); (F.P.)
| | - Florian Pierre
- Centre de la Recherche Nationale Scientifique, Institut des Neurosciences Cellulaires et Intégratives, University of Strasbourg, 67000 Strasbourg, France; (M.G.); (F.P.)
| | - Dominique Massotte
- Centre de la Recherche Nationale Scientifique, Institut des Neurosciences Cellulaires et Intégratives, University of Strasbourg, 67000 Strasbourg, France; (M.G.); (F.P.)
| |
Collapse
|
12
|
Hernández-Mesa M, Le Bizec B, Dervilly G. Metabolomics in chemical risk analysis – A review. Anal Chim Acta 2021; 1154:338298. [DOI: 10.1016/j.aca.2021.338298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022]
|
13
|
Nordgreen J, Edwards SA, Boyle LA, Bolhuis JE, Veit C, Sayyari A, Marin DE, Dimitrov I, Janczak AM, Valros A. A Proposed Role for Pro-Inflammatory Cytokines in Damaging Behavior in Pigs. Front Vet Sci 2020; 7:646. [PMID: 33134341 PMCID: PMC7562715 DOI: 10.3389/fvets.2020.00646] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/10/2020] [Indexed: 12/28/2022] Open
Abstract
Sickness can change our mood for the worse, leaving us sad, lethargic, grumpy and less socially inclined. This mood change is part of a set of behavioral symptoms called sickness behavior and has features in common with core symptoms of depression. Therefore, the physiological changes induced by immune activation, for example following infection, are in the spotlight for explaining mechanisms behind mental health challenges such as depression. While humans may take a day off and isolate themselves until they feel better, farm animals housed in groups have only limited possibilities for social withdrawal. We suggest that immune activation could be a major factor influencing social interactions in pigs, with outbreaks of damaging behavior such as tail biting as a possible result. The hypothesis presented here is that the effects of several known risk factors for tail biting are mediated by pro-inflammatory cytokines, proteins produced by the immune system, and their effect on neurotransmitter systems. We describe the background for and implications of this hypothesis.
Collapse
Affiliation(s)
- Janicke Nordgreen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Sandra A. Edwards
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Laura Ann Boyle
- Teagasc Animal and Grassland Research and Innovation Centre, Fermoy, Ireland
| | - J. Elizabeth Bolhuis
- Adaptation Physiology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Christina Veit
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Amin Sayyari
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Daniela E. Marin
- National Institute for Research and Development for Biology and Animal Nutrition, Balotesti, Romania
| | | | - Andrew M. Janczak
- Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Anna Valros
- Department of Production Animal Medicine, Research Centre for Animal Welfare, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Risk assessment and spatial analysis of deoxynivalenol exposure in Chinese population. Mycotoxin Res 2020; 36:419-427. [PMID: 32829468 DOI: 10.1007/s12550-020-00406-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 10/23/2022]
Abstract
Deoxynivalenol (DON) is one of the most commonly found mycotoxins across the world, and it mainly contaminates staple food crops. This study aims to evaluate the dietary exposure of DON and to provide a geographical profile of DON exposure in China. The concentrations of DON and its acetylated derivatives in 15,004 cereal samples (10,192 wheat flour, 1750 maize meal, 892 oat flakes, and 2170 polished rice) were collected from 30 provinces, autonomous regions, or municipalities across China during 2010-2017, through a national food safety risk surveillance system. The consumption data for cereals were obtained from China National Nutrition and Health Survey in 2002, and 67,923 respondents from the same 30 regions were included in the analysis. Among all the cereals considered, the concentration was the highest in wheat flour, with the mean concentration of 250.8 μg/kg. Applying a worst-case scenario, some individuals were possibly at risk, but the probability of acute effects was low. The mean and median exposure for the entire population was 0.61 and 0.36 μg/kg bw/day, respectively, below the (PM) TDI, indicating an acceptable overall health risk in Chinese population. Wheat contributed to 86% of the total DON exposure. Significant discrepancy was observed between the exposure and the contamination of DON. The high-exposure cluster area was in northern China, whilst the most seriously contaminated regions were all located in the southeast, which formed a seriously contaminated area.
Collapse
|
15
|
The neurotoxicity of trichothecenes T-2 toxin and deoxynivalenol (DON): Current status and future perspectives. Food Chem Toxicol 2020; 145:111676. [PMID: 32805342 DOI: 10.1016/j.fct.2020.111676] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/01/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022]
Abstract
During the last decade, the neurotoxicity of the trichothecenes T-2 toxin and deoxynivalenol (DON) has been a major concern, and many important findings have been reported on this topic. Through a summary of relevant research reports in recent years, we discuss the potential neurotoxic mechanisms of T-2 toxin and DON. In neuronal cells, T-2 toxin induces mitochondrial dysfunction and oxidative stress through a series of signalling pathways, including Nrf2/HO-1 and p53. This toxin crosses the blood-brain barrier (BBB) by altering permeability and induces oxidative stress responses, including ROS generation, lipid peroxidation, and protein carbonyl formation. Cellular metabolites (for example, HT-2 toxin) further promote neurotoxic effects. The type B trichothecene DON induces neuronal cell apoptosis via the MAPK and mitochondrial apoptosis pathways. This molecule induces inflammation of the central nervous system, increasing the expression of proinflammatory molecules. DON directly affects brain neurons and glial cells after passing through the BBB and affects the vitality and function of astrocytes and microglia. Exposure to trichothecenes alters brain dopamine levels, decreases ganglion area, and further induces brain damage. In this review, we mainly discuss the neurotoxicity of T-2 toxin and DON. However, our main goal was to reveal the potential mechanism(s) and offer new topics, including the potential of hypoxia-inducible factors, immune evasion, and exosomes, for future research in this context. This review should help elucidate the neurotoxic mechanism of trichothecenes and provides some potential inspiration for the follow-up study of neurotoxicity of mycotoxins.
Collapse
|
16
|
Jin Y, Chen Q, Luo S, He L, Fan R, Zhang S, Yang C, Chen Y. Dual near-infrared fluorescence-based lateral flow immunosensor for the detection of zearalenone and deoxynivalenol in maize. Food Chem 2020; 336:127718. [PMID: 32763741 DOI: 10.1016/j.foodchem.2020.127718] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/19/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022]
Abstract
A novel dual near-infrared fluorescence-based lateral flow immunosensor was developed to determine zearalenone and deoxynivalenol in maize. Two near-infrared dyes with distinct fluorescence characteristics were utilized to separately label the anti-zearalenone and anti-deoxynivalenol antibodies as detection reagents. The capture antigens zearalenone-BSA and deoxynivalenol-BSA were mixed and immobilized on the same test line of nitrocellulose membrane. This assay format facilitates simultaneous detection of the two mycotoxins on a single test line. After optimizing experimental parameters, the limits of detection for zearalenone and deoxynivalenol were as low as 0.55 μg/kg and 3.8 μg/kg in maize, respectively. The spiking experiment yielded recovery ratios ranging from 81.7% to 107.3% with coefficients of variation less than 14% demonstrating high assay accuracy and precision. Moreover, the actual sample analysis produced consistent results between this method and instrumental method. Therefore, the developed immunosensor can serve as an accurate and efficient approach for monitoring mycotoxins in agricultural products.
Collapse
Affiliation(s)
- Yongpeng Jin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qian Chen
- City of Hope National Medical Center, Duarte, CA, USA
| | - Sunlin Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lidong He
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
| | - Ruiqi Fan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Siwei Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | - Yiqiang Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
Gonkowski S, Gajęcka M, Makowska K. Mycotoxins and the Enteric Nervous System. Toxins (Basel) 2020; 12:toxins12070461. [PMID: 32707706 PMCID: PMC7404981 DOI: 10.3390/toxins12070461] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by various fungal species. They are commonly found in a wide range of agricultural products. Mycotoxins contained in food enter living organisms and may have harmful effects on many internal organs and systems. The gastrointestinal tract, which first comes into contact with mycotoxins present in food, is particularly vulnerable to the harmful effects of these toxins. One of the lesser-known aspects of the impact of mycotoxins on the gastrointestinal tract is the influence of these substances on gastrointestinal innervation. Therefore, the present study is the first review of current knowledge concerning the influence of mycotoxins on the enteric nervous system, which plays an important role, not only in almost all regulatory processes within the gastrointestinal tract, but also in adaptive and protective reactions in response to pathological and toxic factors in food.
Collapse
Affiliation(s)
- Sławomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-957 Olsztyn, Poland;
| | - Magdalena Gajęcka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str. 13, 10-718 Olsztyn, Poland;
| | - Krystyna Makowska
- Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-957 Olsztyn, Poland
- Correspondence:
| |
Collapse
|
18
|
Csikós V, Varró P, Bódi V, Oláh S, Világi I, Dobolyi A. The mycotoxin deoxynivalenol activates GABAergic neurons in the reward system and inhibits feeding and maternal behaviours. Arch Toxicol 2020; 94:3297-3313. [PMID: 32472169 PMCID: PMC7415754 DOI: 10.1007/s00204-020-02791-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/20/2020] [Indexed: 12/29/2022]
Abstract
Deoxynivalenol (DON) or vomitoxin, is a trichothecene mycotoxin produced mainly by Fusarium graminearum and culmorum. Mycotoxins or secondary metabolic products of mold fungi are micro-pollutants, which may affect human and animal health. The neuronal and behavioural actions of DON were analysed in the present study. To address, which neurons can be affected by DON, the neuronal activation pattern following intraperitoneal injection of DON (1 mg/kg) was investigated in adult male rats and the results were confirmed in mice, too. DON-induced neuronal activation was assessed by c-Fos immunohistochemistry. DON injection resulted in profound c-Fos activation in only the elements of the reward system, such as the accumbens nucleus, the medial prefrontal cortex, and the ventral tegmental area. Further double labelling studies suggested that GABAergic neurons were activated by DON treatment. To study the behavioural relevance of this activation, we examined the effect of DON on feed intake as an example of reward-driven behaviours. Following DON injection, feed consumption was markedly reduced but returned to normal the following day suggesting an inhibitory action of DON on feed intake without forming taste-aversion. To further test how general the effect of DON on goal-directed behaviours is, its actions on maternal behaviour was also examined. Pup retrieval latencies were markedly increased by DON administration, and DON-treated mother rats spent less time with nursing suggesting reduced maternal motivation. In a supplementary control experiment, DON did not induce conditioned place preference arguing against its addictive or aversive actions. The results imply that acute uptake of the mycotoxin DON can influence the reward circuit of the brain and exert inhibitory actions on goal-directed, reward-driven behaviours. In addition, the results also suggest that DON exposure of mothers may have specific implications.
Collapse
Affiliation(s)
- Vivien Csikós
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University and the Hungarian Academy of Sciences, Budapest, Hungary
- Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Petra Varró
- Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Veronika Bódi
- Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Szilvia Oláh
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University and the Hungarian Academy of Sciences, Budapest, Hungary
- Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Ildikó Világi
- Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Arpád Dobolyi
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University and the Hungarian Academy of Sciences, Budapest, Hungary.
- Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
19
|
Investigation of age-related differences in toxicokinetic processes of deoxynivalenol and deoxynivalenol-3-glucoside in weaned piglets. Arch Toxicol 2019; 94:417-425. [PMID: 31834428 DOI: 10.1007/s00204-019-02644-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/04/2019] [Indexed: 10/25/2022]
Abstract
Age-related differences in toxicokinetic processes of deoxynivalenol (DON) and deoxynivalenol-3-glucoside (DON3G) were studied. DON3G [55.7 µg/kg bodyweight (BW)] and an equimolar dose of DON (36 µg/kg BW) were administered to weaned piglets (4 weeks old) by single intravenous and oral administration in a double two-way cross-over design. Systemic and portal blood was sampled at different time points pre- and post-administration and plasma concentrations of DON, DON3G and their metabolites were quantified using validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) and liquid chromatography-high-resolution mass spectrometry (LC-HRMS) methods. Data were processed using tailor-made compartmental toxicokinetic (TK) models to accurately estimate TK parameters. Results were statistically compared to data obtained in a previous study on 11-week-old pigs using identical experimental conditions. Significant age-related differences in intestinal and systemic exposure to both DON and DON3G were noted. Most remarkably, a significant difference was found for the absorbed fraction of DON3G, after presystemic hydrolysis to DON, in weaned piglets compared to 11-week-old piglets (83% vs 16%, respectively), assumed to be mainly attributed to the higher intestinal permeability of weaned piglets. Other differences in TK parameters could be assigned to a higher water/fat body ratio and longer gastrointestinal transit time of weaned piglets. Results may further refine current risk assessment concerning DON and DON3G in animals. Additionally, since piglets possibly serve as a human paediatric surrogate model, results may be extrapolated to human infants.
Collapse
|