1
|
Zhao T, Xiong W, Cai J, Zhang Q, Sun D, Long K, Man J, Zhang Z. YTHDF2 phase separation promotes arsenic-induced keratinocyte transformation in a poly-m 6A-dependent manner by inhibiting translational initiation of the key tumor suppressor PTEN. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136243. [PMID: 39490166 DOI: 10.1016/j.jhazmat.2024.136243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/10/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
The phase separation of N6-methyladenosine (m6A) binding protein YTHDF2 plays a vital role in arsenic-induced skin damage, and YTHDF2 can bind to m6A-methylated mRNA of tumor suppressor PTEN. However, whether and how YTHDF2 phase separation regulates PTEN involved in arsenic-induced malignant transformation of keratinocytes remains blank. Here, we established arsenite-induced transformation models with stable expression of wild-type YTHDF2 or mutant YTHDF2 protein in vitro and in vivo. We found that the YTHDF2 protein underwent phase separation during arsenite-induced malignant transformation of keratinocytes, and YTHDF2 phase separation promoted the malignant phenotype of keratinocytes. Mechanically, YTHDF2 phase separation reduced PTEN protein levels, which in turn activated the pro-survival AKT signal. The binding of YTHDF2 to multiple m6A sites on PTEN mRNA drove YTHDF2 phase separation, inhibiting PTEN translation initiation and thus reducing PTEN protein levels. YTHDF2 phase separation recruited translation-initiation-factor kinase EIF2AK1 to phosphorylate eIF2α, thereby inhibiting translation initiation of poly-m6A-methylated PTEN mRNA. Furthermore, arsenite-induced oxidative stress triggered YTHDF2 phase separation by increasing m6A levels of PTEN mRNA. Our results demonstrated that YTHDF2 phase separation promotes arsenite-induced malignant transformation by inhibiting PTEN translation in a poly-m6A-dependent manner. This study sheds light on arsenic carcinogenicity from the novel aspect of m6A-mediated YTHDF2 phase separation.
Collapse
Affiliation(s)
- Tianhe Zhao
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenxiao Xiong
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jingsilin Cai
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qian Zhang
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Donglei Sun
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Keyan Long
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jin Man
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zunzhen Zhang
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Dong Q, Fu H, Jiang H. The role of exosome-shuttled miRNAs in heavy metal-induced peripheral tissues and neuroinflammation in Alzheimer's disease. Biomed Pharmacother 2024; 176:116880. [PMID: 38850652 DOI: 10.1016/j.biopha.2024.116880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/11/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Heavy metal-induced neuroinflammation is a significant pathophysiologic mechanism in Alzheimer's disease (AD). Microglia-mediated neuroinflammation plays a crucial role in the pathogenesis of AD. Multiple miRNAs are differentially expressed in peripheral tissues after heavy metal exposure, and increasing evidence suggests that they are involved in AD progression by regulating microglial homeostasis. Exosomes, which are capable of loading miRNAs and crossing the bloodbrain barrier, serve as mediators of communication between peripheral tissues and the brain. In this review, we summarize the current evidence on the link between miRNAs in peripheral tissues and neuroinflammation in AD after heavy metal exposure and propose a role for miRNAs in the microglial neurodegenerative phenotype (MGnD) of AD. This study will help to elucidate the link between peripheral tissue damage and MGnD-mediated neuroinflammation in AD after heavy metal exposure. Additionally, we summarize the regulatory effects of natural compounds on peripheral tissue-derived miRNAs, which could be potential therapeutic targets for natural compounds to regulate peripheral tissue-derived exosomal miRNAs to ameliorate heavy metal-induced MGnD-mediated neuroinflammation in patients with AD after heavy metal exposure.
Collapse
Affiliation(s)
- Qing Dong
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| | - Huanyong Fu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| | - Hong Jiang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, Shenyang, Liaoning 110122, China; Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
3
|
Augenstein II, Nail AN, Ferragut Cardoso AP, States JC, Banerjee M. Chronic arsenic exposure suppresses proteasomal and autophagic protein degradation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104398. [PMID: 38403142 PMCID: PMC11465505 DOI: 10.1016/j.etap.2024.104398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Ubiquitin Proteasomal System (UPS) and autophagy dysregulation initiate cancer. These pathways are regulated by zinc finger proteins. Trivalent inorganic arsenic (iAs) displaces zinc from zinc finger proteins disrupting functions of important cellular proteins. The effect of chronic environmental iAs exposure (100 nM) on UPS has not been studied. We tested the hypothesis that environmental iAs exposure suppresses UPS, activating autophagy as a compensatory mechanism. We exposed skin (HaCaT and Ker-CT; independent quadruplicates) and lung (BEAS-2B; independent triplicates) cell cultures to 0 or 100 nM iAs for 7 or 8 weeks. We quantified ER stress (XBP1 splicing employing Reverse Transcriptase -Polymerase Chain Reaction), proteasomal degradation (immunoblots), and initiation and completion of autophagy (immunoblots). We demonstrate that chronic iAs exposure suppresses UPS, initiates autophagy, but suppresses autophagic protein degradation in skin and lung cell lines. Our data suggest that chronic iAs exposure inhibits autophagy which subsequently suppresses UPS.
Collapse
Affiliation(s)
- Isabell I Augenstein
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Alexandra N Nail
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, USA
| | - Ana P Ferragut Cardoso
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, USA
| | - J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, USA
| | - Mayukh Banerjee
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
4
|
Zhao T, Sun D, Long K, Xiong W, Man J, Zhang Q, Zhang Z. N 6-methyladenosine promotes aberrant redox homeostasis required for arsenic carcinogenesis by controlling the adaptation of key antioxidant enzymes. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133329. [PMID: 38142659 DOI: 10.1016/j.jhazmat.2023.133329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
N6-methyladenosine (m6A), a high-profile RNA epigenetic modification, responds to oxidative stress and temporal-specifically mediates arsenic carcinogenesis. However, how m6A affects aberrant redox homeostasis required for arsenic carcinogenesis is poorly understood. Here, we established arsenic-carcinogenic models of different stages, including As-treated, As-transformed, and As-tumorigenic cell models. We found that arsenic-induced reactive oxygen species (ROS) elevated m6A levels, thus triggering m6A-dependent antioxidant defenses. During arsenic-induced cell transformation, METTL3-upregulated m6A on the mRNAs of SOD1, SOD2, CAT, TXN, and GPX1 promoted the mRNA translation and protein expressions of these antioxidant enzymes by increasing YTHDF1-mediated mRNA stability. Meanwhile, FTO-downregulated m6A on PRDX5 mRNA increased PRDX5 translation and expression by reducing YTHDF2-mediated mRNA decay. After upregulated antioxidant defenses balanced with high levels of ROS induced by arsenic, the m6A balance formed in mRNAs of six key antioxidant enzymes (SOD1, SOD2, CAT, TXN, GPX1, and PRDX5) and promoted high expressions of these antioxidant enzymes to maintain aberrant redox homeostasis. METTL3 inhibitor STM2457, FTO inhibitor FB23-2, or YTHDF1 knockdown disturbed the aberrant redox homeostasis by breaking the m6A balance, causing cell death in arsenic-induced tumors. Our results demonstrated that m6A promotes the formation and maintenance of aberrant redox homeostasis required for arsenic carcinogenesis by time-dependently orchestrating the adaptive expressions of six key m6A-targeted antioxidant enzymes. This study advances our understanding of arsenic carcinogenicity from the novel aspect of m6A-dependent adaptation to arsenic-induced oxidative stress.
Collapse
Affiliation(s)
- Tianhe Zhao
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Donglei Sun
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Keyan Long
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenxiao Xiong
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jin Man
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qian Zhang
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zunzhen Zhang
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Banerjee M, Srivastava S, Rai SN, States JC. Chronic arsenic exposure induces malignant transformation of human HaCaT cells through both deterministic and stochastic changes in transcriptome expression. Toxicol Appl Pharmacol 2024; 484:116865. [PMID: 38373578 PMCID: PMC10994602 DOI: 10.1016/j.taap.2024.116865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
Biological processes are inherently stochastic, i.e., are partially driven by hard to predict random probabilistic processes. Carcinogenesis is driven both by stochastic and deterministic (predictable non-random) changes. However, very few studies systematically examine the contribution of stochastic events leading to cancer development. In differential gene expression studies, the established data analysis paradigms incentivize expression changes that are uniformly different across the experimental versus control groups, introducing preferential inclusion of deterministic changes at the expense of stochastic processes that might also play a crucial role in the process of carcinogenesis. In this study, we applied simple computational techniques to quantify: (i) The impact of chronic arsenic (iAs) exposure as well as passaging time on stochastic gene expression and (ii) Which genes were expressed deterministically and which were expressed stochastically at each of the three stages of cancer development. Using biological coefficient of variation as an empirical measure of stochasticity we demonstrate that chronic iAs exposure consistently suppressed passaging related stochastic gene expression at multiple time points tested, selecting for a homogenous cell population that undergo transformation. Employing multiple balanced removal of outlier data, we show that chronic iAs exposure induced deterministic and stochastic changes in the expression of unique set of genes, that populate largely unique biological pathways. Together, our data unequivocally demonstrate that both deterministic and stochastic changes in transcriptome-wide expression are critical in driving biological processes, pathways and networks towards clonal selection, carcinogenesis, and tumor heterogeneity.
Collapse
Affiliation(s)
- Mayukh Banerjee
- Department of Pharmacology and Toxicology, University of Louisville, 505, S. Hancock Street, Louisville, KY 40202, USA; Center for Integrative Environmental Health Sciences, University of Louisville, 505, S. Hancock Street, Louisville, KY 40202, USA
| | - Sudhir Srivastava
- Department of Bioinformatics and Biostatistics, University of Louisville, 505, S. Hancock Street, Louisville, KY 40202, USA
| | - Shesh N Rai
- Department of Bioinformatics and Biostatistics, University of Louisville, 505, S. Hancock Street, Louisville, KY 40202, USA; Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, 505, S. Hancock Street, Louisville, KY 40202, USA; Biostatistics and Informatics Facility Core, Center for Integrative Environmental Health Sciences, University of Louisville, 505, S. Hancock Street, Louisville, KY 40202, USA
| | - J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, 505, S. Hancock Street, Louisville, KY 40202, USA; Center for Integrative Environmental Health Sciences, University of Louisville, 505, S. Hancock Street, Louisville, KY 40202, USA.
| |
Collapse
|
6
|
Koushki M, Amiri-Dashatan N, Rezaei-Tavirani M, Robati RM, Fateminasab F, Rahimi S, Razzaghi Z, Farahani M. Screening the critical protein subnetwork to delineate potential mechanisms and protective agents associated with arsenic-induced cutaneous squamous cell carcinoma: A toxicogenomic study. Food Chem Toxicol 2024; 185:114451. [PMID: 38219847 DOI: 10.1016/j.fct.2024.114451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/01/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
Recent studies show that complex mechanisms are involved in arsenic-induced malignant transformation of cells. This study aimed to decipher molecular mechanisms associated with arsenic-induced cutaneous squamous cell carcinoma (cSCC) and suggest potential protective factors. RNA-seq-based differentially expressed genes between arsenic-exposed human keratinocytes (HaCaT) and controls were used to construct a protein-protein interaction (PPI) network and discover critical subnetwork-based mechanisms. Protective compounds against arsenic toxicity were determined and their target interactions in the core sub-network were identified by the comparative toxicogenomic database (CTD). The binding affinity between the effective factor and target was calculated by molecular docking. A total of 15 key proteins were screened out as critical arsenic-responsive subnetwork (FN1, IL-1A, CCN2, PECAM1, FGF5, EDN1, FGF1, PXDN, DNAJB9, XBP1, ERN1, PDIA4, DNAJB11, FOS, PDIA6) and 7 effective protective agents were identified (folic acid, quercetin, zinc, acetylcysteine, methionine, catechin, selenium). The GeneMANIA predicted detailed interactions of the subnetwork and revealed terms related to unfolded protein response as the main processes. FN1, IL1A and CCN2, as top significant genes, had good docking affinity with folic acid and quercetin, as selected key compounds. Integration of gene expression and protein-protein interaction related to arsenic exposure in cSCC explored the potential mechanisms and protective agents.
Collapse
Affiliation(s)
- Mehdi Koushki
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Nasrin Amiri-Dashatan
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza M Robati
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Dermatology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fateminasab
- Department of Physical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Shadi Rahimi
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, SE-41296, Gothenburg, Sweden
| | - Zahra Razzaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Farahani
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Speer RM, Yu H, Zhou X, Nandi S, Alexandrov L, Guo Y, Hudson LG, Liu KJ. Arsenic and UVR co-exposure results in unique gene expression profile identifying key co-carcinogenic mechanisms. Toxicol Appl Pharmacol 2024; 482:116773. [PMID: 38036231 PMCID: PMC10883297 DOI: 10.1016/j.taap.2023.116773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Changes in gene expression underlie many pathogenic endpoints including carcinogenesis. Metals, like arsenic, alter gene expression; however, the consequences of co-exposures of metals with other stressors are less understood. Although arsenic acts as a co-carcinogen by enhancing the development of UVR skin cancers, changes in gene expression in arsenic UVR co-carcinogenesis have not been investigated. We performed RNA-sequencing analysis to profile changes in gene expression distinct from arsenic or UVR exposures alone. A large number of differentially expressed genes (DEGs) were identified after arsenic exposure alone, while after UVR exposure alone fewer genes were changed. A distinct increase in the number of DEGs was identified after exposure to combined arsenic and UVR exposure that was synergistic rather than additive. In addition, a majority of these DEGs were unique from arsenic or UVR alone suggesting a distinct response to combined arsenic-UVR exposure. Globally, arsenic alone and arsenic plus UVR exposure caused a global downregulation of genes while fewer genes were upregulated. Gene Ontology analysis using the DEGs revealed cellular processes related to chromosome instability, cell cycle, cellular transformation, and signaling were targeted by combined arsenic and UVR exposure, distinct from UVR alone and arsenic alone, while others were related to epigenetic mechanisms such as the modification of histones. This result suggests the cellular functions we identified in this study may be key in understanding how arsenic enhances UVR carcinogenesis and that arsenic-enhanced gene expression changes may drive co-carcinogenesis of UVR exposure.
Collapse
Affiliation(s)
- Rachel M Speer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, USA.
| | - Hui Yu
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico, Albuquerque, NM, USA.
| | - Xixi Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, USA.
| | - Shuvro Nandi
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA.
| | - Ludmil Alexandrov
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, UC San Diego, La Jolla, CA 92037, USA.
| | - Yan Guo
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico, Albuquerque, NM, USA.
| | - Laurie G Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, USA.
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA; Department of Pathology, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA.
| |
Collapse
|
8
|
Li Y, Zhao Q, Yao J, Lv C, Gao Y, Sun D, Yang Y. MiR-96-5p Suppresses Progression of Arsenite-Induced Human Keratinocyte Proliferation and Malignant Transformation by Targeting Denticleless E3 Ubiquitin Protein Ligase Homolog. TOXICS 2023; 11:978. [PMID: 38133379 PMCID: PMC10747408 DOI: 10.3390/toxics11120978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Long-term exposure to arsenic has been linked to a variety of cancers, among which skin cancer is the most prevalent form. However, the mechanism underlying arsenic carcinogenesis is unclear, and there is still limited information on the role of miRNAs in arsenic-induced skin cancer. This study aims to explore the role of miR-96-5p in the arsenite-induced proliferation and malignant transformation of human HaCaT keratinocytes. The GEO database (accession numbers GSE97303, GSE97305, and GSE97306) was used to extract mRNA and miRNA expression profiles of HaCaT cells treated with or without 0.1 μmol/L sodium arsenite for 3 and 7 weeks. In this paper, according to the CCK8 assay result, HaCaT cells exposed to 0.1 μmol/L sodium arsenite for 48 h were finalized. CCK8, MTT, EdU incorporation, and colony formation assays were used to determine the viability and proliferation of HaCaT cells and transformed HaCaT (T-HaCaT) cells. The subcellular localization and relative expression levels of DTL, as well as miR-96-5p in HaCaT cells induced by arsenite, were determined via immunofluorescence, RT-qPCR, and Western blot. Dual-luciferase reporter assay was performed to identify miR-96-5p bound directly to DTL. Transfection of miR-96-5p mimics or DTL siRNA was conducted to verify the arsenite-induced viability of HaCaT cells and T-HaCaT cells. T-HaCaT cells and nude mice were used to construct arsenite-induced malignant transformation and an in vivo xenograft model to demonstrate the over-expressed effect of miR-96-5p. The results showed that DTL was the target gene of miR-96-5p. Meanwhile, we also found that 0.1 μmol/L sodium arsenite upregulated DTL by decreasing the miR-96-5p level, leading to the proliferation and malignant transformation of HaCaT cells. MiR-96-5p agomir treatment slowed the growth of transplanted HaCaT cells transformed by arsenite in a manner associated with DTL downregulation in the nude mice xenograft model. Taken together, we confirmed that miR-96-5p, as a potent regulator of DTL, suppressed arsenite-induced HaCaT cell proliferation and malignant transformation, which might provide a novel therapeutic target for the treatment of arsenic-induced skin cancer.
Collapse
Affiliation(s)
- Yan Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
| | - Qiaoshi Zhao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
| | - Jinyin Yao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
| | - Chunpeng Lv
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
- Institution of Environmentally Related Diseases, Harbin Medical University, Harbin 150081, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
9
|
Liu Q, Lei Z. The Role of microRNAs in Arsenic-Induced Human Diseases: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37930083 DOI: 10.1021/acs.jafc.3c03721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
MicroRNAs (miRNAs) are noncoding RNAs with 20-22 nucleotides, which are encoded by endogenous genes and are capable of targeting the majority of human mRNAs. Arsenic is regarded as a human carcinogen, which can lead to many adverse health effects including diabetes, skin lesions, kidney disease, neurological impairment, male reproductive injury, and cardiovascular disease (CVD) such as cardiac arrhythmias, ischemic heart failure, and endothelial dysfunction. miRNAs can act as tumor suppressors and oncogenes via directly targeting oncogenes or tumor suppressors. Recently, miRNA dysregulation was considered to be an important mechanism of arsenic-induced human diseases and a potential biomarker to predict the diseases caused by arsenic exposure. Endogenic miRNAs such as miR-21, the miR-200 family, miR-155, and the let-7 family are involved in arsenic-induced human disease by inducing translational repression or RNA degradation and influencing multiple pathways, including mTOR/Arg 1, HIF-1α/VEGF, AKT, c-Myc, MAPK, Wnt, and PI3K pathways. Additionally, exogenous miRNAs derived from plants, such as miR-34a, miR-159, miR-2911, miR-159a, miR-156c, miR-168, etc., among others, can be transported from blood to specific tissue/organ systems in vivo. These exogenous miRNAs might be critical players in the treatment of human diseases by regulating host gene expression. This review summarizes the regulatory mechanisms of miRNAs in arsenic-induced human diseases, including cancers, CVD, and other human diseases. These special miRNAs could serve as potential biomarkers in the management and treatment of human diseases linked to arsenic exposure. Finally, the protective action of exogenous miRNAs, including antitumor, anti-inflammatory, anti-CVD, antioxidant stress, and antivirus are described.
Collapse
Affiliation(s)
- Qianying Liu
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiqun Lei
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
10
|
Liu A, Li X, Zhou L, Yan X, Xia N, Song Z, Cao J, Hao Z, Zhang Z, Liang R, Zhang H. BPDE-DNA adduct formation and alterations of mRNA, protein, and DNA methylation of CYP1A1, GSTP1, and GSTM1 induced by benzo[a]pyrene and the intervention of aspirin in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:106549-106561. [PMID: 37730975 DOI: 10.1007/s11356-023-29878-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023]
Abstract
Benzo[a]pyrene (B[a]P), one typical environmental pollutant, the toxicity mechanisms, and potential prevention remain perplexing. Available evidence suggests cytochrome P450 1A1 (CYP1A1) and glutathione S-transferases (GSTs) metabolize B[a]P, resulting in metabolic activation and detoxification of B[a]P. This study aimed to reveal the impact of B[a]P exposure on trans-7,8-diol-anti-9,10-epoxide DNA (BPDE-DNA) adduct formation, level of CYP1A1, glutathione S-transferase pi (GSTP1) and glutathione S-transferase mu1 (GSTM1) mRNA, protein and DNA methylation in mice, and the potential prevention of aspirin (ASP). This study firstly determined the BPDE-DNA adduct formation in an acute toxicity test of a large dose in mice induced by B[a]P, which subsequently detected CYP1A1, GSTP1, and GSTM1 at levels of mRNA, protein, and DNA methylation in the organs of mice in a subacute toxicity test at appropriate doses and the potential prevention of ASP, using the methods of real-time quantitative PCR (QPCR), western blotting, and real-time methylation-specific PCR (MSP), respectively. The results verified that B[a]P induced the formation of BPDE-DNA adduct in all the organs of mice in an acute toxicity test, and the order of concentration of which was lung > kidney > liver > brain. In a subacute toxicity test, following B[a]P treatment, mice showed a dose-dependent slowdown in body weight gain and abnormalities in behavioral and cognitive function and which were alleviated by ASP co-treatment. Compared to the controls, following B[a]P treatment, CYP1A1 was significantly induced in all organs in mice at mRNA level (P < 0.05), was suppressed in the lung and cerebrum of mice at protein level, and inhibited at DNA methylation level in the liver, lung, and cerebrum, whereas GSTP1 and GSTM1 at mRNA, protein, and DNA methylation levels showed organ-specific changes in mice following B[a]P treatment, which was generally alleviated by ASP intervention. In conclusion, B[a]P induced BPDE-DNA adduct formation in all organs in mice and altered the mRNA, protein, and DNA methylation levels in CYP1A1, GSTP1, and GSTM1 in an organ-dependent pattern, which could be related to the organ toxicity and mechanism of B[a]P. ASP intervention may be an effective measure to prevent B[a]P toxicity. The findings provide scientific evidence for further study on the organ toxicity and mechanisms of B[a]P.
Collapse
Affiliation(s)
- Aixiang Liu
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
- Department of Health Information Management, Shanxi Medical University Fenyang College, Fenyang, 032200, Shanxi, China
| | - Xin Li
- Center of Disease Control and Prevention, Taiyuan Iron and Steel Co Ltd, Taiyuan, 030003, Shanxi, China
| | - Lisha Zhou
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Xiaoqing Yan
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Na Xia
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention, Ministry of Education, Taiyuan, 030001, Shanxi, China
| | - Zhanfei Song
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Jingjing Cao
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Zhongsuo Hao
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Zhihong Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Ruifeng Liang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Hongmei Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
11
|
Ferragut Cardoso AP, Nail AN, Banerjee M, Wise SS, States JC. miR-186 induces tetraploidy in arsenic exposed human keratinocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114823. [PMID: 36989553 DOI: 10.1016/j.ecoenv.2023.114823] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/21/2023] [Accepted: 03/21/2023] [Indexed: 05/25/2023]
Abstract
Chronic inorganic arsenic (iAs) exposure in drinking water is a global issue affecting >225 million people. Skin is a major target organ for iAs. miRNA dysregulation and chromosomal instability (CIN) are proposed mechanisms of iAs-induced carcinogenesis. CIN is a cancer hallmark and tetraploid cells can better tolerate increase in chromosome number and aberration, contributing to the evolution of CIN. miR-186 is overexpressed in iAs-induced squamous cell carcinoma relative to iAs-induced hyperkeratosis. Bioinformatic analysis indicated that miR-186 targets mRNAs of important cell cycle regulators including mitotic checkpoint serine/threonine kinase B (BUB1) and cell division cycle 27 (CDC27). We hypothesized that miR-186 overexpression contributes to iAs-induced transformation of keratinocytes by targeting mitotic regulators leading to induction of CIN. Ker-CT cells, a near diploid human keratinocyte cell line, were transduced with miR-186 overexpressing or scrambled control lentivirus. Stable clones were isolated after puromycin selection. Clones transduced with lentivirus expressing either a scrambled control miRNA or miR-186 were maintained with 0 or 100 nM iAs for 4 weeks. Unexposed scrambled control clones were considered as passage matched controls. Chronic iAs exposure increased miR-186 expression in miR-186 clones. miR-186 overexpression significantly reduced CDC27 levels irrespective of iAs exposure. The percentage of tetraploid or aneuploid cells was increased in iAs exposed miR-186 clones. Aneuploidy can arise from a tetraploid intermediate. Suppression of CDC27 by miR-186 may lead to impairment of mitotic checkpoint complex formation and its ability to maintain cell cycle arrest leading to chromosome misalignment. As a result, cells overexpressing miR-186 and chronically exposed to iAs may have incorrect chromosome segregation and CIN. These data suggest that dysregulation of miRNA by iAs mediates tetraploidy, aneuploidy and chromosomal instability contributing to iAs-induced carcinogenesis.
Collapse
Affiliation(s)
- Ana P Ferragut Cardoso
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Alexandra N Nail
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Mayukh Banerjee
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Sandra S Wise
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
12
|
Zhao T, Sun D, Xiong W, Man J, Zhang Q, Zhao M, Zhang Z. N 6-methyladenosine plays a dual role in arsenic carcinogenesis by temporal-specific control of core target AKT1. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130468. [PMID: 36444808 DOI: 10.1016/j.jhazmat.2022.130468] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
High-profile RNA epigenetic modification N6-methyladenosine (m6A), as a double-edged sword for cancer, can either promote or inhibit arsenic-induced skin carcinogenesis. However, the core m6A-target gene determining the duality of m6A and the regulatory mechanism of m6A on the core gene are still poorly understood. Based on m6A microarray detection, integrated multi-omics analysis, and further experiments in vitro and in vivo, we explored the molecular basis for the dual role of m6A in cancer induced by environmental pollutants using models in different stages of arsenic carcinogenesis, including As-treated, As-transformed, and As-tumorigenic cell models. We found that the key proliferative signaling node AKT1 is in the center of the m6A-regulatory network in arsenic carcinogenicity. The m6A level on AKT1 mRNA (3'UTR, CDS, and 5'UTR) dynamically changed in different stages of arsenic carcinogenesis. The m6A writer METTL3-catalyzed upregulation of m6A promotes AKT1 expression by elevating m6A reader YTHDF1-mediated AKT1 mRNA stability in As-treated and As-transformed cells, while the m6A eraser FTO-catalyzed downregulation of m6A promotes AKT1 expression mainly by inhibiting m6A reader YTHDF2-mediated AKT1 mRNA degradation in As-tumorigenic cells. Furthermore, upregulation of m6A inhibits the expression of AKT1 negative regulator PHLPP2 and promotes the expression of AKT1 positive regulator PDK1. These changes in AKT1 regulators result in AKT1 activation by upregulating AKT1 phosphorylation at S473 and T308. Interestingly, the FTO-catalyzed decrease in m6A prevents AKT upregulation in As-treated cells but promotes AKT upregulation in As-tumorigenic cells. Both inhibitors targeting the m6A writer and eraser can inhibit the AKT1-mediated proliferation of As-tumorigenic cells by breaking the balance of m6A regulators. Our results demonstrated that AKT1 is the core hub determining m6A as a double-edged sword. Changed m6A dynamically upregulates the expression and activity of AKT1 in different stages of arsenic carcinogenesis. This study can advance our understanding of the dual role and precise time-specific mechanism of RNA epigenetics involved in the carcinogenesis of hazardous materials.
Collapse
Affiliation(s)
- Tianhe Zhao
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Donglei Sun
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenxiao Xiong
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jin Man
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qian Zhang
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Manyu Zhao
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zunzhen Zhang
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
13
|
Islam R, Zhao L, Zhang X, Liu LZ. MiR-218-5p/EGFR Signaling in Arsenic-Induced Carcinogenesis. Cancers (Basel) 2023; 15:1204. [PMID: 36831545 PMCID: PMC9954652 DOI: 10.3390/cancers15041204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Arsenic is a well-known carcinogen inducing lung, skin, bladder, and liver cancer. Abnormal epidermal growth factor receptor (EGFR) expression is common in lung cancer; it is involved in cancer initiation, development, metastasis, and treatment resistance. However, the underlying mechanism for arsenic-inducing EGFR upregulation remains unclear. METHODS RT-PCR and immunoblotting assays were used to detect the levels of miR-218-5p and EGFR expression. The Luciferase assay was used to test the transcriptional activity of EGFR mediated by miR-218-5p. Cell proliferation, colony formation, wound healing, migration assays, tube formation assays, and tumor growth assays were used to study the function of miR-218-5p/EGFR signaling. RESULTS EGFR and miR-218-5p were dramatically upregulated and downregulated in arsenic-induced transformed (As-T) cells, respectively. MiR-218-5p acted as a tumor suppressor to inhibit cell proliferation, migration, colony formation, tube formation, tumor growth, and angiogenesis. Furthermore, miR-218-5p directly targeted EGFR by binding to its 3'-untranslated region (UTR). Finally, miR-218-5p exerted its antitumor effect by inhibiting its direct target, EGFR. CONCLUSION Our study highlights the vital role of the miR-218-5p/EGFR signaling pathway in arsenic-induced carcinogenesis and angiogenesis, which may be helpful for the treatment of lung cancer induced by chronic arsenic exposure in the future.
Collapse
Affiliation(s)
| | | | | | - Ling-Zhi Liu
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
14
|
Nail AN, Ferragut Cardoso AP, Montero LK, States JC. miRNAs and arsenic-induced carcinogenesis. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 96:203-240. [PMID: 36858773 PMCID: PMC10184182 DOI: 10.1016/bs.apha.2022.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Arsenic-induced carcinogenesis is a worldwide health problem. Identifying the molecular mechanisms responsible for the induction of arsenic-induced cancers is important for developing treatment strategies. MicroRNA (miRNA) dysregulation is known to affect development and progression of human cancer. Several studies have identified an association between altered miRNA expression in cancers from individuals chronically exposed to arsenic and in cell models for arsenic-induced carcinogenesis. This chapter provides a comprehensive review for miRNA dysregulation in arsenic-induced cancer.
Collapse
Affiliation(s)
- Alexandra N Nail
- Department of Pharmacology and Toxicology, Center for Integrative Environmental Health Science, University of Louisville, Louisville, KY, United States
| | - Ana P Ferragut Cardoso
- Department of Pharmacology and Toxicology, Center for Integrative Environmental Health Science, University of Louisville, Louisville, KY, United States
| | - Lakyn K Montero
- Department of Pharmacology and Toxicology, Center for Integrative Environmental Health Science, University of Louisville, Louisville, KY, United States
| | - J Christopher States
- Department of Pharmacology and Toxicology, Center for Integrative Environmental Health Science, University of Louisville, Louisville, KY, United States.
| |
Collapse
|
15
|
Kumari B, Bharti VK. Recent advancements in toxicology, modern technology for detection, and remedial measures for arsenic exposure: review. Biotechnol Genet Eng Rev 2022:1-43. [PMID: 36411979 DOI: 10.1080/02648725.2022.2147664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/15/2022] [Indexed: 11/23/2022]
Abstract
Arsenic toxicity has become a major global health concern for humans and animals due to extensive environmental and occupational exposure to arsenic-contaminated water, air, soil, and plant and animal origin food. It has a wide range of detrimental effects on animals, humans, and the environment. As a result, various experimental and clinical studies were undertaken and are undergoing to understand its source of exposures, pathogenesis, identify key biomarkers, the medical and economic impact on affected populations and ecosystems, and their timely detection and control measures. Despite these extensive studies, no conclusive information for the prevention and control of arsenic toxicity is available, owing to complex epidemiology and pathogenesis, including an imprecise approach and repetitive work. As a result, there is a need for literature that focuses on recent studies on the epidemiology, pathogenesis, detection, and ameliorative measures of arsenic toxicity to assist researchers and policymakers in the practical future planning of research and community control programs. According to the preceding viewpoint, this review article provides an extensive analysis of the recent progress on arsenic exposure to humans through the environment, livestock, and fish, arsenic toxicopathology, nano-biotechnology-based detection, and current remedial measures for the benefit of researchers, academicians, and policymakers in controlling arsenic eco-toxicology and directing future research. Arsenic epidemiology should therefore place the greatest emphasis on the prevalence of different direct and indirect sources in the afflicted areas, followed by control strategies.
Collapse
Affiliation(s)
- Bibha Kumari
- Department of Zoology, Magadh Mahila College, Patna University, Patna, India
| | - Vijay K Bharti
- DRDO-Defence Institute of High-Altitude Research (DIHAR), Leh, UT Ladakh, India
| |
Collapse
|
16
|
Ilieva M, Panella R, Uchida S. MicroRNAs in Cancer and Cardiovascular Disease. Cells 2022; 11:3551. [PMID: 36428980 PMCID: PMC9688578 DOI: 10.3390/cells11223551] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Although cardiac tumor formation is rare, accumulating evidence suggests that the two leading causes of deaths, cancers, and cardiovascular diseases are similar in terms of pathogenesis, including angiogenesis, immune responses, and fibrosis. These similarities have led to the creation of new exciting field of study called cardio-oncology. Here, we review the similarities between cancer and cardiovascular disease from the perspective of microRNAs (miRNAs). As miRNAs are well-known regulators of translation by binding to the 3'-untranslated regions (UTRs) of messenger RNAs (mRNAs), we carefully dissect how a specific set of miRNAs are both oncomiRs (miRNAs in cancer) and myomiRs (muscle-related miRNAs). Furthermore, from the standpoint of similar pathogenesis, miRNAs categories related to the similar pathogenesis are discussed; namely, angiomiRs, Immune-miRs, and fibromiRs.
Collapse
Affiliation(s)
| | | | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen SV, Denmark
| |
Collapse
|
17
|
Ghosh A, Mukherjee S, Roy M. Black tea extract prevents inorganic arsenic induced uncontrolled proliferation, epithelial to mesenchymal transition and induction of metastatic properties in HaCaT keratinocytes - an in vitro study. Toxicol In Vitro 2022; 85:105478. [PMID: 36122807 DOI: 10.1016/j.tiv.2022.105478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
Abstract
A major global problem is chronic exposure to inorganic arsenic (iAs) which causes various health hazards including cancer. Escalation of reactive oxygen species (ROS) generation by chronic iAs exposure promotes Epithelial to Mesenchymal transition (EMT) which is followed by metastatic progression. In the present study, skin keratinocyte cells (HaCaT) were divided into three groups: (i) untreated, (ii) chronically iAs exposed, (iii) black tea extract (BTE) along with iAs treated. ROS was estimated by flowcytometry, expression of EMT markers were assessed by flowcytometry, western-blotting and Immunofluorescence. For metastatic studies, wound-healing assay, gelatin zymography, western-blot, transwell migration/invasion assay had been performed. Long term exposure of HaCaT cells to iAs causes excess generation of ROS. Morphological transformation and EMT were apparent at 210 days of exposure. Development of metastatic characteristics were observed at 240 days. Alterations in the parameters induced by iAs were found to be ameliorated by BTE. BTE was found to quench excess generation of ROS by iAs, subsequently inhibiting the chain of events like EMT and metastasis. Therefore, BTE may be considered as a potential phytochemical to prevent the deleterious effect of iAs. Skin carcinogenesis induced by iAs may thus be prevented by BTE via inhibition of EMT.
Collapse
Affiliation(s)
- Archismaan Ghosh
- Dept. Environmental Carcinogenesis & Toxicology, Chittaranjan National Cancer Institute, 37, S P Mukherjee Road, Kolkata 700019, India
| | - Sutapa Mukherjee
- Dept. Environmental Carcinogenesis & Toxicology, Chittaranjan National Cancer Institute, 37, S P Mukherjee Road, Kolkata 700019, India
| | - Madhumita Roy
- Dept. Environmental Carcinogenesis & Toxicology, Chittaranjan National Cancer Institute, 37, S P Mukherjee Road, Kolkata 700019, India.
| |
Collapse
|
18
|
Kayastha V, Patel J, Kathrani N, Varjani S, Bilal M, Show PL, Kim SH, Bontempi E, Bhatia SK, Bui XT. New Insights in factors affecting ground water quality with focus on health risk assessment and remediation techniques. ENVIRONMENTAL RESEARCH 2022; 212:113171. [PMID: 35364042 DOI: 10.1016/j.envres.2022.113171] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Groundwater is considered as the primary source of water for the majority of the world's population. The preponderance of the nation's drinking water, as well as agricultural and industrial water, comes from groundwater. Groundwater level is becoming increasingly challenging to replenish due to climate change. Fertilizer application and improper processing of industrial waste are the two major anthropogenic drivers of groundwater pollution. Arsenic and cadmium are two of the principal heavy metal pollutants that have affected groundwater quality by human activity. When people are exposed to both non-carcinogenic and carcinogenic contaminants for an extended period, toxic effects might occur. It can have detrimental health effects from long-term exposure to contaminants, even in low amounts. As a result, metal contamination concentrations and fractions can be used to determine potential health concerns. At the same time, contaminants also need to be removed or converted to harmless products by groundwater remediation. Remediation of groundwater quality can be accomplished in several ways, including natural and artificial means. The purpose of this review is to explore a wide range of factors that affect groundwater quality, including their possible health effects. This communication provides state-of-the-art information about remediation approaches for groundwater contamination including hindrances and perspectives in this area of research. The in-depth information provided in different sections of this communication would expand the scope of interdisciplinary research.
Collapse
Affiliation(s)
- Vidhi Kayastha
- Gujarat Pollution Control Board, Gandhinagar, 382010, Gujarat, India; Gujarat University, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Jimit Patel
- Gujarat Pollution Control Board, Gandhinagar, 382010, Gujarat, India; Pandit Deendayal Energy University, Knowledge Corridor, Gandhinagar, 382007, Gujarat, India
| | - Niraj Kathrani
- Gujarat Pollution Control Board, Gandhinagar, 382010, Gujarat, India; Pandit Deendayal Energy University, Knowledge Corridor, Gandhinagar, 382007, Gujarat, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382010, Gujarat, India.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, Selangor Darul Ehsan, 43500, Malaysia
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, University of Brescia, Via Branze 38, 25123, Brescia, Italy
| | - Shashi Kant Bhatia
- Department of Biological Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Xuan-Thanh Bui
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, 700000, Viet Nam; Key Laboratory of Advanced Waste Treatment Technology, Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| |
Collapse
|
19
|
Bastick JC, Banerjee M, States JC. Zinc supplementation prevents arsenic-induced dysregulation of ZRANB2 splice function. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103921. [PMID: 35764259 PMCID: PMC9945473 DOI: 10.1016/j.etap.2022.103921] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Environmentally relevant (100 nM) inorganic arsenic (iAs) exposure displaces zinc from zinc fingers of upstream splice regulator ZRANB2 disrupting the splicing of its target TRA2B. Excess zinc displaced iAs from ZRANB2 zinc fingers in cell free system. Thus, the hypothesis that zinc supplementation could prevent iAs-mediated disruption of ZRANB2 splice function in human keratinocytes was tested. The data show that zinc supplementation prevented iAs-induced dysregulation of TRA2B splicing by ZRANB2 as well as the induction of ZRANB2 protein expression. These results provide additional support for the hypothesis that zinc supplementation could prevent iAs-mediated disease in iAs-exposed populations.
Collapse
Affiliation(s)
- Jonathan C Bastick
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Mayukh Banerjee
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
20
|
Genenger B, Perry JR, Ashford B, Ranson M. A tEMTing target? Clinical and experimental evidence for epithelial-mesenchymal transition in the progression of cutaneous squamous cell carcinoma (a scoping systematic review). Discov Oncol 2022; 13:42. [PMID: 35666359 PMCID: PMC9170863 DOI: 10.1007/s12672-022-00510-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/27/2022] [Indexed: 02/07/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a disease with globally rising incidence and poor prognosis for patients with advanced or metastatic disease. Epithelial-mesenchymal transition (EMT) is a driver of metastasis in many carcinomas, and cSCC is no exception. We aimed to provide a systematic overview of the clinical and experimental evidence for EMT in cSCC, with critical appraisal of type and quality of the methodology used. We then used this information as rationale for potential drug targets against advanced and metastatic cSCC. All primary literature encompassing clinical and cell-based or xenograft experimental studies reporting on the role of EMT markers or related signalling pathways in the progression of cSCC were considered. A screen of 3443 search results yielded 86 eligible studies comprising 44 experimental studies, 22 clinical studies, and 20 studies integrating both. From the clinical studies a timeline illustrating the alteration of EMT markers and related signalling was evident based on clinical progression of the disease. The experimental studies reveal connections of EMT with a multitude of factors such as genetic disorders, cancer-associated fibroblasts, and matrix remodelling via matrix metalloproteinases and urokinase plasminogen activator. Additionally, EMT was found to be closely tied to environmental factors as well as to stemness in cSCC via NFκB and β-catenin. We conclude that the canonical EGFR, canonical TGF-βR, PI3K/AKT and NFκB signalling are the four signalling pillars that induce EMT in cSCC and could be valuable therapeutic targets. Despite the complexity, EMT markers and pathways are desirable biomarkers and drug targets for the treatment of advanced or metastatic cSCC.
Collapse
Affiliation(s)
- Benjamin Genenger
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.
| | - Jay R Perry
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Bruce Ashford
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Marie Ranson
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.
| |
Collapse
|
21
|
Nail AN, McCaffrey LM, Banerjee M, Ferragut Cardoso AP, States JC. Chronic arsenic exposure suppresses ATM pathway activation in human keratinocytes. Toxicol Appl Pharmacol 2022; 446:116042. [DOI: 10.1016/j.taap.2022.116042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 01/15/2023]
|
22
|
Liu A, Li X, Hao Z, Cao J, Li H, Sun M, Zhang Z, Liang R, Zhang H. Alterations of DNA methylation and mRNA levels of CYP1A1, GSTP1, and GSTM1 in human bronchial epithelial cells induced by benzo[a]pyrene. Toxicol Ind Health 2022; 38:127-138. [PMID: 35193440 DOI: 10.1177/07482337211069233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Benzo[a]pyrene (B[a]P) is a known human carcinogen and plays a major function in the initiation of lung cancer at its first proximity. However, the underlying molecular mechanisms are less well understood. In this study, we investigated the impact of B[a]P treatment on the DNA methylation and mRNA levels of CYP1A1, GSTP1, and GSTM1 in human bronchial epithelial cells (16HBEs), and provide scientific evidence for the mechanism study on the carcinogenesis of B[a]P. We treated 16HBEs with DMSO or concentrations of B[a]P at 1, 2, and 5 mmol/L for 24 h, observed the morphological changes, determined the cell viability, DNA methylation, and mRNA levels of CYP1A1, GSTP1, and GSTM1. Compared to the DMSO controls, B[a]P treatment had significantly increased the neoplastic cell number and cell viability in 16HBEs at all three doses (1, 2, and 5 mmol/L), and had significantly reduced the CYP1A1 and GSTP1 DNA promoter methylation levels. Following B[a]P treatment, the GSTM1 promoter methylation level in 16HBEs was profoundly reduced at low dose group compared to the DMSO controls, yet it was significantly increased at both middle and high dose groups. The mRNA levels of CYP1A1, GSTP1, and GSTM1 were significantly decreased in 16HBEs following B[a]P treatment at all three doses. The findings demonstrate that B[a]P promoted cell proliferation in 16HBEs, which was possibly related to the altered DNA methylations and the inhibited mRNA levels in CYP1A1, GSTP1, and GSTM1.
Collapse
Affiliation(s)
- Aixiang Liu
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China.,Department of Health Information Management, 74648Shanxi Medical University Fenyang College, Fenyang, Shanxi, China
| | - Xin Li
- Center of Disease Control and Prevention, 442190Taiyuan Iron and Steel Co Ltd, Taiyuan, Shanxi, China
| | - Zhongsuo Hao
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jingjing Cao
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| | - Huan Li
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| | - Min Sun
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhihong Zhang
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ruifeng Liang
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hongmei Zhang
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
23
|
Ferragut Cardoso AP, Banerjee M, Al-Eryani L, Sayed M, Wilkey DW, Merchant ML, Park JW, States JC. Temporal Modulation of Differential Alternative Splicing in HaCaT Human Keratinocyte Cell Line Chronically Exposed to Arsenic for up to 28 Wk. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:17011. [PMID: 35072517 PMCID: PMC8785870 DOI: 10.1289/ehp9676] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND Chronic arsenic exposure via drinking water is associated with an increased risk of developing cancer and noncancer chronic diseases. Pre-mRNAs are often subject to alternative splicing, generating mRNA isoforms encoding functionally distinct protein isoforms. The resulting imbalance in isoform species can result in pathogenic changes in critical signaling pathways. Alternative splicing as a mechanism of arsenic-induced toxicity and carcinogenicity is understudied. OBJECTIVE This study aimed to accurately profile differential alternative splicing events in human keratinocytes induced by chronic arsenic exposure that might play a role in carcinogenesis. METHODS Independent quadruplicate cultures of immortalized human keratinocytes (HaCaT) were maintained continuously for 28 wk with 0 or 100 nM sodium arsenite. RNA-sequencing (RNA-Seq) was performed with poly(A) RNA isolated from cells harvested at 7, 19, and 28 wk with subsequent replicate multivariate analysis of transcript splicing (rMATS) analysis to detect and quantify differential alternative splicing events. Reverse transcriptase-polymerase chain reaction (RT-PCR) for selected alternative splicing events was performed to validate RNA-Seq predictions. Functional enrichment was performed by gene ontology (GO) analysis of the differential alternative splicing event data set at each time point. RESULTS At least 600 differential alternative splicing events were detected at each time point tested, comprising all the five main types of alternative splicing and occurring in both open reading frames (ORFs) and untranslated regions (UTRs). Based on functional relevance ELK4, SHC1, and XRRA1 were selected for validation of predicted alternative splicing events at 7 wk by RT-PCR. Densitometric analysis of RT-PCR data corroborated the rMATS predicted alternative splicing for all three events. Protein expression validation of the selected alternative splicing events was challenging given that very few isoform-specific antibodies are available. GO analysis demonstrated that the enriched terms in differential alternatively spliced mRNAs changed dynamically with the time of exposure. Notably, RNA metabolism and splicing regulation pathways were enriched at the 7-wk time point, when the greatest number of differentially alternatively spliced mRNAs are detected. Our preliminary proteomic analysis demonstrated that the expression of the canonical isoforms of the splice regulators DDX42, RMB25, and SRRM2 were induced upon chronic arsenic exposure, corroborating the splicing predictions. DISCUSSION These results using cultures of HaCaT cells suggest that arsenic exposure disrupted an alternative splice factor network and induced time-dependent genome-wide differential alternative splicing that likely contributed to the changing proteomic landscape in arsenic-induced carcinogenesis. However, significant challenges remain in corroborating alternative splicing data at the proteomic level. https://doi.org/10.1289/EHP9676.
Collapse
Affiliation(s)
- Ana P. Ferragut Cardoso
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Mayukh Banerjee
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Laila Al-Eryani
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Mohammed Sayed
- Computer Science and Engineering, University of Louisville, Louisville, Kentucky, USA
| | - Daniel W. Wilkey
- Division of Nephrology & Hypertension, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Michael L. Merchant
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
- Division of Nephrology & Hypertension, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Juw W. Park
- Computer Science and Engineering, University of Louisville, Louisville, Kentucky, USA
- KY INBRE Bioinformatics Core, University of Louisville, Louisville, Kentucky, USA
| | - J. Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
24
|
Banerjee M, Al-Eryani L, Srivastava S, Rai SN, Pan J, Kalbfleisch TS, States JC. Delineating the Effects of Passaging and Exposure in a Longitudinal Study of Arsenic-Induced Squamous Cell Carcinoma in a HaCaT Cell Line Model. Toxicol Sci 2021; 185:184-196. [PMID: 34730829 DOI: 10.1093/toxsci/kfab129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a major deleterious health effect of chronic arsenic (iAs) exposure. The molecular mechanism of arsenic-induced cSCC remains poorly understood. We recently demonstrated that chronic iAs exposure leads to temporally regulated genome-wide changes in profiles of differentially expressed mRNAs and miRNAs at each stage of carcinogenesis (7, 19 and 28 weeks) employing a well-established passage-matched HaCaT cell line model of arsenic-induced cSCC. Here, we performed longitudinal differential expression analysis (miRNA and mRNA) between the different time points (7 vs. 19 weeks and 19 vs. 28 weeks) within unexposed and exposed groups, coupled to expression pairing and pathway analyses to differentiate the relative effects of long-term passaging and chronic iAs exposure. Data showed that 66-105 miRNA [p < 0.05; log2(Fold Change)>I1I] and 2826-4079 mRNA [p < 0.001; log2(Fold Change)>I1I] molecules were differentially expressed depending on the longitudinal comparison. Several mRNA molecules differentially expressed as a function of time, independent of iAs exposure were being targeted by miRNA molecules which were also differentially expressed in a time dependent manner. Distinct pathways were predicted to be modulated as a function of time or iAs exposure. Some pathways were also modulated both by time and exposure. Thus, the HaCaT model can distinguish between the effects of passaging and chronic iAs exposure individually and corroborate our previously published data on effects of iAs exposure compared to unexposed passage matched HaCaT cells. In addition, this work provides a template for cell line based longitudinal chronic exposure studies to follow for optimal efficacy.
Collapse
Affiliation(s)
- Mayukh Banerjee
- Department of Pharmacology and Toxicology, University of Louisville, USA Louisville, KY
| | - Laila Al-Eryani
- Department of Pharmacology and Toxicology, University of Louisville, USA Louisville, KY
| | - Sudhir Srivastava
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, USA Louisville, KY.,Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, India New Delhi, 110012
| | - Shesh N Rai
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, USA Louisville, KY.,Department of Bioinformatics and Biostatistics, University of Louisville, USA Louisville, KY
| | - Jianmin Pan
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, USA Louisville, KY
| | - Theodore S Kalbfleisch
- Department of Biochemistry and Molecular Genetics, University of Louisville, USA Louisville, KY
| | - J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, USA Louisville, KY
| |
Collapse
|
25
|
Wang L, Liu LZ, Jiang BH. Dysregulation of microRNAs in metal-induced angiogenesis and carcinogenesis. Semin Cancer Biol 2021; 76:279-286. [PMID: 34428550 DOI: 10.1016/j.semcancer.2021.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are small endogenous non-coding RNAs that regulate cancer initiation, development, angiogenesis, and therapeutic resistance. Metal exposure widely occurs through air, water, soil, food, and industrial contaminants. Hundreds of millions of people may have metal exposure associated with toxicity, serious health problems, and cancer occurrence. Metal exposure is found to induce oxidative stress, DNA damage and repair, and activation of multiple signaling pathways. However, molecular mechanisms of metal-induced carcinogenesis remain to be elucidated. Recent studies demonstrated that the exposure of metals such as arsenic, hexavalent chromium, cadmium, and nickel caused dysregulation of microRNAs that are implicated to play an important role in cell transformation, tumor growth and angiogenesis. This review focuses on the recent studies that show metal-induced miRNA dysregulation and underlined mechanisms in cell malignant transformation, angiogenesis and tumor growth.
Collapse
Affiliation(s)
- Lin Wang
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450000, China; Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, United States
| | - Ling-Zhi Liu
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, 19107, United States.
| | - Bing-Hua Jiang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, United States.
| |
Collapse
|