1
|
Aschner M, Skalny AV, Santamaria A, Rocha JBT, Mansouri B, Tizabi Y, Madeddu R, Lu R, Lee E, Tinkov AA. Epigenetic Mechanisms of Aluminum-Induced Neurotoxicity and Alzheimer's Disease: A Focus on Non-Coding RNAs. Neurochem Res 2024; 49:2988-3005. [PMID: 39060769 DOI: 10.1007/s11064-024-04214-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/16/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Aluminum (Al) is known to induce neurotoxic effects, potentially contributing to Alzheimer's disease (AD) pathogenesis. Recent studies suggest that epigenetic modification may contribute to Al neurotoxicity, although the mechanisms are still debatable. Therefore, the objective of the present study was to summarize existing data on the involvement of epigenetic mechanisms in Al-induced neurotoxicity, especially AD-type pathology. Existing data demonstrate that Al exposure induces disruption in DNA methylation, histone modifications, and non-coding RNA expression in brains. Alterations in DNA methylation following Al exposure were shown to be mediated by changes in expression and activity of DNA methyltransferases (DNMTs) and ten-eleven translocation proteins (TETs). Al exposure was shown to reduce histone acetylation by up-regulating expression of histone deacetylases (HDACs) and impair histone methylation, ultimately contributing to down-regulation of brain-derived neurotrophic factor (BDNF) expression and activation of nuclear factor κB (NF-κB) signaling. Neurotoxic effects of Al exposure were also associated with aberrant expression of non-coding RNAs, especially microRNAs (miR). Al-induced patterns of miR expression were involved in development of AD-type pathology by increasing amyloid β (Aβ) production through up-regulation of Aβ precursor protein (APP) and β secretase (BACE1) expression (down-regulation of miR-29a/b, miR-101, miR-124, and Let-7c expression), increasing in neuroinflammation through NF-κB signaling (up-regulation of miR-9, miR-125b, miR-128, and 146a), as well as modulating other signaling pathways. Furthermore, reduced global DNA methylation, altered histone modification, and aberrant miRNA expression were associated with cognitive decline in Al-exposed subjects. However, further studies are required to evaluate the contribution of epigenetic mechanisms to Al-induced neurotoxicity and/or AD development.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Anatoly V Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Sovetskaya Str. 14, Yaroslavl, 150000, Russia
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya St., 2-4, Moscow, 119146, Russia
| | - Abel Santamaria
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
- Laboratorio de Nanotecnología y Nanomedicina, Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, 04960, Mexico
| | - Joao B T Rocha
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Borhan Mansouri
- Substance Abuse Prevention Research Center, Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, 20059, USA
| | - Roberto Madeddu
- Department of Biomedical Sciences-Histology, University of Sassari, Viale San Pietro 43/B, 07100, Sassari, Italy
| | - Rongzu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, People's Republic of China
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Alexey A Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Sovetskaya Str. 14, Yaroslavl, 150000, Russia.
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya St., 2-4, Moscow, 119146, Russia.
| |
Collapse
|
2
|
Hassan HM, Abdel-Halim NHM, El-Shenbaby I, Helmy MA, Hammad MO, Habotta OA, El Nashar EM, Alghamdi MA, Aldahhan RA, Al-Khater KM, Almohaywi B, Farrag EAE. Phytic acid attenuates acetaminophen-induced hepatotoxicity via modulating iron-mediated oxidative stress and SIRT-1 expression in mice. Front Pharmacol 2024; 15:1384834. [PMID: 38751780 PMCID: PMC11094543 DOI: 10.3389/fphar.2024.1384834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/04/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction: Administration of high doses of acetaminophen (APAP) results in liver injury. Oxidative stress and iron overload play roles in the pathogenesis of APAP-induced hepatotoxicity. The present study assessed the potential hepatoprotective effects of phytic acid (PA), a natural antioxidant and iron chelator, on APAP-induced hepatotoxicity and the possible underlying mechanism through its effects on CYP2E1 gene expression, iron homeostasis, oxidative stress, and SIRT-1 expression levels. Methods: Twenty-four adult male albino mice were used in this study. Mice were divided into four groups (six mice in each group): control, APAP-treated, PA-treated and APAP + PA-treated groups. Liver function tests, serum and liver tissue iron load were evaluated in all the study groups. Hepatic tissue homogenates were used to detect oxidative stress markers, including malondialdehyde (MDA) and reduced glutathione (GSH). Histological hepatic evaluation and immunohistochemistry of SIRT-1 were performed. Quantitative real-time PCR was used for the assessment of CYP2E1 and SIRT-1 gene expressions. APAP-induced biochemical and structural hepatic changes were reported. Results: PA administration showed beneficial effects on APAP-induced hepatotoxicity through improvements in liver functions, decreased CYP2E1 gene expression, decreased serum and liver iron load, decreased MDA, increased GSH, increased SIRT-1 expression level and improvement in hepatic architecture. Conclusion: Conclusively, PA can be considered a potential compound that can attenuate acetaminophen-induced hepatotoxicity through its role as an iron chelator and antioxidant, as well as the up-regulation of SIRT-1 and down-regulation of CYP2E1.
Collapse
Affiliation(s)
- Hend M. Hassan
- Human Anatomy and Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Human Anatomy and Embryology Department, New Mansoura University, New Mansoura, Egypt
| | | | - Ibrahim El-Shenbaby
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Manar A. Helmy
- Forensic Medicine and Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Maha O. Hammad
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ola A. Habotta
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Eman M. El Nashar
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mansour A. Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Genomics and Personalized Medicine Unit, The Center for Medical and Health Research, King Khalid University, Abha, Saudi Arabia
| | - Rashid A. Aldahhan
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Khulood M. Al-Khater
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Basmah Almohaywi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Eman A. E. Farrag
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
3
|
Aschner M, Martins AC, Oliveira-Paula GH, Skalny AV, Zaitseva IP, Bowman AB, Kirichuk AA, Santamaria A, Tizabi Y, Tinkov AA. Manganese in autism spectrum disorder and attention deficit hyperactivity disorder: The state of the art. Curr Res Toxicol 2024; 6:100170. [PMID: 38737010 PMCID: PMC11088232 DOI: 10.1016/j.crtox.2024.100170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/27/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024] Open
Abstract
The objective of the present narrative review was to synthesize existing clinical and epidemiological findings linking manganese (Mn) exposure biomarkers to autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD), and to discuss key pathophysiological mechanisms of neurodevelopmental disorders that may be affected by this metal. Existing epidemiological data demonstrated both direct and inverse association between Mn body burden and ASD, or lack of any relationship. In contrast, the majority of studies revealed significantly higher Mn levels in subjects with ADHD, as well as direct relationship between Mn body burden with hyperactivity and inattention scores in children, although several studies reported contradictory results. Existing laboratory studies demonstrated that impaired attention and hyperactivity in animals following Mn exposure was associated with dopaminergic dysfunction and neuroinflammation. Despite lack of direct evidence on Mn-induced neurobiological alterations in patients with ASD and ADHD, a plethora of studies demonstrated that neurotoxic effects of Mn overexposure may interfere with key mechanisms of pathogenesis inherent to these neurodevelopmental disorders. Specifically, Mn overload was shown to impair not only dopaminergic neurotransmission, but also affect metabolism of glutamine/glutamate, GABA, serotonin, noradrenaline, thus affecting neuronal signaling. In turn, neurotoxic effects of Mn may be associated with its ability to induce oxidative stress, apoptosis, and neuroinflammation, and/or impair neurogenesis. Nonetheless, additional detailed studies are required to evaluate the association between environmental Mn exposure and/or Mn body burden and neurodevelopmental disorders at a wide range of concentrations to estimate the potential dose-dependent effects, as well as environmental and genetic factors affecting this association.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | | | - Anatoly V. Skalny
- Department of Medical Elementology, and Department of Human Ecology and Bioelementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
| | - Irina P. Zaitseva
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russia
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, USA
| | - Anatoly A. Kirichuk
- Department of Medical Elementology, and Department of Human Ecology and Bioelementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Abel Santamaria
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Laboratorio de Nanotecnología y Nanomedicina, Departamento de Cuidado de la Salud, Universidad Autónoma Metropolitana-Xochimilco, Mexico City 04960, Mexico
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC 20059, USA
| | - Alexey A. Tinkov
- Department of Medical Elementology, and Department of Human Ecology and Bioelementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russia
| |
Collapse
|
4
|
Guo J, Li R, Ouyang Z, Tang J, Zhang W, Chen H, Zhu Q, Zhang J, Zhu G. Insights into the mechanism of transcription factors in Pb 2+-induced apoptosis. Toxicology 2024; 503:153760. [PMID: 38387706 DOI: 10.1016/j.tox.2024.153760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
The health risks associated with exposure to heavy metals, such as Pb2+, are increasingly concerning the public. Pb2+ can cause significant harm to the human body through oxidative stress, autophagy, inflammation, and DNA damage, disrupting cellular homeostasis and ultimately leading to cell death. Among these mechanisms, apoptosis is considered crucial. It has been confirmed that transcription factors play a central role as mediators during the apoptosis process. Interestingly, these transcription factors have different effects on apoptosis depending on the concentration and duration of Pb2+ exposure. In this article, we systematically summarize the significant roles of several transcription factors in Pb2+-induced apoptosis. This information provides insights into therapeutic strategies and prognostic biomarkers for diseases related to Pb2+ exposure.
Collapse
Affiliation(s)
- Jingchong Guo
- The First Clinical Medical College of Nanchang University, Nanchang 330006, China
| | - Ruikang Li
- The First Clinical Medical College of Nanchang University, Nanchang 330006, China
| | - Zhuqing Ouyang
- The First Clinical Medical College of Nanchang University, Nanchang 330006, China
| | - Jiawen Tang
- The First Clinical Medical College of Nanchang University, Nanchang 330006, China
| | - Wei Zhang
- Department of Anatomy, Medical College of Nanchang University, Nanchang 330006, China
| | - Hui Chen
- Department of Anatomy, Medical College of Nanchang University, Nanchang 330006, China
| | - Qian Zhu
- Department of Anatomy, Medical College of Nanchang University, Nanchang 330006, China
| | - Jing Zhang
- Department of Anatomy, Medical College of Nanchang University, Nanchang 330006, China.
| | - Gaochun Zhu
- Department of Anatomy, Medical College of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
5
|
Webster AM, Pinion D, Pineda E, Aboueisha H, Hussein MH, Fawzy MS, Toraih EA, Kandil E. Elucidating the link between thyroid cancer and mercury exposure: a review and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12841-12855. [PMID: 38273084 PMCID: PMC10881592 DOI: 10.1007/s11356-024-32031-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024]
Abstract
Mercury (Hg) is a widely distributed and bioavailable metal of public health concern, with many known human toxicities, but data regarding mercury's influence on thyroid cancer (TC) is scarce. Mercury is known to impact several molecular pathways implicated in carcinogenesis, and its proclivity for bioaccumulation in the thyroid suggests a potential modulatory effect. We conducted a literature/systematic review of studies between 1995-2022 intending to define better and establish relationships between these two entities, congregate the evidence for mercury's potential role in thyroid carcinogenesis, and identify populations of interest for further study. Insufficient evidence precludes definitive conclusions on dietary mercury as a TC risk factor; however, several common mechanisms affected by mercury are crucial for TC development, including biochemical, endocrine, and reactive oxygen species effects. Quantitative analysis revealed associations between TC risk and mercury exposure. In three mercury studies, average urine levels were higher in TC patients, with a mean difference of 1.86 µg/g creatinine (95% CI = 0.32-3.41). In two studies investigating exposure to elevated mercury levels, the exposed group exhibited a higher risk of developing TC, with a relative risk of 1.90 (95% CI = 1.76-2.06). In three thyroid tissue studies, mercury levels (ppm) were higher in TC patients, averaging 0.14 (0.06-0.22) in cancerous cases (N = 178) and 0.08 (0.04-0.11) in normal thyroids (N = 257). Our findings suggest an association between mercury exposure and TC risk, implying a possible predisposing factor. Further research is necessary to reveal the clinical relevance of dietary and environmental mercury exposures in TC pathogenesis.
Collapse
Affiliation(s)
- Alyssa M Webster
- School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Dylan Pinion
- School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Eric Pineda
- School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Hadeel Aboueisha
- Medical Education Department, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Mohammad H Hussein
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Manal S Fawzy
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
- Unit of Medical Research and Postgraduate Studies, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Eman A Toraih
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Emad Kandil
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| |
Collapse
|
6
|
Liu Y, Wei H, Li J. A review on SIRT3 and its natural small molecule activators as a potential Preventive and therapeutic target. Eur J Pharmacol 2024; 963:176155. [PMID: 37914065 DOI: 10.1016/j.ejphar.2023.176155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Sirtuins (SIRTs) were originally characterized by yeast Sir2 as a lifespan regulator that is conserved in all three structural domains of bacteria, archaea and eukaryotes and belong to histone deacetylases consisting of seven members (SIRT1-SIRT7). Surprisingly, SIRTs have been shown to play important regulatory roles in almost all cellular functions, including mitochondrial biogenesis, oxidative stress, inflammation, cell growth, energy metabolism, neural function, and stress resistance. Among the SIRT members, sirtuin 3 (SIRT3) is one of the most important deacetylases that regulates the mitochondrial acetylation and plays a role in pathological processes, such as metabolism, DNA repair, oxidative stress, apoptosis and ferroptosis. Therefore, SIRT3 is considered as a potential target for the treatment of a variety of pathological diseases, including metabolic diseases, neurodegenerative diseases, age-related diseases and others. Furthermore, the isolation, screening, and development of SIRT3 signaling agonists, especially from natural products, have become a widely investigated objective. This paper describes the structure of SIRT3 protein, discusses the pathological process of SIRT3-mediated acetylation modification, and reviews the role of SIRT3 in diseases, SIRT3 activators and its related disease studies.
Collapse
Affiliation(s)
- Yuanyuan Liu
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Haidong Wei
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, China.
| |
Collapse
|
7
|
Liu S, Liu Y, Li J, Wang M, Chen X, Gan F, Wen L, Huang K, Liu D. Arsenic Exposure-Induced Acute Kidney Injury by Regulating SIRT1/PINK1/Mitophagy Axis in Mice and in HK-2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15809-15820. [PMID: 37843077 DOI: 10.1021/acs.jafc.3c05341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Groundwater resources are often contaminated by arsenic, which poses a serious threat to human and animal's health. Some studies have demonstrated that acute arsenic exposure could induce kidney injury because the kidney is a key target organ for toxicity, but the exact mechanism remains unclear. Hence, we investigated the effect of SIRT1-/PINK1-mediated mitophagy on NaAsO2-induced kidney injury in vivo and in vitro. In our study, NaAsO2 exposure obviously induced renal tubule injury and mitochondrial dysfunction. Meanwhile, NaAsO2 exposure could inhibit the mRNA/protein level of SIRT1 and activate the mitophagy-related mRNA/protein levels in the kidney of mice. In HK-2 cells, we also confirmed that NaAsO2-induced nephrotoxicity depended on the activation of mitophagy. Moreover, the activation of SIRT1 by resveratrol alleviated NaAsO2-induced acute kidney injury via the activation of mitophagy in vivo and in vitro. Interestingly, the inhibition of mitophagy by cyclosporin A (CsA) further exacerbated NaAsO2-induced nephrotoxicity and inflammation in HK-2 cells. Taken together, our study found that SIRT1-regulated PINK1-/Parkin-dependent mitophagy was implicated in NaAsO2-induced acute kidney injury. In addition, we confirmed that PINK1-/Parkin-dependent mitophagy played a protective role against NaAsO2-induced acute kidney injury. Therefore, activation of SIRT1 and mitophagy may represent a novel therapeutic target for the prevention and treatment of NaAsO2-induced acute renal injury.
Collapse
Affiliation(s)
- Shuiping Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province 410128, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Yunhuan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Jinyan Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Mengmeng Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Lixin Wen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province 410128, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Dandan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| |
Collapse
|
8
|
Casper E. The crosstalk between Nrf2 and NF-κB pathways in coronary artery disease: Can it be regulated by SIRT6? Life Sci 2023; 330:122007. [PMID: 37544377 DOI: 10.1016/j.lfs.2023.122007] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/26/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Coronary artery disease (CAD) is the leading cause of death worldwide. Oxidative stress and inflammation are major mechanisms responsible for the progression of CAD. Nuclear transcription factor erythroid-2 related factor 2 (Nrf2) is a transcription factor that modulates the cellular redox status. Nrf2 upregulation increases the expression of antioxidant genes, decreases the expression of Nuclear factor-kappa B (NF-kB), and increases free radical metabolism. Activated NF-kB increases the production of inflammatory cytokines causing endothelial dysfunction. The two pathways of Nrf2 and NF-kB can regulate the expression of each other. Foremost, the Nrf2 pathway can decrease the level of active NF-κB by increasing the level of antioxidants and cytoprotective enzymes. Furthermore, the Nrf2 pathway prevents IκB-α degradation, an inhibitor of NF-kB, and thus inhibits NF-κB mediated transcription. Also, NF-kB transcription inhibits Nrf2 activation by reducing the antioxidant response element (ARE) transcription. Sirtuin 6 (SIRT6) is a member of the Sirtuins family that was found to protect against cardiovascular diseases. SIRT6 can suppress the production of Reactive oxygen species (ROS) through deacetylation of NRF2 which results in NRF2 activation. Furthermore, SIRT6 can inhibit the inflammatory process through the downregulation of NF-kB transcription. Therefore, targeting sirtuins could be a therapeutic strategy to treat CAD. This review describes the potential role of SIRT6 in regulating the crosstalk between NRF2 and NF-kB signaling pathways in CAD.
Collapse
Affiliation(s)
- Eman Casper
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
9
|
李 新, 闫 爱, 常 晋, 李 汾, 朱 娟. [Hesperetin Alleviates Doxorubicin-Induced Cytotoxicity in H9c2 Cells by Activating SIRT1/NRF2 Signaling]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:947-953. [PMID: 37866951 PMCID: PMC10579077 DOI: 10.12182/20230960207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Indexed: 10/24/2023]
Abstract
Objective To investigate whether hesperetin (Hes) alleviates doxorubicin (DOX)-induced cardiomyocytotoxicity by reducing oxidative stress via regulating silent information regulator 1 (SIRT1)/nuclear transcription factor E2-related factor 2 (NRF2) signaling in H9c2 cells. Methods H9c2 cells were treated with DOX to establish the cardiotoxicity model and were randomly assigned to four groups, a control group (Control) and three treatment groups, receiving respectively DOX (the DOX group), Hes+DOX (the DOX+Hes group), and Hes+SIRT1 inhibitor EX527+DOX (the DOX+Hes+EX527 group). Cellular morphology was observed by the light microscope. Cell viability was evaluated by CCK-8. DOX-induced apoptosis in H9c2 cells was examined by flow cytometry. The levels of reactive oxygen species (ROS) in the H9c2 cells of the four groups were determied with 2'-7'-dichlorodihydrofluorescein diacetate (DCFH-DA) staining. The activities of lactate dehydrogenase (LDH), superoxide dismutase (SOD), catalase (CAT), and SIRT1 as well as the malondialdehyde (MDA) content were measured using ELISA kits. The expressions of cleaved caspase-3, cytochrome c, SIRT1, Ac-FOXO1, NRF2, and heme oxygenase 1 (HO-1) were determined by Western blot. Results Compared with the Control group, the DOX group showed swollen cellular morphology, decreased cell density and viability, and increased LDH activity in the medium ( P<0.01); both apoptosis and the expression of cleaved caspase-3 and cytochrome c increased ( P<0.01); the activities of CAT and SOD decreased while the contents of MDA and ROS increased ( P<0.01); the expression of SIRT1, NRF2, and HO-1 decreased, the activity of SIRT1 decreased, and the expression of Ac-FOXO1 increased ( P<0.01). Compared with the DOX group, the DOX+Hes group showed improved cellular morphology, increased cell density and viability, and decreased LDH activity in the medium ( P<0.01); the apoptosis and the expression of cleaved caspase-3 and cytochrome c decreased ( P<0.01); the activities of CAT and SOD increased while the levels of MDA and ROS decreased ( P<0.01); the expression of SIRT1, NRF2, and HO-1 increased, the activity of SIRT1 increased, and the expression of Ac-FOXO1 decreased ( P<0.01). Comparison of the findings for the DOX+Hes group and the DOX+Hes+EX527 group showed that EX527 could block the protective effects of Hes against DOX-induced cell injury, oxidative stress, and SIRT1/NRF2 signaling. Conclusion Hes inhibits oxidative stress and apoptosis via regulating SIRT1/NRF2 signaling, thereby reducing DOX-induced cardiotoxicity in H9c2 cells.
Collapse
Affiliation(s)
- 新华 李
- 西安医学院 药理学与毒理学教研室 (西安 710021)Department of Pharmacology and Toxicology, Xi'an Medical University, Xi'an 710021, China
| | - 爱丽 闫
- 西安医学院 药理学与毒理学教研室 (西安 710021)Department of Pharmacology and Toxicology, Xi'an Medical University, Xi'an 710021, China
| | - 晋瑞 常
- 西安医学院 药理学与毒理学教研室 (西安 710021)Department of Pharmacology and Toxicology, Xi'an Medical University, Xi'an 710021, China
| | - 汾 李
- 西安医学院 药理学与毒理学教研室 (西安 710021)Department of Pharmacology and Toxicology, Xi'an Medical University, Xi'an 710021, China
| | - 娟霞 朱
- 西安医学院 药理学与毒理学教研室 (西安 710021)Department of Pharmacology and Toxicology, Xi'an Medical University, Xi'an 710021, China
| |
Collapse
|
10
|
Felipe Souza E Silva L, Siena Dos Santos A, Mayumi Yuzawa J, Luiz de Barros Torresi J, Ziroldo A, Rosado Rosenstock T. SIRTUINS MODULATORS COUNTERACT MITOCHONDRIAL DYSFUNCTION IN CELLULAR MODELS OF HYPOXIA: RELEVANCE TO SCHIZOPHRENIA. Neuroscience 2023:S0306-4522(23)00200-2. [PMID: 37169164 DOI: 10.1016/j.neuroscience.2023.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 04/16/2023] [Accepted: 04/27/2023] [Indexed: 05/13/2023]
Abstract
Schizophrenia (SZ) is a neurodevelopmental-associated disorder strongly related to environmental factors, such as hypoxia. Because there is no cure for SZ or any pharmacological approach that could revert hypoxia-induced cellular damages, we evaluated whether modulators of sirtuins could abrogate hypoxia-induced mitochondrial deregulation as a neuroprotective strategy. Firstly, astrocytes from control (Wistar) and Spontaneously Hypertensive Rats (SHR), a model of both SZ and neonatal hypoxia, were submitted to chemical hypoxia. Then, cells were exposed to different concentrations of Nicotinamide (NAM), Resveratrol (Resv), and Sirtinol (Sir) for 48hrs. Our data indicate that sirtuins modulation reduces cell death increasing the acetylation of histone 3. This outcome is related to the rescue of loss of mitochondrial membrane potential, changes in mitochondrial calcium buffering capacity, decreased O2-• levels and increased expression of metabolic regulators (Nrf-1 and Nfe2l2) and mitochondrial content. Such findings are relevant not only for hypoxia-associated conditions, named pre-eclampsia but also for SZ since prenatal hypoxia is a relevant environmental factor related to this burdensome neuropsychiatric disorder.
Collapse
Affiliation(s)
- Luiz Felipe Souza E Silva
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Amanda Siena Dos Santos
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Jessica Mayumi Yuzawa
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Science, São Paulo, Brazil
| | | | - Alan Ziroldo
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Science, São Paulo, Brazil
| | - Tatiana Rosado Rosenstock
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil; Dept. of Bioscience, In-vitro Neuroscience, Sygnature Discovery, Nottingham, United Kingdom.
| |
Collapse
|
11
|
Yan D, Yang Y, Lang J, Wang X, Huang Y, Meng J, Wu J, Zeng X, Li H, Ma H, Gao L. SIRT1/FOXO3-mediated autophagy signaling involved in manganese-induced neuroinflammation in microglia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114872. [PMID: 37027942 DOI: 10.1016/j.ecoenv.2023.114872] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Manganese (Mn), as one of the environmental risk factors for Parkinson's disease (PD), has been widely studied. Though autophagy dysfunction and neuroinflammation mainly are responsible for the causative issue of Mn neurotoxicity, the molecular mechanism of parkinsonism caused by Mn has not been explored clearly. The results of in vivo and in vitro experiments showed that overexposure to Mn caused neuroinflammation impairment and autophagy dysfunction, accompanied by the increase of IL-1β, IL-6, and TNF-α mRNA expression, and nerve cell apoptosis, microglia cell activation, NF-κB activation, poor neurobehavior performance. This is due to Mn-induced the downregulation of SIRT1. Upregulation of SIRT1 in vivo and in vitro could alleviate Mn-induced autophagy dysfunction and neuroinflammation, yet these beneficial effects were abolished following 3-MA administration. Furthermore, we found that Mn interfered with the acetylation of FOXO3 by SIRT1 in BV2 cells, leading to a decrease in the nuclear translocation of FOXO3, and its binding of LC3B promoter and transcription activity. This could be antagonized by the upregulation of SIRT1. Finally, it is proved that SIRT1/FOXO3-LC3B autophagy signaling involves in Mn-induced neuroinflammation impairment.
Collapse
Affiliation(s)
- Dongying Yan
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Yuqing Yang
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Jing Lang
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Xiaobai Wang
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China; Preventive Medicine Experimental Practice Teaching Center, School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Ying Huang
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China; Preventive Medicine Experimental Practice Teaching Center, School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Jia Meng
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Jie Wu
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Xinning Zeng
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Hong Li
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Honglin Ma
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Liang Gao
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China.
| |
Collapse
|
12
|
Zha D, Yang Y, Huang X, Wang Z, Lin H, Yang L, Xu L, Wu Y, Huang H, Wang Y, Xin Z, Wu X, Xiao YF, Li TS, Deng KY, Xin HB, Qian Y. Nicaraven protects against endotoxemia-induced inflammation and organ injury through modulation of AMPK/Sirt1 signaling in macrophages. Eur J Pharmacol 2023; 946:175666. [PMID: 36944380 DOI: 10.1016/j.ejphar.2023.175666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/23/2023]
Abstract
Endotoxemia is a disease characterized by systemic inflammatory responses and organ injury caused by lipopolysaccharide (LPS) infection, with high mortality. Nicaraven (AVS), a potent hydroxyl radical scavenger, has been proven to regulate the inflammatory response in tumors. To investigate the protective effects and mechanisms of AVS in endotoxemia, mice were injected intraperitoneally with LPS to induce endotoxemia. AVS treatment significantly decreased the levels of pro-inflammatory cytokines in the serum, reduced neutrophil infiltration, attenuated multiple organ injury, and increased the survival rate in LPS-challenged mice. In the LPS-induced inflammatory model of macrophages, AVS inhibited macrophage activation, suppressed nitric oxide (NO) production, and inhibited the expression and secretion of pro-inflammatory cytokines. Mechanistically, AVS treatment up-regulated silence information regulator transcript-1 (Sirt1) expression in a time- and dose-dependent manner. AVS treatment activated the AMP-dependent protein kinase (AMPK)/Sirt1 signaling pathway and suppressed the activation of nuclear factor kappa B (NF-κB) in macrophages exposed to LPS. However, the anti-inflammatory effects of AVS could be reversed by the AMPK, the Sirt1 inhibitor, or the histone deacetylase inhibitor. We confirmed that the AMPK inhibitor inhibited AVS-mediated AMPK/Sirt1 activation and NF-κB p65 acetylation. These results suggested that AVS alleviated endotoxemia by activating the AMPK/Sirt1 signaling pathway in macrophages.
Collapse
Affiliation(s)
- Duoduo Zha
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Yaqin Yang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Xiang Huang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Ziwei Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Hongru Lin
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Lingyi Yang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Luyan Xu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Yijia Wu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Houda Huang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Yihan Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Zhaochen Xin
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Xuehan Wu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Yun-Fei Xiao
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Ke-Yu Deng
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China
| | - Hong-Bo Xin
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China.
| | - Yisong Qian
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
13
|
Tubeimoside I Ameliorates Doxorubicin-Induced Cardiotoxicity by Upregulating SIRT3. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9966355. [PMID: 36691640 PMCID: PMC9867588 DOI: 10.1155/2023/9966355] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 01/15/2023]
Abstract
Cardiotoxicity linked to doxorubicin (DOX) is primarily caused by inflammation, oxidative stress, and apoptosis. The role of tubeimoside I (TBM) in DOX-induced cardiotoxicity remains ambiguous, despite growing evidence that it could reduce inflammation, oxidative stress, and apoptosis in various diseases. This study was designed to investigate the role of TBM in DOX-induced cardiotoxicity and uncover the underlying mechanisms. H9c2 cell line and C57BL/6 mice were used to construct an in vitro and in vivo model of DOX-induced myocardial injury, respectively. We observed that DOX treatment provoked inflammation, oxidative stress, and cardiomyocyte apoptosis, which were significantly alleviated by TBM administration. Mechanistically, TBM attenuated DOX-induced downregulation of sirtuin 3 (SIRT3), and SIRT3 inhibition abrogated the beneficial effects of TBM both in vitro and in vivo. In conclusion, TBM eased inflammation, oxidative stress, and apoptosis in DOX-induced cardiotoxicity by increasing the expression of SIRT3, suggesting that it holds great promise for treating DOX-induced cardiac injury.
Collapse
|
14
|
Role of FOXO3a Transcription Factor in the Regulation of Liver Oxidative Injury. Antioxidants (Basel) 2022; 11:antiox11122478. [PMID: 36552685 PMCID: PMC9774119 DOI: 10.3390/antiox11122478] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Oxidative stress has been identified as a key mechanism in liver damage caused by various chemicals. The transcription factor FOXO3a has emerged as a critical regulator of redox imbalance. Multiple post-translational changes and epigenetic processes closely regulate the activity of FOXO3a, resulting in synergistic or competing impacts on its subcellular localization, stability, protein-protein interactions, DNA binding affinity, and transcriptional programs. Depending on the chemical nature and subcellular context, the oxidative-stress-mediated activation of FOXO3a can induce multiple transcriptional programs that play crucial roles in oxidative injury to the liver by chemicals. Here, we mainly review the role of FOXO3a in coordinating programs of genes that are essential for cellular homeostasis, with an emphasis on exploring the regulatory mechanisms and potential application of FOXO3a as a therapeutic target to prevent and treat liver oxidative injury.
Collapse
|
15
|
Sivakumar B, AlAsmari AF, Ali N, Waseem M, Kurian GA. Consequential Impact of Particulate Matter Linked Inter-Fibrillar Mitochondrial Dysfunction in Rat Myocardium Subjected to Ischemia Reperfusion Injury. BIOLOGY 2022; 11:biology11121811. [PMID: 36552319 PMCID: PMC9775305 DOI: 10.3390/biology11121811] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
A previous study has reported that exposure to PM2.5 from diesel exhaust (diesel particulate matter (DPM)) for 21 days can deteriorate the cardiac recovery from myocardial ischemia reperfusion injury (IR), where the latter is facilitated by the efficiency of mitochondrial subpopulations. Many investigators have demonstrated that IR impact on cardiac mitochondrial subpopulations is distinct. In the present study, we decipher the role of PM2.5 on IR associated mitochondrial dysfunction at the subpopulation level by administrating PM2.5 directly to isolated female rat hearts via KH buffer. Our results demonstrated that PM2.5 administered heart (PM_C) severely deteriorated ETC enzyme activity (NQR, SQR, QCR, and COX) and ATP level in both IFM and SSM from the normal control. Comparatively, the declined activity was prominent in IFM fraction. Moreover, in the presence of IR (PM_IR), mitochondrial oxidative stress was higher in both subpopulations from the normal, where the IFM fraction of mitochondria experienced elevated oxidative stress than SSM. Furthermore, we assessed the in vitro protein translation capacity of IFM and SSM and found a declined ability in both subpopulations where the inability of IFM was significant in both PM_C and PM_IR groups. In support of these results, the expression of mitochondrial genes involved in fission, fusion, and mitophagy events along with the DNA maintenance genes such as GUF1, LRPPRC, and HSD17-b10 were significantly altered from the control. Based on the above results, we conclude that PM2.5 administration to the heart inflicted mitochondrial damage especially to the IFM fraction, that not only deteriorated the cardiac physiology but also reduced its ability to resist IR injury.
Collapse
Affiliation(s)
- Bhavana Sivakumar
- Vascular Biology Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Abdullah F. AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Waseem
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Gino A. Kurian
- Vascular Biology Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
- Correspondence: ; Tel.: +91-9047965425; Fax: +91-4362-264120
| |
Collapse
|
16
|
Liu ZF, Liu K, Liu ZQ, Cong L, Lei MY, Li J, Ma Z, Deng Y, Liu W, Xu B. Melatonin attenuates manganese-induced mitochondrial fragmentation by suppressing the Mst1/JNK signaling pathway in primary mouse neurons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157134. [PMID: 35792268 DOI: 10.1016/j.scitotenv.2022.157134] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/18/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Manganese (Mn) toxicity is mainly caused by excessive Mn content in drinking water and occupational exposure. Moreover, overexposure to Mn can impair mental, cognitive, memory, and motor capacities. Although melatonin (Mel) can protect against Mn-induced neuronal damage and mitochondrial fragmentation, the underlying mechanism remains elusive. Here, we examined the related molecular mechanisms underlying Mel attenuating Mn-induced mitochondrial fragmentation through the mammalian sterile 20-like kinase-1 (Mst1)/JNK signaling path. To test the role of Mst1 in mitochondrial fragmentation, we treated mouse primary neurons overexpressing Mst1 with Mel and Mn stimulation. In normal neurons, 10 μM Mel reduced the effects of Mn (200 μM) on Mst1 expression at the mRNA and protein levels and on phosphorylation of JNK and Drp1, Drp1 mitochondrial translocation, and mitochondrial fragmentation. Conversely, overexpression of Mst1 hindered the protective effect of Mel (10 μM) against Mn-induced mitochondrial fragmentation. Anisomycin (ANI), an activator of JNK signaling, was similarly found to inhibit the protective effect of Mel on mitochondria, while Mst1 levels were not significantly changed. Thus, our results demonstrated that 10 μM Mel negatively regulated the Mst1-JNK pathway, thereby reducing excessive mitochondrial fission, maintaining the mitochondrial network, and alleviating Mn-induced mitochondrial dysfunction.
Collapse
Affiliation(s)
- Zhuo-Fan Liu
- Department of Environmental Health, School of Public Health, China Medical University, China
| | - Kuan Liu
- Department of Environmental Health, School of Public Health, China Medical University, China
| | - Zhi-Qi Liu
- Department of Environmental Health, School of Public Health, China Medical University, China
| | - Lin Cong
- Department of Environmental Health, School of Public Health, China Medical University, China
| | - Meng-Yu Lei
- Department of Environmental Health, School of Public Health, China Medical University, China
| | - Jing Li
- Department of Environmental Health, School of Public Health, China Medical University, China
| | - Zhuo Ma
- Department of Environmental Health, School of Public Health, China Medical University, China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, China.
| |
Collapse
|
17
|
Thirunavukkarasu C, Sharma Y, Tchaikovskaya T, Maslov AY, Gupta S. Transcriptional profiling reveals ataxia telangiectasia mutated pathways regulate joint copper and arsenic toxicity for hepatic metalloplasia and anti-cancer therapies. Life Sci 2022; 305:120787. [PMID: 35809665 DOI: 10.1016/j.lfs.2022.120787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/27/2022] [Accepted: 07/03/2022] [Indexed: 10/17/2022]
Abstract
AIMS Exposures to toxic metals, including arsenic (As), pose health risks but joint effects of physiologically needed metals, e.g., copper (Cu), are ill-defined for regulated metal-dependent cell proliferation (or metalloplasia). This study elucidated hepatic toxicities of As and Cu. MAIN METHODS Human HuH-7 cells were exposed to As and Cu and mRNA profiling obtained for molecular networks, regulators and signaling pathways. This followed biological testing of ATM signaling-related DNA damage response, mitochondrial dysfunction and lysosome activity using HuH-7 cells and primary hepatocytes. Free Cu ions were bound to 3-indole propionic acid for finding their contribution in toxicity. KEY FINDINGS The As or As plus Cu toxicities in HuH-7 cells produced dimorphic down- or up-regulation patterns in mRNA profiles. Significant differences extended for ontologies in protein synthesis, intermediary metabolism, mitochondrial function, autophagy, or cell survival and growth. Bioassays revealed ATM signaling regulated As and Cu toxicity for oxidative phosphorylation, mitochondrial membrane potential, lysosomal activity, DNA damage response, and cell growth-arrest. Removal of reactive Cu ions decreased As and Cu toxicity. Primary hepatocytes withstood Cu and As toxicity better. SIGNIFICANCE This joint As and Cu toxicity offers further mechanisms for metalloplasia, carcinogenesis and tissue damage in other settings, e.g., during excess Cu accumulation in Wilson disease. Moreover, joint As and Cu toxicities are relevant for anti-cancer therapies, potentially including manipulations to increase intracellular Cu through altered uptake or efflux processes and incorporating ATM-related checkpoint inhibitors. Superior tolerance of healthy hepatocytes to Cu and As toxicity should improve safety margins for anti-cancer therapies.
Collapse
Affiliation(s)
- Chinnasamy Thirunavukkarasu
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry 605 014, India
| | - Yogeshwar Sharma
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Tatyana Tchaikovskaya
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Alexander Y Maslov
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Laboratory of Applied Genomic Technologies, Voronezh State University of Engineering Technology, Voronezh, Russia
| | - Sanjeev Gupta
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry 605 014, India; Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Diabetes Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
18
|
Yapryntseva MA, Maximchik PV, Zhivotovsky B, Gogvadze V. Mitochondrial sirtuin 3 and various cell death modalities. Front Cell Dev Biol 2022; 10:947357. [PMID: 35938164 PMCID: PMC9354933 DOI: 10.3389/fcell.2022.947357] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Sirtuin 3, a member of the mammalian sirtuin family of proteins, is involved in the regulation of multiple processes in cells. It is a major mitochondrial NAD+-dependent deacetylase with a broad range of functions, such as regulation of oxidative stress, reprogramming of tumor cell energy pathways, and metabolic homeostasis. One of the intriguing functions of sirtuin 3 is the regulation of mitochondrial outer membrane permeabilization, a key step in apoptosis initiation/progression. Moreover, sirtuin 3 is involved in the execution of various cell death modalities, which makes sirtuin 3 a possible regulator of crosstalk between them. This review is focused on the role of sirtuin 3 as a target for tumor cell elimination and how mitochondria and reactive oxygen species (ROS) are implicated in this process.
Collapse
Affiliation(s)
| | - Polina V. Maximchik
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Boris Zhivotovsky
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
- Karolinska Institutet, Institute of Environmental Medicine, Stockholm, Sweden
| | - Vladimir Gogvadze
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
- Karolinska Institutet, Institute of Environmental Medicine, Stockholm, Sweden
- *Correspondence: Vladimir Gogvadze,
| |
Collapse
|
19
|
Piras AR, Ariu F, Maltana A, Leoni GG, Martino NA, Mastrorocco A, Dell'Aquila ME, Bogliolo L. Protective effect of resveratrol against cadmium-induced toxicity on ovine oocyte in vitro maturation and fertilization. J Anim Sci Biotechnol 2022; 13:83. [PMID: 35864507 PMCID: PMC9306212 DOI: 10.1186/s40104-022-00731-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background Heavy metal cadmium (Cd) is a widespread environmental contaminant with a potential toxicity that might negatively affect female reproduction and fertility. It has been reported that Cd exposure impaired the quality of oocytes and led to a defective maturation and fertilization, through oxidative stress induction. Resveratrol (Res) is a natural polyphenol with strong antioxidant properties that exhibited protective role in preventing oocyte redox homeostasis disruption and quality decline. Here, we explored whether the addition of Res to in vitro maturation (IVM) medium might act as a protection against Cd-induced toxicity on ovine oocyte maturation and fertilization. Firstly, we evaluated the effect of supplementing IVM medium with two different Res concentrations (1 and 2 μmol/L) on nuclear maturation and fertilization of oocytes matured under CdCl2 (2 μmol/L) exposure. Therefore, the concentration of 1 μmol/L Res was selected to analyse the effects of this compound on intracellular ROS levels, mitochondrial (mt) distribution and activity, chromatin configuration, cytoskeleton morphology, cortical granules (CGs) distribution and mRNA expression of genes associated with cellular response to oxidative stress (i.e. SIRT1, SOD 1, GPX1, GSR, CAT) in Cd-exposed in vitro matured oocytes. Results We found that 1 μmol/L Res restored the reduced oocyte meiotic competence induced by Cd exposure as well as, Res sustained oocyte ability to be normally fertilized and decreased polyspermic fertilization at both tested concentrations. Moreover, we demonstrated that 1 μmol/L Res mitigated Cd-induced alterations of oocyte cytoplasmic maturation by reducing reactive oxygen species (ROS) accumulation, preventing mt dysfunction, maintaining the correct meiotic spindle and cortical F-actin assembly and the normal cortical granule distribution as well as up-regulating SIRT1, SOD1 and GPX1 genes. Conclusions Taken together, our findings highlighted the beneficial influence exerted by Res in preventing Cd-induced disturbance of nuclear and cytoplasmic maturation and subsequent fertilization in ovine oocytes. Res treatment may help to establish defence strategies counteracting Cd-induced toxicity on the female gamete.
Collapse
Affiliation(s)
- Anna Rita Piras
- Department of Veterinary Medicine, University of Sassari, 07100, Sassari, Sardinia, Italy
| | - Federica Ariu
- Department of Veterinary Medicine, University of Sassari, 07100, Sassari, Sardinia, Italy
| | - Alessio Maltana
- Department of Veterinary Medicine, University of Sassari, 07100, Sassari, Sardinia, Italy
| | | | - Nicola Antonio Martino
- Department of Biosciences, Biotechnologies & Biopharmaceutics, University of Bari Aldo Moro, 70125, Bari, Italy
| | - Antonella Mastrorocco
- Department of Biosciences, Biotechnologies & Biopharmaceutics, University of Bari Aldo Moro, 70125, Bari, Italy
| | - Maria Elena Dell'Aquila
- Department of Biosciences, Biotechnologies & Biopharmaceutics, University of Bari Aldo Moro, 70125, Bari, Italy
| | - Luisa Bogliolo
- Department of Veterinary Medicine, University of Sassari, 07100, Sassari, Sardinia, Italy.
| |
Collapse
|
20
|
da Rosa-Junior NT, Parmeggiani B, Glänzel NM, de Moura Alvorcem L, Brondani M, Britto R, Grings M, Ortiz VD, Turck P, da Rosa Araujo AS, Wajner M, Leipnitz G. Antioxidant system disturbances and mitochondrial dysfunction induced by 3-methyglutaric acid in rat heart are prevented by bezafibrate. Eur J Pharmacol 2022; 924:174950. [DOI: 10.1016/j.ejphar.2022.174950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 03/25/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022]
|
21
|
Mercury and cancer: Where are we now after two decades of research? Food Chem Toxicol 2022; 164:113001. [DOI: 10.1016/j.fct.2022.113001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 11/21/2022]
|
22
|
Wang X, Yang Y, Xiao A, Zhang N, Miao M, Wang Z, Han J, Wen M. A comparative study of the effect of a gentle ketogenic diet containing medium-chain or long-chain triglycerides on chronic sleep deprivation-induced cognitive deficiency. Food Funct 2022; 13:2283-2294. [PMID: 35141738 DOI: 10.1039/d1fo04087a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The ketogenic diet (KD) is well known for its neuroprotective effect, but little is known about its prophylactic efficacy against chronic sleep deprivation (SD) induced cognitive deficiency. An emerging study indicated that ferroptosis plays an important role in neurologic diseases but has been rarely reported in chronic SD. Here, we investigated the prophylactic effects of a medium-chain triglyceride-enriched KD (MKD) and a long-chain triglyceride-enriched KD (LKD) on cognitive deficiency and revealed the underlying mechanism focused on ferroptosis in chronic SD model mice. The results showed that the MKD exhibited stronger effects than the LKD on improving cognitive deficiency via suppressing ferroptosis and improving synaptic plasticity. Further mechanism results indicated that MKD produced higher Sirt3 protein levels than LKD, which probably contributed to the synergistic effect of beta hydroxybutyric acid and decanoic acid. Our finds provide novel evidence for the KD as a safe and feasible dietary intervention to prevent chronic SD-induced cognitive deficiency, and suggest a better choice of medium-chain fatty acid-enriched KD.
Collapse
Affiliation(s)
- Xueyan Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China.
| | - Yueqi Yang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China.
| | - Aiai Xiao
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China.
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China.
| | - Mingyong Miao
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China. .,Department of Biochemistry and Molecular Biology, The College of Basic Medical Sciences, The Second Military Medical University, Shanghai 200433, China
| | - Zhengping Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China. .,Liaocheng High-Tech Biotechnology Co. Ltd, Liaocheng, 252059, China
| | - Jun Han
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China. .,Liaocheng High-Tech Biotechnology Co. Ltd, Liaocheng, 252059, China
| | - Min Wen
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China.
| |
Collapse
|
23
|
Marín-Hernández Á, Rodríguez-Zavala JS, Jasso-Chávez R, Saavedra E, Moreno-Sánchez R. Protein acetylation effects on enzyme activity and metabolic pathway fluxes. J Cell Biochem 2021; 123:701-718. [PMID: 34931340 DOI: 10.1002/jcb.30197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 11/11/2022]
Abstract
Acetylation of proteins seems a widespread process found in the three domains of life. Several studies have shown that besides histones, acetylation of lysine residues also occurs in non-nuclear proteins. Hence, it has been suggested that this covalent modification is a mechanism that might regulate diverse metabolic pathways by modulating enzyme activity, stability, and/or subcellular localization or interaction with other proteins. However, protein acetylation levels seem to have low correlation with modification of enzyme activity and pathway fluxes. In addition, the results obtained with mutant enzymes that presumably mimic acetylation have frequently been over-interpreted. Moreover, there is a generalized lack of rigorous enzyme kinetic analysis in parallel to acetylation level determinations. The purpose of this review is to analyze the current findings on the impact of acetylation on metabolic enzymes and its repercussion on metabolic pathways function/regulation.
Collapse
Affiliation(s)
| | | | - Ricardo Jasso-Chávez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Mexico City, Mexico
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Mexico City, Mexico
| | | |
Collapse
|
24
|
The Aging Kidney-As Influenced by Heavy Metal Exposure and Selenium Supplementation. Biomolecules 2021; 11:biom11081078. [PMID: 34439746 PMCID: PMC8391790 DOI: 10.3390/biom11081078] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 12/29/2022] Open
Abstract
The aging process in the kidneys has been well studied. It is known that the glomerular filtration rate (GFR) declines with age in subjects older than 50–60 years. However, there is still insufficient knowledge regarding the response of the aged kidney to environmental toxicants such as mercury, cadmium, and lead. Here, we present a review on the functional decline and proposed mechanisms in the aging kidney as influenced by metal pollutants. Due to the prevalence of these toxicants in the environment, human exposure is nearly unavoidable. Further, it is well known that acute and chronic exposures to toxic metals may be detrimental to kidneys of normal adults, thus it may be hypothesized that exposure of individuals with reduced GFR will result in additional reductions in renal function. Individuals with compromised renal function, either from aging or from a combination of aging and disease, may be particularly susceptible to environmental toxicants. The available data appear to show an association between exposure to mercury, cadmium and/or lead and an increase in incidence and severity of renal disease in elderly individuals. Furthermore, some physiological thiols, as well as adequate selenium status, appear to exert a protective action. Further studies providing improved insight into the mechanisms by which nephrotoxic metals are handled by aging kidneys, as well as possibilities of therapeutic protection, are of utmost importance.
Collapse
|