1
|
Ali FEM, Badran KSA, Baraka MA, Althagafy HS, Hassanein EHM. Mechanism and impact of heavy metal-aluminum (Al) toxicity on male reproduction: Therapeutic approaches with some phytochemicals. Life Sci 2024; 340:122461. [PMID: 38286208 DOI: 10.1016/j.lfs.2024.122461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
Heavy metals are ubiquitous environmental toxicants that have been known to have a serious effect on human and animal health. Aluminum (Al) is a widely distributed metal in nature. Al exposure has a detrimental impact on human fertility. This review focused on Al-induced male reproductive toxicity and the potential therapeutic approaches with some phytochemicals. Data from the literature showed that Al exposure is accompanied by a drastic decline in blood levels of FSH, LH, and testosterone, reduced sperm count, and affected sperm quality. Al exposure at high levels can cause oxidative stress by increasing ROS and RNS production, mediated mainly by downregulating Nrf2 signaling. Moreover, several investigations demonstrated that Al exposure evoked inflammation, evidenced by increased TNF-α and IL-6 levels. Additionally, substantial evidence concluded the key role of apoptosis in Al-induced testicular toxicity mediated by upregulating caspase-3 and downregulating Bcl2 protein. The damaging effects of Al on mitochondrial bioenergetics are thought to be due to the excessive generation of free radicals. This review helps to clarify the main mechanism involved in Al-associated testicular intoxication and the treatment strategy to attenuate the notable harmful effects on the male reproductive system. It will encourage clinical efforts to target the pathway involved in Al-associated testicular intoxication.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | - Khalid S A Badran
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Mohammad A Baraka
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| |
Collapse
|
2
|
He C, Zhao X, Lei Y, Nie J, Lu X, Song J, Wang L, Li H, Liu F, Zhang Y, Niu Q. Whole-transcriptome analysis of aluminum-exposed rat hippocampus and identification of ceRNA networks to investigate neurotoxicity of Al. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1401-1417. [PMID: 34900398 PMCID: PMC8636738 DOI: 10.1016/j.omtn.2021.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022]
Abstract
Aluminum is a known neurotoxin that can induce Aβ deposition and abnormal phosphorylation of tau protein, leading to Alzheimer disease (AD)-like damages such as neuronal damage and decreased learning and memory functions. In this study, we constructed a rat model of subchronic aluminum maltol exposure, and the whole-transcriptome sequencing was performed on the hippocampus of the control group and the middle-dose group. A total of 167 miRNAs, 37 lncRNAs, 256 mRNAs, and 64 circRNAs expression changed. The Kyoto Encyclopedia of Genes and Genomes showed that PI3K/AKT pathway was the most enriched pathway of DEGs, and IRS1 was the core molecule in the PPI network. circRNA/lncRNA-miRNA-mRNA networks of all DEGs, DEGs in the PI3K/AKT pathway, and IRS1 were constructed by Cytoscape. Molecular experiment results showed that aluminum inhibited the IRS1/PI3K/AKT pathway and increased the content of Aβ and tau. In addition, we also constructed an AAV intervention rat model, proving that inhibition of miR-96-5p expression might resist aluminum-induced injury by upregulating expression of IRS1. In general, these results suggest that the ceRNA networks are involved in the neurotoxic process of aluminum, providing a new strategy for studying the toxicity mechanism of aluminum and finding biological targets for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Chanting He
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
- Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi 030001, China
- Key Lab of Cellular Physiology of Education Ministry, Shanxi Medical University, Taiyuan, Shanxi 030001, China
- Department of Anatomy, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaoyan Zhao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yang Lei
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jisheng Nie
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaoting Lu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jing Song
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Linping Wang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Huan Li
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Fangqu Liu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yidan Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
- Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi 030001, China
- Key Lab of Cellular Physiology of Education Ministry, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| |
Collapse
|
3
|
Matsumoto H, Riechers DE, Lygin AV, Baluška F, Sivaguru M. Aluminum Signaling and Potential Links with Safener-Induced Detoxification in Plants. ALUMINUM STRESS ADAPTATION IN PLANTS 2015. [DOI: 10.1007/978-3-319-19968-9_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
4
|
Lu H, Hu J, Li J, Pang W, Hu Y, Yang H, Li W, Huang C, Zhang M, Jiang Y. Optimal dose of zinc supplementation for preventing aluminum-induced neurotoxicity in rats. Neural Regen Res 2014; 8:2754-62. [PMID: 25206586 PMCID: PMC4145991 DOI: 10.3969/j.issn.1673-5374.2013.29.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 05/30/2013] [Indexed: 12/02/2022] Open
Abstract
Zinc supplementation can help maintain learning and memory function in rodents. In this study, we hypothesized that zinc supplementation could antagonize the neurotoxicity induced by aluminum in rats. Animals were fed a diet containing different doses of zinc (50, 100, 200 mg/kg) for 9 weeks, and orally administered aluminum chloride (300 mg/kg daily) from the third week for 7 consecutive weeks. Open-field behavioral test results showed that the number of rearings in the group given the 100 mg/kg zinc supplement was significantly increased compared with the group given the 50 mg/kg zinc supplement. Malondialdehyde content in the cerebrum was significantly decreased, while dopamine and 5-hydroxytryptamine levels were increased in the groups given the diet supplemented with 100 and 200 mg/kg zinc, compared with the group given the diet supplemented with 50 mg/kg zinc. The acetylcholinesterase activity in the cerebrum was significantly decreased in the group given the 100 mg/kg zinc supplement. Hematoxylin-eosin staining revealed evident pathological damage in the hippocampus of rats in the group given the diet supplemented with 50 mg/kg zinc, but the damage was attenuated in the groups given the diet supplemented with 100 and 200 mg/kg zinc. Our findings suggest that zinc is a potential neuroprotective agent against aluminum-induced neurotoxicity in rats, and the optimal dosages are 100 and 200 mg/kg.
Collapse
Affiliation(s)
- Hao Lu
- Department of Nutrition and Food Hygiene, West China School of Public Health, Sichuan University, Chengdu 610041, Sichuan Province, China ; Department of Nutrition, Institute of Health & Environmental Medicine, Academy of Military Medical Sciences, Tianjin 300050, China
| | - Jianyang Hu
- Department of Hepatobiliary Surgery, Children's Hospital, Chongqing Medical University, Chongqing 400014, China
| | - Jing Li
- Department of Nutrition, Institute of Health & Environmental Medicine, Academy of Military Medical Sciences, Tianjin 300050, China ; Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Wei Pang
- Department of Nutrition, Institute of Health & Environmental Medicine, Academy of Military Medical Sciences, Tianjin 300050, China
| | - Yandan Hu
- Department of Nutrition and Food Hygiene, West China School of Public Health, Sichuan University, Chengdu 610041, Sichuan Province, China ; Department of Nutrition, Institute of Health & Environmental Medicine, Academy of Military Medical Sciences, Tianjin 300050, China
| | - Hongpeng Yang
- Department of Nutrition, Institute of Health & Environmental Medicine, Academy of Military Medical Sciences, Tianjin 300050, China
| | - Wenjie Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Chengyu Huang
- Department of Nutrition and Food Hygiene, West China School of Public Health, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Mingman Zhang
- Department of Hepatobiliary Surgery, Children's Hospital, Chongqing Medical University, Chongqing 400014, China
| | - Yugang Jiang
- Department of Nutrition, Institute of Health & Environmental Medicine, Academy of Military Medical Sciences, Tianjin 300050, China
| |
Collapse
|
5
|
Effect of salicylic acid on the attenuation of aluminum toxicity in Coffea arabica L. suspension cells: A possible protein phosphorylation signaling pathway. J Inorg Biochem 2013; 128:188-95. [PMID: 23953991 DOI: 10.1016/j.jinorgbio.2013.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/02/2013] [Accepted: 07/07/2013] [Indexed: 11/21/2022]
Abstract
The protective effect of salicylic acid (SA) on aluminum (Al) toxicity was studied in suspension cells of Coffea arabica L. The results showed that SA does not produce any effect on cell growth and that the growth inhibition produced by aluminum is restored during simultaneous treatment of the cells with Al and SA. In addition, the cells exposed to both compounds, Al and SA, showed evident morphological signals of recovery from the toxic state produced in the presence of Al. The cells treated with SA showed a lower accumulation of Al, which was linked to restoration from Al toxicity because the concentration of Al(3+) outside the cells, measured as the Al(3+)-morin complex, was not modified by the presence of SA. Additionally, the inhibition of phospholipase C by Al treatment was restored during the exposure of the cells to SA and Al. The involvement of protein phosphorylation in the protective effect of SA on Al-toxicity was suggested because staurosporine, a protein kinase inhibitor, reverted the stimulatory effect of the combination of Al and SA on protein kinase activity. These results suggest that SA attenuates aluminum toxicity by affecting a signaling pathway linked to protein phosphorylation.
Collapse
|
6
|
Zhang M, Liu YQ, Ye BC. Mononucleotide-modified metal nanoparticles: an efficient colorimetric probe for selective and sensitive detection of aluminum(III) on living cellular surfaces. Chemistry 2012; 18:2507-13. [PMID: 22298346 DOI: 10.1002/chem.201102529] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 11/09/2011] [Indexed: 02/04/2023]
Affiliation(s)
- Min Zhang
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai 200237, PR China
| | | | | |
Collapse
|
7
|
Poot-Poot W, Teresa Hernandez-Sotomayor SM. Aluminum stress and its role in the phospholipid signaling pathway in plants and possible biotechnological applications. IUBMB Life 2011; 63:864-72. [DOI: 10.1002/iub.550] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 07/06/2011] [Indexed: 11/08/2022]
|
8
|
Duressa D, Soliman KM, Chen D. Mechanisms of magnesium amelioration of aluminum toxicity in soybean at the gene expression level. Genome 2010; 53:787-97. [PMID: 20962885 DOI: 10.1139/g10-069] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Micromolar concentration of magnesium (Mg) in culture solution is known to ameliorate aluminum (Al) toxicity in soybean and other leguminous species. To advance the understanding of this phenomenon at the level of gene expression in soybean, we undertook a comparative transcriptome analysis using DNA microarrays and Al-tolerant and Al-sensitive genotypes treated with Al ions alone or Al plus Mg ions. We observed a more rapid alteration of transcription for Al-tolerant than Al-sensitive soybean after introduction of Mg into Al-containing medium, but at 72 h, far more genes were altered (both upregulated and downregulated) in the Al-sensitive line, reflecting the known greater saving effect of Mg for Al-sensitive than Al-tolerant lines. Mg appears to ameliorate Al toxicity in the sensitive genotype by the dual mechanisms of (i) specifically increasing the expression level of several genes that are upregulated in the Al-treated, Al-tolerant genotype in the absence of Mg and (ii) possibly saving energy by decreasing expression of most genes relative to expression under Al stress. Mg-mediated reduction in gene expression also appears to be an important mechanism of Mg protection of the Al-tolerant genotype.
Collapse
Affiliation(s)
- Dechassa Duressa
- Department of Natural Resources and Environmental Sciences, Alabama A&M University, Normal, AL 35762, USA
| | | | | |
Collapse
|
9
|
Shahraki M, Mony EP, Asl SZ, Sarkaki A, Shahraki A. Effects of Aluminium Chloride Injection in Lateral Ventricle on Serum Gonadothropines, Testosterone and Spermatogenesis in Rats. JOURNAL OF MEDICAL SCIENCES 2008. [DOI: 10.3923/jms.2008.410.414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
10
|
Gonçalves PP, Silva VS. Does neurotransmission impairment accompany aluminium neurotoxicity? J Inorg Biochem 2007; 101:1291-338. [PMID: 17675244 DOI: 10.1016/j.jinorgbio.2007.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 05/25/2007] [Accepted: 06/05/2007] [Indexed: 02/05/2023]
Abstract
Neurobehavioral disorders, except their most overt form, tend to lie beyond the reach of clinicians. Presently, the use of molecular data in the decision-making processes is limited. However, as details of the mechanisms of neurotoxic action of aluminium become clearer, a more complete picture of possible molecular targets of aluminium can be anticipated, which promises better prediction of the neurotoxicological potential of aluminium exposure. In practical terms, a critical analysis of current data on the effects of aluminium on neurotransmission can be of great benefit due to the rapidly expanding knowledge of the neurotoxicological potential of aluminium. This review concludes that impairment of neurotransmission is a strong predictor of outcome in neurobehavioral disorders. Key questions and challenges for future research into aluminium neurotoxicity are also identified.
Collapse
Affiliation(s)
- Paula P Gonçalves
- Departamento de Biologia, Campus Universitário de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | | |
Collapse
|
11
|
Larsen PB, Cancel J, Rounds M, Ochoa V. Arabidopsis ALS1 encodes a root tip and stele localized half type ABC transporter required for root growth in an aluminum toxic environment. PLANTA 2007; 225:1447-58. [PMID: 17171374 DOI: 10.1007/s00425-006-0452-4] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 11/14/2006] [Accepted: 11/15/2006] [Indexed: 05/13/2023]
Abstract
Aluminum toxicity in acid soils severely limits crop productivity through inhibition of root growth and, consequently, shoot development. Several Arabidopsis mutants were previously identified as having roots with Al hypersensitivity, suggesting that these represent deleterious mutations affecting genes required for either Al tolerance or resistance mechanisms. For this report, the als1-1 mutant was chosen for further characterization. The phenotype of als1-1 is most obviously presented in Al challenged roots, as evidenced by exaggerated root growth inhibition in conjunction with increased expression of Al-responsive genes compared to wt. Using a map-based cloning approach, the als1-1 mutation was isolated and found to represent a deleterious amino acid substitution in a previously uncharacterized half type ABC transporter, At5g39040, which is expressed in a non-Al dependent manner in all organs tested. GUS-dependent analyses revealed that ALS1 expression is primarily localized to the root tip and the vasculature throughout the plant. Concomitant with this, an ALS1: GFP fusion accumulates at the vacuolar membrane of root cells, indicating that ALS1 may be important for intracellular movement of some substrate, possibly chelated Al, as part of a mechanism of Al sequestration.
Collapse
Affiliation(s)
- Paul B Larsen
- Department of Biochemistry, University of California, Boyce Hall, Riverside, CA 92521, USA.
| | | | | | | |
Collapse
|
12
|
Quintal-Tun F, Muñoz-Sánchez JA, Ramos-Díaz A, Escamilla-Bencomo A, Martínez-Estévez M, Exley C, Hernández-Sotomayor SMT. Aluminium-induced phospholipid signal transduction pathway in Coffea arabica suspension cells and its amelioration by silicic acid. J Inorg Biochem 2007; 101:362-9. [PMID: 17161461 DOI: 10.1016/j.jinorgbio.2006.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 10/20/2006] [Accepted: 10/27/2006] [Indexed: 11/23/2022]
Abstract
Coffee (Coffea arabica L.) is of economic importance worldwide. Its growth in organic-rich acidic soils is influenced by aluminium such that coffee yield may be impaired. Herein we have used the Al-sensitive C. arabica suspension cell line L2 to analyse the effect of two different Al species on the phosphoinositide signal transduction pathway. Our results have shown that the association of Al with coffee cells was affected by the pH and the form of Al in media. More Al was associated with cells at pH 4.3 than 5.8, whereas when Al was present as hydroxyaluminosilicates (HAS) the association was halved at pH 4.3 and unchanged at pH 5.8. Two signal transduction elements were also evaluated; phospholipase C (PLC) activity and phosphatidic acid (PA) formation. PLC was inhibited ( approximately 50%) when cells were incubated for 2 h in the presence of either AlCl(3) or Al in the form of HAS. PA formation was tested as a short-term response to Al. By way of contrast to what was found for PLC, incubation of cells for 15 min in the presence of AlCl(3) decreased the formation of PA whereas the same concentration of Al as HAS produced no effect upon its formation. These results suggest that Al is capable to exert its effects upon signal transduction as Al((aq))(3+) acting upon a mechanism linked to the phosphoinositide signal transduction pathway.
Collapse
Affiliation(s)
- Fausto Quintal-Tun
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, No. 130, Chuburná de Hidalgo, C.P. 97200 Mérida, Yucatán, Mexico
| | | | | | | | | | | | | |
Collapse
|
13
|
Hałatek T, Trzcinka-Ochocka M, Matczak W, Gruchała J. Serum Clara Cell Protein as an Indicator of Pulmonary Impairment in Occupational Exposure at Aluminum Foundry. Int J Occup Med Environ Health 2006; 19:211-23. [PMID: 17402216 DOI: 10.2478/v10001-006-0033-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES Although some of the exposures in aluminum (Al) smelting have been well characterized, and respiratory disorders in aluminum production workers are well known, the relationship between internal aluminum loads and appropriate lung biomarkers have not been elucidated. The aim of our work was to carry out a comprehensive investigation in workers employed in the Aluminum Foundry Casting Department with special reference to currently existing hygiene standards, known as threshold limit values (TLV) based on aluminum effects on the respiratory system. The measurement of serum anti-inflammatory Clara cell protein (CC16) was employed as a peripheral marker of the lung epithelium function. MATERIALS AND METHODS A group of 50 casting smelters, 5 locksmiths, 11 sawyers and auxiliary workers exposed to dust containing 14% of aluminum, and a group of 42 controls were examined. Respiratory function tests were performed and forced volume capacity (FVC), forced expiratory volume in 1 s (FEV1), forced expiratory volume in the first percent (FEV1%), forced expiratory flows in 50% VC (FEV50), and markers of foundry workers' exposure and body burden, Al concentration in the breathing zone, blood and urine, biomarkers of the effects of exposure, concentration of CC16 and hyaluronic acid (HA) in serum were determined in all examined workers. Additional measurements comprised determinations of serum iron (Fe) levels, myeloperoxidase (MPO), eosinophil cationic protein (ECP), immunoglobulin E (IgE), glutathione S-transferase (GST), and superoxide dismutase (SOD) activity in erythrocytes. RESULTS The group of casting smelters was characterized by the highest levels of aluminum in urine (Al-U) (43.7 microg L(-1)), high levels of MPO, ECP and IgE, high SOD activity, low CC16 levels, and low activity of GST. Lower Al-U excretion was observed in locksmiths (35.2 microg L(-1)) and sawyers (21.7 microg L(-1)). Serum CC16 proved to be the most sensitive biomarker, showing high inverse relationship with serum Al (Al-S) concentrations in casting smelters (p = 0.006). CONCLUSIONS The study showed that in conditions of occupational exposure, dusts containing Al2O3 < 1 mg m(-3) cause changes in the respiratory system and biomarkers in serum, especially in CC16, connected with altered functioning of this system. Changes in concentrations of the examined biomarkers and also in respiratory parameters of the study subjects were observed when Al-U concentration was > 40 microg L (-1).
Collapse
Affiliation(s)
- Tadeusz Hałatek
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, łódź, Poland.
| | | | | | | |
Collapse
|
14
|
Halatek T, Sinczuk-Walczak H, Rydzynski K. Prognostic significance of low serum levels of Clara cell phospholipid-binding protein in occupational aluminium neurotoxicity. J Inorg Biochem 2005; 99:1904-11. [PMID: 16099050 DOI: 10.1016/j.jinorgbio.2005.06.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 06/17/2005] [Accepted: 06/27/2005] [Indexed: 11/23/2022]
Abstract
The relationship between respiratory and neurological effects of exposure to aluminium (Al) was investigated in a group of foundry workers exposed to Al at concentrations below the threshold limit value (TLV) binding in Poland (2.0 mg Al2O3 m(-3)). Neurological and neurophysiological parameters indicated subclinical effects of Al exposure on the nervous system. The measurement of serum anti-inflammatory Clara cell protein (CC16) was employed as a peripheral marker of the lung epithelium function. There was a strong inverse relationship between serum Al (Al-S) and CC16 concentrations (p = 0.006). The lowest CC16 concentrations were found in serum of workers characterised by subjective symptoms of the central nervous system (CNS) and abnormal results of neurophysiological examinations (EEG and VEP). Low serum CC16 concentrations and enhanced Al and iron (Fe) levels were also observed in the younger age group of workers with the subjective CNS symptoms and abnormal VEP results, which suggests that Fe is implicated in strengthening of the neurotoxic Al potential. The results of our study support the hypothesis that subclinical neurological symptoms (especially abnormal VEP) are most likely associated with internalisation of Al ions with lipid fractions of the lung epithelium, which in turn may help Al ions overcome the blood-brain barrier. Low serum CC16 concentrations (<10 microg L(-1)) were noted in workers with the abnormal results of neurological (CNS) and neurophysiological (EEG and VEP) examinations as well as with Al body burden manifested by urinary excretion (Al-U) below 60 microg L(-1) and Al-S concentration of 2 microg L(-1). This concentration may be considered as a threshold allowable biological concentration of aluminium.
Collapse
Affiliation(s)
- Tadeusz Halatek
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, 8 Teresy St. P.O. Box 199, 90-950 Łódź, Poland.
| | | | | |
Collapse
|
15
|
Shen H, He LF, Sasaki T, Yamamoto Y, Zheng SJ, Ligaba A, Yan XL, Ahn SJ, Yamaguchi M, Sasakawa H, Hideo S, Matsumoto H. Citrate secretion coupled with the modulation of soybean root tip under aluminum stress. Up-regulation of transcription, translation, and threonine-oriented phosphorylation of plasma membrane H+-ATPase. PLANT PHYSIOLOGY 2005; 138:287-96. [PMID: 15834009 PMCID: PMC1104183 DOI: 10.1104/pp.104.058065] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2004] [Revised: 02/15/2005] [Accepted: 02/21/2005] [Indexed: 05/18/2023]
Abstract
The aluminum (Al)-induced secretion of citrate has been regarded as an important mechanism for Al resistance in soybean (Glycine max). However, the mechanism of how Al induces citrate secretion remains unclear. In this study, we investigated the regulatory role of plasma membrane H+-ATPase on the Al-induced secretion of citrate from soybean roots. Experiments performed with plants grown in full nutrient solution showed that Al-induced activity of plasma membrane H+-ATPase paralleled secretion of citrate. Vanadate and fusicoccin, an inhibitor and an activator, respectively, of plasma membrane H+-ATPase, exerted inhibitory and stimulatory effects on the Al-induced secretion of citrate. Higher activity of plasma membrane H+-ATPase coincided with more citrate secretion in Al-resistant than Al-sensitive soybean cultivars. These results suggested that the effects of Al stress on citrate secretion were mediated via modulation of the activity of plasma membrane H+-ATPase. The relationship between the Al-induced secretion of citrate and the activity of plasma membrane H+-ATPase was further demonstrated by analysis of plasma membrane H+-ATPase transgenic Arabidopsis (Arabidopsis thaliana). When plants were grown on Murashige and Skoog medium containing 30 microM Al (9.1 microM Al3+ activity), transgenic plants exuded more citrate compared with wild-type Arabidopsis. Results from real-time reverse transcription-PCR and immunodetection analysis indicated that the increase of plasma membrane H+-ATPase activity by Al is caused by transcriptional and translational regulation. Furthermore, plasma membrane H+-ATPase activity and expression were higher in an Al-resistant cultivar than in an Al-sensitive cultivar. Al activated the threonine-oriented phosphorylation of plasma membrane H+-ATPase in a dose- and time-dependent manner. Taken together, our results demonstrated that up-regulation of plasma membrane H+-ATPase activity was associated with the secretion of citrate from soybean roots.
Collapse
Affiliation(s)
- Hong Shen
- Lab of Plant Nutritional Genetics and Root Biology Center, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Vitorello VA, Capaldi FR, Stefanuto VA. Recent advances in aluminum toxicity and resistance in higher plants. ACTA ACUST UNITED AC 2005. [DOI: 10.1590/s1677-04202005000100011] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aluminum toxicity is a major soil constraint to food and biomass production throughout the world. Considerable advances in the understanding of the mechanism of resistance involving exudation of organic acids have been made in recent years. However, despite intense research efforts, there are many aspects of Al toxicity that remain unclear. This article reviews the features of the chemistry of Al relevant to its toxicity followed by an examination of the mechanisms of toxicity and resistance. Emphasis, however, is given to the mechanisms of Al toxicity, since resistance has been covered recently by several reviews. Some topics which are specifically discussed in this review are: a) The possible role of cellular effects of low pH in Al toxicity, which has been largely ignored and needs to be addressed; b) The relevance of non-genotypic (cell-to-cell) variations in sensitivity to Al; c) Evidence indicating that although Al may well exert its toxic effects in the cell wall, it is highly unlikely that Al does so in a non-specific manner by mere exchangeable binding; and d) The hypothesis that the primary target of Al toxicity resides in the cell wall-plasma membrane-cytoskeleton (CW-PM-CSK) continuum has the potential to integrate and conciliate much of the apparently conflicting results in this field.
Collapse
|
17
|
Larsen PB, Geisler MJB, Jones CA, Williams KM, Cancel JD. ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 41:353-63. [PMID: 15659095 DOI: 10.1111/j.1365-313x.2004.02306.x] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Aluminum (Al) toxicity in acid soils is a worldwide agricultural problem that severely limits crop productivity through inhibition of root growth. Previously, Arabidopsis mutants with increased Al sensitivity were isolated in order to identify genes important for Al tolerance in plants. One mutant, als3, exhibited extreme root growth inhibition in the presence of Al, suggesting that this mutation negatively impacts a gene required for Al tolerance. Map-based cloning of the als3-1 mutation resulted in the isolation of a novel gene that encodes a previously undescribed ABC transporter-like protein, which is highly homologous to a putative bacterial metal resistance protein, ybbM. Northern analysis for ALS3 expression revealed that it is found in all organs examined, which is consistent with the global nature of Al sensitivity displayed by als3, and that expression increases in roots following Al treatment. Based on GUS fusion and in situ hybridization analyses, ALS3 is primarily expressed in leaf hydathodes and the phloem throughout the plant, along with the root cortex following Al treatment. Immunolocalization indicates that ALS3 predominantly accumulates in the plasma membrane of cells that express ALS3. From our results, it appears that ALS3 encodes an ABC transporter-like protein that is required for Al resistance/tolerance and may function to redistribute accumulated Al away from sensitive tissues in order to protect the growing root from the toxic effects of Al.
Collapse
Affiliation(s)
- Paul B Larsen
- Department of Biochemistry, University of California, Riverside, CA 92521, USA.
| | | | | | | | | |
Collapse
|
18
|
Abstract
A critical review of the literature on Al toxicity in plants, animals and humans reveals a similar mode of Al action in all living organisms, namely interference with the secondary messenger system (phosphoinositide and cytosolic Ca2+ signalling pathways) and enhanced production of reactive oxygen species resulting in oxidative stress. Aluminium uptake by plants is relatively quick (across the intact plasma membrane in < 30 min and across the tonoplast in < 1 h), despite huge proportion of Al being bound in the cell wall. Aluminium absorption in the animal/human digestive system is low (only about 0.1% of daily Al intake stays in the human body), except when Al is complexed with organic ligands (eg. citrate, tartarate, glutamate). Aluminium accumulates in bones and brain, with Al-citrate and Al-transferrin complexes crossing the blood-brain barrier and accumulating in brain cells. Tea plant and other Al-accumulator plant species contain large amounts of Al in the form of non-toxic organic complexes.
Collapse
Affiliation(s)
- Z Rengel
- Soil Science and Plant Nutrition, School of Earth and Geographical Sciences, The University of Western Australia, Crawley WA 6009, Perth, Australia.
| |
Collapse
|
19
|
Bhuja P, McLachlan K, Stephens J, Taylor G. Accumulation of 1,3-β-d-glucans, in Response to Aluminum and Cytosolic Calcium in Triticum aestivum. ACTA ACUST UNITED AC 2004; 45:543-9. [PMID: 15169936 DOI: 10.1093/pcp/pch068] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
One of the most rapid responses to aluminum (Al) stress in plants is enhanced synthesis and deposition of 1,3-beta-D-glucans (callose) in root tips. Ironically, Al-induced synthesis and deposition of callose occurs in vivo, despite evidence from in vitro systems that suggests that Al is a powerful inhibitor of 1,3-beta-D-glucan synthase. We set out to test the hypothesis that an Al-induced increase in the activity of free calcium in the cytoplasm ([Ca(2+)](cyt)) is the trigger for enhanced synthesis of callose in in vivo systems, an effect that would not be observed in in vitro systems. Root tips of an Al-sensitive cultivar of Triticum aestivum were treated with Al (0-100 microM) or the Ca ionophore A23187 (0-3 micro M) for 3-24 h, and the effects on [Ca(2+)](cyt) and synthesis of callose were measured using confocal laser scanning microscopy. Treatment with Al induced a rapid increase in both [Ca(2+)](cyt) (4.7-fold) and synthesis of callose (30-fold). Treatment with the Ca ionophore, A23187, also elicited an increase in [Ca(2+)](cyt) (6.6-fold). Despite a greater increase in [Ca(2+)](cyt) in the presence of A23187, this increase was accompanied by a smaller increase in callose deposition (11-fold) than was observed in the presence of Al. These data suggest that an increase in [Ca(2+)](cyt) is not the only factor modulating increases in callose synthesis and deposition in the presence of Al.
Collapse
Affiliation(s)
- Paulus Bhuja
- University of Alberta, Department of Biological Sciences, CW405 Biological Sciences Building, Edmonton, Alberta, T6G 2E9 Canada
| | | | | | | |
Collapse
|
20
|
Martínez-Estévez M, Racagni-Di Palma G, Muñoz-Sánchez JA, Brito-Argáez L, Loyola-Vargas VM, Hernández-Sotomayor SM. Aluminium differentially modifies lipid metabolism from the phosphoinositide pathway in Coffea arabica cells. JOURNAL OF PLANT PHYSIOLOGY 2003; 160:1297-303. [PMID: 14658381 DOI: 10.1078/0176-1617-01168] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The effect of aluminium (Al) on phosphoinositide-specific phospholipase C (PLC) and lipid kinase activities was examined in a cellular suspension of coffee. Two main effects were seen when cells were treated with AlCl3. In periods as short as 1 minute, Al-exposed cells increased the activity of PLC and IP3 formation up to two fold. Over longer periods PLC activity was inhibited by more than 50%. The activity of phosphatidylinositol 4-kinase (Pl 4-K), phosphatidylinositol phosphate 5-kinase (PIP 5-K) and diacylglycerol kinase increased when cells were incubated in the presence of different concentrations of AlCl3. The present study reports for the first time that Al may have different effects on the Pl-signaling pathway depending on the time of exposure. Our results strongly support the hypothesis that Al disrupts the metabolism of membrane phospholipids regulating not only PLC but also other enzymes that have key roles in signal-transduction pathways.
Collapse
Affiliation(s)
- Manuel Martínez-Estévez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, CP 97200, Mérida, Yucatán, México
| | | | | | | | | | | |
Collapse
|
21
|
Rengel Z, Zhang WH. Role of dynamics of intracellular calcium in aluminium-toxicity syndrome. THE NEW PHYTOLOGIST 2003; 159:295-314. [PMID: 33873357 DOI: 10.1046/j.1469-8137.2003.00821.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This review is concentrating on the role of aluminium (Al)-calcium (Ca) interactions in Al toxicity syndrome in plants. Disruption of cytoplasmic Ca2+ homeostasis has been suggested as a primary trigger of Al toxicity. Aluminium causes an increase in cytosolic Ca2+ activity, potentially disrupting numerous biochemical and physiological processes, including those involved in the root growth. The source of Ca2+ for the increase in cytosolic Ca2+ activity under Al exposure is partly extracellular (likely to be due to the Al-resistant portion of the flux through depolarization-activated Ca2+ channels and fluxes through Ca2+ -permeable nonselective cation channels in the plasma membrane) as well as intracellular (increased cytosolic Ca2+ activity enhances the activity of Ca2+ release channels in the tonoplast and the endoplasmic reticulum membrane). The effect on increased cytosolic Ca2+ activity of possible Al-related inhibition of the plasma membrane and endo-membrane Ca2+ -ATPases and Ca2+ exchangers (CaX) that sequester Ca2+ out of the cytosol is insufficiently documented at present. The relationship between Al toxicity, cytoplasmic Ca2+ homeostasis and cytoplasmic pH needs to be elucidated. Technical improvements that would allow measurements of cytosolic Ca2+ activity within the short time after exposure to Al (seconds or shorter) are eagerly awaited. Contents I. Introduction 296 II. Symptoms of aluminium toxicity 296 III. Calcium - aluminium interactions 297 IV. The role of electrical properties of the plasma membrane in calcium-aluminium interactions 306 V. Oxidative stress 307 VI. Callose 308 VII. Cytoskeleton 308 VIII. Conclusions 309 Acknowledgements 309 References 309.
Collapse
Affiliation(s)
- Z Rengel
- Soil Science and Plant Nutrition, School of Earth and Geographical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
| | - W-H Zhang
- Department of Horticulture, Viticulture & Oenology, Waite Campus, Adelaide University, PMB #1, Glen Osmond SA 5064, Australia
| |
Collapse
|
22
|
Silva VS, Cordeiro JM, Matos MJ, Oliveira CR, Gonçalves PP. Aluminum accumulation and membrane fluidity alteration in synaptosomes isolated from rat brain cortex following aluminum ingestion: effect of cholesterol. Neurosci Res 2002; 44:181-93. [PMID: 12354633 DOI: 10.1016/s0168-0102(02)00128-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the present work, we studied the effect of cholesterol/phospholipid (CH/PL) molar ratio on aluminum accumulation and aluminum-induced alteration of membrane fluidity in rat brain cortex synaptosomes. We observed that sub-acute (daily supply of 1.00 g of AlCl(3) during 10 days) and chronic (daily supply of 0.03 g of AlCl(3) during 4 months) exposure to dietary aluminum leads to a synaptosomal aluminum enrichment of 45 and 59%, respectively. During chronic exposure to AlCl(3), the enhancement of aluminum content was prevented by administration of colestipol (0.31 g/day), which decreased the synaptosomal membrane CH/PL molar ratio (nmol/nmol) from 1.2 to 0.4. Fluorescence anisotropy analysis, using 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-(4-(trimethylamino)phenyl)-6-phenylhexa-1,3,5-triene (TMA-DPH), showed that after treatment with colestipol a decrease in membrane order occurs at the level of hydrophilic lipid-water surface and deeper hydrophobic region of the synaptosomal membrane. When the rats were exposed to aluminum, it was observed a significant enhancement of membrane fluidity, which was more pronounced at the level of the membrane hydrophilic regions. Meanwhile, when chronic exposure to dietary AlCl(3) was accompanied by treatment with colestipol, the aluminum-induced decrease in membrane order was negligible when compared to TMA-DPH and DPH anisotropy values measured upon colestipol treatment. In contrast, in vitro incubation of synaptosomes (isolated from control rats) with AlCl(3) induced a concentration-dependent rigidification of this more hydrophilic membrane region. The opposite action of aluminum on synaptosomal membrane fluidity, during in vivo and in vitro experiments, appears to be explained by alteration of synaptosomal CH/PL molar ratio, since a significant reduction (approximately 80%) of this parameter occurs during in vivo exposure to aluminum. In conclusion, during in vivo exposure to aluminum, fluidification of hydrophilic regions and reduction of CH/PL molar ratio of presynaptic membranes accompany the accumulation of this cation, which appear to restrict aluminum retention in brain cortex nerve terminals.
Collapse
Affiliation(s)
- Virgília S Silva
- Centro de Estudos do Ambiente e Mar, Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | | | | | | | | |
Collapse
|
23
|
Wang M, Ruan DY, Chen JT, Xu YZ. Lack of effects of vitamin E on aluminium-induced deficit of synaptic plasticity in rat dentate gyrus in vivo. Food Chem Toxicol 2002; 40:471-8. [PMID: 11893406 DOI: 10.1016/s0278-6915(01)00094-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Aluminium (Al), has the potential to be neurotoxic in humans and animals, and is present in many manufactured foods and medicines and is also added to drinking water for purification purposes. Our previous study demonstrated that chronic Al exposure induced deficits of both long-term potentiation (LTP) and long-term depression (LTD) of excitatory postsynaptic potential (EPSP) and population spike (PS) in rat dentate gyrus (DG) of hippocampus in vivo (Wang et al., 2001). The purpose of the present study was to investigate whether the Al-induced impairment of synaptic plasticity could be reversed by dietary supplementation with vitamin E (Vit E; alpha-tocopherol). Neonatal Wistar rats were exposed to Al from parturition throughout life by drinking 0.3% aluminium chloride (AlCl3) solution or a diet supplemented with Vit E at 500 microg/g/day with 0.3% AlCl3. The input/output (I/O) function, EPSP and PS were measured in DG area of adult rats (80-100 days of age) in response to stimulation applied to the lateral perforant path. The results showed that: (1) chronic Al exposure reduced the amplitudes of both EPSP LTP (control: 130.4+/-3%, n=7; Al-exposed: 110+/-2%, n=9, P<0.001) and PS LTP (control: 241+/-19%, n=7; Al-exposed: 130+/-7%, n=9, P<0.001) significantly. Vit E had no significant effects on the Al-induced deficits of EPSP LTP (Al-exposed: 110+/-2%, n=9; Al-exposed+Vit E: 112+/-2%, n=8, P>0.05) and PS LTP (Al-exposed: 130+/-7%, n=9; Al-exposed+Vit E: 129+/-4%, n=8; P>0.05); (2) the amplitudes of EPSP LTD (control: 84+/-4%, n=7; Al-exposed: 92+/-7%, n=9, P<0.01) and PS LTD (control: 81+/-4%, n=7; Al-exposed: 98+/-5%, n=9, P<0.001) were also decreased by Al treatment. The impaired EPSP LTD (Al-exposed: 92+/-7%, n=9; Al-exposed+Vit E: 93+/-4%, n=8, P>0.05) and PS LTD (Al-exposed: 98+/-5%, n=9; Al-exposed+Vit E: 94+/-6%, n=8, P>0.05) were also not significantly affected by Vit E treatment. It was suggested that dietary supplementation with Vit E did not reverse the impairment of synaptic plasticity induced by Al in DG in vivo.
Collapse
Affiliation(s)
- Ming Wang
- School of Life Science, University of Science and Technology of China, Hefei, 230027, Anhui, PR China
| | | | | | | |
Collapse
|
24
|
Jorge RA, Menossi M, Arruda P. Probing the role of calmodulin in Al toxicity in maize. PHYTOCHEMISTRY 2001; 58:415-422. [PMID: 11557073 DOI: 10.1016/s0031-9422(01)00258-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The role of calmodulin on Al toxicity was studied in two maize (Zea mays L.) inbred lines, Cat 100-6 (Al-tolerant) and S 1587-17 (Al-sensitive). Increasing levels of Al induced the release of malate at similar rate by roots of both genotypes, while the exudation of citrate, a stronger Al-binding compound, was 3.5 times higher in Cat 100-6 seedlings exposed to 16.2x10(-6) Al(3+) activity. The calmodulin inhibitor trifluoperazine significantly reduced the root growth in both genotypes, mimicking the main effect of Al. However, when Cat 100-6 and S 1587-17 seedlings were challenged with Al in conjunction with trifluoperazine, no further reduction in root growth or any other effect of Al toxicity was observed. The rate of Al-induced citrate exudation by both genotypes was not affected by treatment with trifluoperazine or calmidazolium, another calmodulin inhibitor. The Al(3+) interaction with cytoplasmic CaM was estimated using models for the binding of Al(3+) and Mg(2+) with CaM and physiological concentrations of citrate, CaM, InsP(3), ATP, ADP, Al(3+) and Mg(2+). In this simulation, Al(3+) associated with citrate and InsP(3), but not with CaM. We conclude that calmodulin is not relevant to the physiological processes leading to the Al tolerance in maize, nor is it a primary target for Al toxicity.
Collapse
Affiliation(s)
- R A Jorge
- Universidade Estadual de Campinas, UNICAMP, Instituto de Química, Departamento de Físico-Química, SP, Campinas, Brazil.
| | | | | |
Collapse
|
25
|
Pan JW, Zhu MY, Chen H. Aluminum-induced cell death in root-tip cells of barley. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2001; 46:71-79. [PMID: 11378174 DOI: 10.1016/s0098-8472(01)00083-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Aluminum-induced cell death was investigated in root-tip cells of barley (Hordeum vulgare). The growth of roots in 0.1-50 mM Al treatments was inhibited after 8 h treatments, and could not be recovered after 24 h recovery culture without Al. Viable detection with fluorescein diacetate-propidium iodide (FDA-PI) staining shows that most of the root-tip cells have lost viability. These results suggest that the irreversible inhibition of root growth after 8 h Al treatments or 24 h recovery culture is mainly caused by cell death. DNA ladders occurred in root tips only after 8 h Al treatments (0.1-1.0 mM), but no apoptotic bodies in root tips were observed. Thus, the cell death caused by Al stress is likely to be Al-induced programmed cell death (PCD). The reactive oxygen species (ROS) in root-tip cells measured by ultraweak luminescence indicated that the oxidation status in root-tip cells basically ceased after exposure to 10-50 mM Al for 24 h, but was very violent in the root-tip cells treated with 0.1-1.0 mM for 24 h. Exposure to 0.1-1.0 mM Al for 3-12 h led to ROS burst. Therefore, our results suggest that 0.1-1.0 mM Al treatments for 8 h induce cell death (Al-induced PCD) possibly via a ROS-activated signal transduction pathway, whereas 10-50 mM Al treatments may cause necrosis in the root-tip cells. These results have an important role for further studies on the mechanism of Al toxicity in plants.
Collapse
Affiliation(s)
- J -w. Pan
- College of Life Sciences, Zhejiang University, 310012, Hangzhou, People's Republic of China
| | | | | |
Collapse
|
26
|
Alessa L, Oliveira L. Aluminum toxicity studies in Vaucheria longicaulis var. macounii (Xanthophyta, Tribophyceae). II. Effects on the F-actin array. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2001; 45:223-237. [PMID: 11323031 DOI: 10.1016/s0098-8472(00)00088-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In this study, we test the hypothesis that exposure to environmentally significant concentrations of aluminum (Al, 80 µM) causes the microfilament array of Vaucheria longicaulis var. macounii vegetative filaments to become fragmented and disorganized. Changes in F-actin organization following treatment of vegetative filaments by Al are examined using vital staining with fluorescein phalloidin. In the cortical cytoplasm of the apical zone of pH 7.5 and pH 4.5 control cells, axially aligned bundles of F-actin lead to a region of diffuse, brightly stained material. Dimly stained focal masses are noted deeper in the cytoplasm of the apical zone whereas they are absent from the zone of vacuolation. The F-actin array is visualized in the cortical cytoplasm of the region of the cell, distal to the apical tip, which exhibits vigorous cytoplasmic streaming (zone of vacuolation) as long, axially aligned bundles with which chloroplasts and mitochondria associate. Thirty minutes following treatment with aluminum, and for the next 8-16 h, the F-actin array is progressively disorganized. The longitudinally aligned F-actin array becomes fragmented. Aggregates of F-actin, such as short rods, amorphous and stellate F-actin focal masses, curved F-actin bundles and F-actin rings replace the control array. Each of these structures may occur in association with chloroplasts or independently with no apparent association with organelles. Images are recorded which indicate that F-actin rings not associated with organelles may self-assemble by successive bundling of F-actin fragments. The fragmentation and bundling of F-actin in cells of V. longicaulis upon treatment with aluminum resembles those reported after diverse forms of cell disturbance and supports the hypothesis that aluminum-induced changes in the F-actin array may be a calcium-mediated response to stress.
Collapse
Affiliation(s)
- L Alessa
- Department of Biology, 3211 Providence Dr., University of Alaska, 99508, Anchorage, AK, USA
| | | |
Collapse
|
27
|
Piña-Chable ML, Herñandez-Sotomayor SM. Phospholipase C activity from Catharanthus roseus transformed roots: aluminum effect. Prostaglandins Other Lipid Mediat 2001; 65:45-56. [PMID: 11352226 DOI: 10.1016/s0090-6980(01)00113-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effect of aluminum on the activity of PLC was examined in transformed roots from Catharanthus roseus (L) G. Don. When added in vitro to the reaction mixture, Al inhibited the enzymatic activity in a concentration and time-dependent fashion. This effect is very similar for both activities (soluble and membrane-associated). When roots were treated in vivo with Al 0.1 mM for short periods (0-4 h), PLC activity was also inhibited. Aluminum (1 mM) diminished root growth in approximately 50% when added on the first day of the culture cycle conditions in which PLC activity is also affected. Other enzymatic activities (NAD+-GDH, NADH-GDH, NADH-GOGAT and HMGR) were not affected when roots were treated with Al (0.1 mM) for short periods of time (1 h). Results obtained in this work suggest that the Al can affect PLC activity as a specific target. Enzymes: Phospholipase C (EC 3.1.4.10).
Collapse
Affiliation(s)
- M L Piña-Chable
- Unidad de Biología, Experimental, Centro de Investigación Científica de Yucatán Apdo, Cordemex, Mexico
| | | |
Collapse
|
28
|
Silva IR, Smyth TJ, Israel DW, Raper CD, Rufty TW. Magnesium ameliorates aluminum rhizotoxicity in soybean by increasing citric acid production and exudation by roots. PLANT & CELL PHYSIOLOGY 2001; 42:546-54. [PMID: 11382822 DOI: 10.1093/pcp/pce067] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Superior effectiveness of Mg over Ca in alleviating Al rhizotoxicity cannot be accounted for by predicted changes in plasma membrane Al3+ activity. The influence of Ca and Mg on the production and secretion of citrate and malate, and on Al accumulation by roots was investigated with soybean genotypes Young and PI 416937 which differ in Al tolerance. In the presence of a solution Al3+ activity of 4.6 microM, citrate and malate concentrations of tap root tips of both genotypes increased with additions of either Ca up to 3 mM or Mg up to 50 microM. Citrate efflux rate from roots exposed to Al was only enhanced with Mg additions and exceeded malate efflux rates by as much as 50-fold. Maximum citrate release occurred within 12 h after adding Mg to solution treatments. Adding 50 microM Mg to 0.8 mM CaSO4 solutions containing Al3+ activities up to 4.6 microM increased citrate concentration of tap root tips by 3- to 5-fold and root exudation of citrate by 6- to 9-fold. Plants treated with either 50 microM Mg or 3 mM Ca had similar reductions in Al accumulation at tap root tips, which coincided with the respective ability of these ions to relieve Al rhizotoxicity. Amelioration of Al inhibition of soybean root elongation by low concentrations of Mg in solution involved Mg-stimulated production and efflux of citrate by roots.
Collapse
Affiliation(s)
- I R Silva
- Department of Soil Science, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | | | | |
Collapse
|
29
|
Kollmeier M, Dietrich P, Bauer CS, Horst WJ, Hedrich R. Aluminum activates a citrate-permeable anion channel in the aluminum-sensitive zone of the maize root apex. A comparison between an aluminum- sensitive and an aluminum-resistant cultivar. PLANT PHYSIOLOGY 2001; 126:397-410. [PMID: 11351102 PMCID: PMC102313 DOI: 10.1104/pp.126.1.397] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2001] [Revised: 01/25/2001] [Accepted: 02/11/2001] [Indexed: 05/18/2023]
Abstract
In search for the cellular and molecular basis for differences in aluminum (Al) resistance between maize (Zea mays) cultivars we applied the patch-clamp technique to protoplasts isolated from the apical root cortex of two maize cultivars differing in Al resistance. Measurements were performed on protoplasts from two apical root zones: The 1- to 2-mm zone (DTZ), described as most Al-sensitive, and the main elongation zone (3-5 mm), the site of Al-induced inhibition of cell elongation. Al stimulated citrate and malate efflux from intact root apices, revealing cultivar differences. In the elongation zone, anion channels were not observed in the absence and presence of Al. Preincubation of intact roots with 90 microM Al for 1 h induced a citrate- and malate-permeable, large conductance anion channel in 80% of the DTZ protoplasts from the resistant cultivar, but only 30% from the sensitive cultivar. When Al was applied to the protoplasts in the whole-cell configuration, anion currents were elicited within 10 min in the resistant cultivar only. La3+ was not able to replace or counteract with Al3+ in the activation of this channel. In the presence of the anion-channel blockers, niflumic acid and 4, 4'-dinitrostilbene-2, 2'disulfonic acid, anion currents as well as exudation rates were strongly inhibited. Application of cycloheximide did not affect the Al response, suggesting that the channel is activated through post-translational modifications. We propose that the Al-activated large anion channel described here contributes to enhanced genotypical Al resistance by facilitating the exudation of organic acid anions from the DTZ of the maize root apex.
Collapse
Affiliation(s)
- M Kollmeier
- Institute of Plant Nutrition, University of Hannover, Herrenhäuser Strasse 2, D-30419 Hannover, Germany
| | | | | | | | | |
Collapse
|
30
|
Silva IR, Smyth TJ, Israel DW, Raper CD, Rufty TW. Magnesium is more efficient than calcium in alleviating aluminum rhizotoxicity in soybean and its ameliorative effect is not explained by the Gouy-Chapman-Stern model. PLANT & CELL PHYSIOLOGY 2001; 42:538-45. [PMID: 11382821 DOI: 10.1093/pcp/pce066] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The mechanistic basis for cation amelioration of Al rhizotoxicity in soybean was investigated through a series of studies comparing protective effects of Ca and Mg against Al inhibition of root elongation in a background 0.8 mM CaSO4 solution (pH 4.3). A modified Gouy-Chapman-Stern model was used to evaluate the effect of cations on electrical potential and Al3+ activity at root plasma membrane surfaces. Activities of Al3+ up to 4.6 microM in the background solution inhibited soybean tap root elongation by more than 80%. There was little or no response in root elongation when Ca and Mg were added to background solutions in the absence of AL: When added to Al-toxic solutions in the micromolar concentration range, Mg was 100-fold more effective than Ca in alleviating Al toxicity, whereas both cations were equally effective when added in the millimolar concentration range. The protective effect of micromolar additions of Mg on root elongation was specific for Al and it failed to alleviate La rhizotoxicity. In contrast to wheat, Mg amelioration of Al toxicity to soybean root elongation at low Mg concentration could not be explained by changes in potential and Al3+ activity at the root plasma membrane surfaces as predicted by a Gouy-Chapman-Stern model. These results suggest that Mg is not acting as an indifferent cation when present at low concentration and implies the involvement of a mechanism other than pure electrostatic effects at the root surface.
Collapse
Affiliation(s)
- I R Silva
- Department of Soil Science, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | | | | |
Collapse
|
31
|
Wang M, Chen JT, Ruan DY, Xu YZ. Vasopressin reverses aluminum-induced impairment of synaptic plasticity in the rat dentate gyrus in vivo. Brain Res 2001; 899:193-200. [PMID: 11311880 DOI: 10.1016/s0006-8993(01)02228-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Aluminum (Al), an important neurotoxin, contributes to a variety of cognitive dysfunction and mental diseases. Previous studies have demonstrated that Al impairs hippocampal long-term potentiation (LTP) in vitro and in vivo. In the present study, both LTP and LTD (long-term depression) were recorded in the same animal to investigate the Al-induced impairment of synaptic plasticity. Another aim of the present research was to verify whether the impairment of synaptic plasticity induced by Al could be reversed by vasopressin (VP) treatment. Neonatal Wistar rats were exposed to Al from parturition through adulthood (pre- and post-weaning) by the drinking of 0.3% aluminum chloride (AlCl(3)) solution. The input-output (I/O) function, paired-pulse reaction (PPR), excitatory postsynaptic potential (EPSP) and population spike (PS) amplitude were measured in the dentate gyrus (DG) of adult rats (60-90 days) in response to stimulation applied to the lateral perforant path. The results showed: (1) Al reduced the amplitudes of both EPSP LTP (control: 132+/-7%, n=7; Al-exposed: 115+/-10%, n=8, P<0.05) and PS LTP (control: 242+/-18%, n=7; Al-exposed: 136+/-7%, n=8, P<0.01) significantly. The amplitudes of EPSP LTD (control: 82+/-6%, n=7; Al-exposed: 92+/-7%, n=8, P<0.05) and PS LTD (control: 81+/-4%, n=7; Al-exposed: 98+/-5%, n=8, P<0.05) were also decreased by Al treatment. The Al-induced impairments of PS LTP and PS LTD were more serious than that of EPSP LTP and EPSP LTD. (2) In control rats, VP had an increase in the PS LTP amplitude (control: 242+/-18%, n=7; control+VP: 358+/-23%, n=6, P<0.01), while it had no significant effects on PS LTD (control: 81+/-4%, n=7; control+VP: 76+/-7%, n=6, P>0.05). (3) In Al-exposed rats, VP had a significant increase in the amplitudes of both PS LTP (Al-exposed: 136+/-7%, n=8, Al-exposed+VP: 255+/-16%, n=6, P<0.01) and PS LTD (Al-exposed: 98+/-5%, n=8; Al-exposed+VP: 81+/-6%, n=6, P<0.05). After the application of VP, the range of synaptic plasticity (PS LTP+PS LTD) in Al-exposed rats increased from 38% to 174%, which surpassed that in control rats (161%). It was suggested that VP could reverse Al-induced impairment of synaptic plasticity and might be an effective medicine to cure Al-induced neurological disorders.
Collapse
Affiliation(s)
- M Wang
- School of Life Science, University of Science and Technology of China, Anhui, 230027, Hefei, PR China
| | | | | | | |
Collapse
|
32
|
Matsumoto H. Cell biology of aluminum toxicity and tolerance in higher plants. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 200:1-46. [PMID: 10965465 DOI: 10.1016/s0074-7696(00)00001-2] [Citation(s) in RCA: 245] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aluminum is the major element in the soil and exists as a stable complex with oxygen and silicate in neutral and weakly acidic soil. When the soil pH is lower than 4.5-5.0, Al is solubilized in the soil water and absorbed by plant roots. Absorbed Al inhibits root elongation severely, and the elongation of roots exposed to Al3+ as low as mumol level is inhibited within an hour(s). Thus much research has been conducted to understand the mechanism of Al toxicity and tolerance. Al is located specifically at the root apex. Al-sensitive plants absorb more Al than do Al-tolerant plants, and thus the exclusion mechanism of Al is the major idea for Al tolerance. The understanding of Al stress in plants is important for stable food production in future. Al is a complicated ion in its chemical form and biological function. In this chapter, mechanisms of Al toxicity and tolerance proposed during the past few decades as well as future topics are described from physiological and molecular points of view.
Collapse
Affiliation(s)
- H Matsumoto
- Research Institute for Bioresources, Okayama University, Japan
| |
Collapse
|
33
|
Plieth C, Sattelmacher B, Hansen UP, Knight MR. Low-pH-mediated elevations in cytosolic calcium are inhibited by aluminium: a potential mechanism for aluminium toxicity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 18:643-50. [PMID: 10417715 DOI: 10.1046/j.1365-313x.1999.00492.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Aluminium, the most abundant metal in the earth's crust, is highly toxic to most plant species. One of the prevailing dogmas is that aluminium exerts this effect by disrupting cellular calcium homeostasis. However, recent research gives strongly conflicting results: aluminium was shown to provoke either an increase or a decrease in cytosolic free calcium concentration ([Ca2+]c). To solve this question, we have adopted a novel approach: [Ca2+]c measurements in intact plant roots as opposed to isolated cells, and the correlative measurements of intracellular and external pH. The results obtained show that plant roots respond to low external pH by a sustained elevation in [Ca2+]c. In the presence of aluminium, this pH-mediated elevation in [Ca2+]c does not occur, therefore any potential calcium-mediated protection against low pH is likely to be irreversibly inhibited. The severity of the inhibitory effect of aluminium on [Ca2+]c depends on the concentration of external calcium, thus perhaps explaining why the effects of aluminium toxicity are ameliorated in calcium-rich soils. It seems possible that a primary toxic effect of aluminium might be to impair calcium-mediated plant defence responses against low pH.
Collapse
Affiliation(s)
- C Plieth
- Department of Plant Sciences, University of Oxford, UK.
| | | | | | | |
Collapse
|
34
|
Sivaguru, Baluska, Volkmann, Felle, Horst. Impacts of aluminum on the cytoskeleton of the maize root apex. short-term effects on the distal part of the transition zone. PLANT PHYSIOLOGY 1999; 119:1073-82. [PMID: 10069846 PMCID: PMC32089 DOI: 10.1104/pp.119.3.1073] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/1998] [Accepted: 12/04/1998] [Indexed: 05/18/2023]
Abstract
Using monoclonal tubulin and actin antibodies, Al-mediated alterations to microtubules (MTs) and actin microfilaments (MFs) were shown to be most prominent in cells of the distal part of the transition zone (DTZ) of an Al-sensitive maize (Zea mays L.) cultivar. An early response to Al (1 h, 90 μM) was the depletion of MTs in cells of the DTZ, specifically in the outermost cortical cell file. However, no prominent changes to the MT cytoskeleton were found in elongating cells treated with Al for 1 h in spite of severe inhibition of root elongation. Al-induced early alterations to actin MFs were less dramatic and consisted of increased actin fluorescence of partially disintegrated MF arrays in cells of the DTZ. These tissue- and development-specific alterations to the cytoskeleton were preceded by and/or coincided with Al-induced depolarization of the plasma membrane and with callose formation, particularly in the outer cortex cells of the DTZ. Longer Al supplies (>6 h) led to progressive enhancements of lesions to the MT cytoskeleton in the epidermis and two to three outer cortex cell files. Our data show that the cytoskeleton in the cells of the DTZ is especially sensitive to Al, consistent with the recently proposed specific Al sensitivity of this unique, apical maize root zone.
Collapse
Affiliation(s)
- Sivaguru
- Department of Plant Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai 625-021, India (M.S.)
| | | | | | | | | |
Collapse
|
35
|
Friedrich U, Stachowicz N, Simm A, Fuhr G, Lucas K, Zimmermann U. High efficiency electrotransfection with aluminum electrodes using microsecond controlled pulses. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0302-4598(98)00163-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Bhattacharya S. Mechanisms of signal transduction in the stress response of hepatocytes. INTERNATIONAL REVIEW OF CYTOLOGY 1998; 184:109-56. [PMID: 9697312 DOI: 10.1016/s0074-7696(08)62180-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Adaptation of animals to stress is a unique property of life which allows the survival of the species. The stress response of hepatocytes is a very complex phenomenon, sometimes involving a cascade of events. The general stress signals are elucidated by mobilization of carbohydrate stores and akin to the insulin mediators. Oxidative signals are generated by pesticides, heavy metals, drugs, and alcohol which may or may not be under the purview of peroxisomes. Peroxisomal responses are well-defined involving specific receptors, whereas nonperoxisomal responses may be signaled by calcium, the Ah receptor, or built-in antioxidant systems. The intoxication signals are generally thought to be membrane defects induced by xenobiotics which then lead to highly nonspecific responses of hepatocytes. Detoxication signals, on the other hand, are specific responses of hepatocytes triggering de novo syntheses of detoxifier proteins or enzymes. Evidence reveals the existence of two distinct mechanisms of signal transduction in stressed hepatocytes--one involving the peroxisome and the other the plasma membrane.
Collapse
Affiliation(s)
- S Bhattacharya
- Department of Zoology, Visva Bharati University, Santiniketan, India
| |
Collapse
|
37
|
Gandolfi L, Stella MP, Zambenedetti P, Zatta P. Aluminum alters intracellular calcium homeostasis in vitro. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1406:315-20. [PMID: 9630699 DOI: 10.1016/s0925-4439(98)00018-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present paper reports data regarding the influence of aluminum, at micromolar concentrations, on intracellular calcium homeostasis. Al3+ modifies Ca2+ uptake in the endoplasmic reticulum (ER), accelerates Ca2+ release from mitochondria and strongly inhibits Ca2+-ATPase activity with a consequent high-level calcium accumulation inside the cell. These results suggest that Al3+ neurotoxicity may be related to an alteration of the intracellular calcium regulatory system.
Collapse
Affiliation(s)
- L Gandolfi
- Dipartimento di Scienze Farmaceutiche, Università di Padova, Padova, Italy
| | | | | | | |
Collapse
|
38
|
|
39
|
Zatta P, Zambenedetti P. Aluminum speciation and morphological differentiation in murine neuroblastoma cells. Biol Trace Elem Res 1996; 51:77-85. [PMID: 8834383 DOI: 10.1007/bf02790150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Aluminum is known as a neurotoxic metal ion in experimental animals as well as in humans. The present study was carried out to determine whether and how the physicochemical properties of the metal coordination sphere (metal speciation) can influence the differentiation of murine neuroblastoma cells as has been observed previously in this laboratory (1). Results herein reported indicate that while the aluminum lipophilic species--particularly aluminum acetylacetonate (Alacac3) and aluminum maltolate (Almalt3), both hydrolitically stable and differently lipophilic--are both rather cytotoxic, metal hydrophilic species show different neuritogenic properties indicating the ability of Al(III), when diversely coordinated, to produce different biological effects.
Collapse
Affiliation(s)
- P Zatta
- Centro CNR Metalloproteine, Universita' di Padova, Italy
| | | |
Collapse
|
40
|
Shafer TJ, Mundy WR. Effects of aluminum on neuronal signal transduction: mechanisms underlying disruption of phosphoinositide hydrolysis. GENERAL PHARMACOLOGY 1995; 26:889-95. [PMID: 7557263 DOI: 10.1016/0306-3623(94)00296-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
1. Aluminum is neurotoxic in humans and animals and alters formation of inositol phosphate (IP) second messengers following in vivo or in vitro exposure. 2. Several components of the IP signalling system including G-proteins, phosphatidylinositol-specific phospholipase C (PI-PLC), protein kinase C (PKC) and Ca2+ homeostasis are susceptible to inhibition/disruption by aluminum compounds. 3. Recent evidence suggests that, despite its effects on other components, competitive inhibition by aluminum of phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis by PI-PLC underlies its effects on agonist-stimulated IP generation.
Collapse
Affiliation(s)
- T J Shafer
- Neurotoxicology Division MD-74B, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | | |
Collapse
|
41
|
Horst WJ. The role of the apoplast in aluminium toxicity and resistance of higher plants: A review. ACTA ACUST UNITED AC 1995. [DOI: 10.1002/jpln.19951580503] [Citation(s) in RCA: 233] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Platt B, Büsselberg D. Actions of aluminum on voltage-activated calcium channel currents. Cell Mol Neurobiol 1994; 14:819-29. [PMID: 7641239 DOI: 10.1007/bf02088687] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
1. Extracellular and intracellular effects of aluminum (Al) on voltage-activated calcium channel currents (VACCCs) of cultured rat dorsal root ganglion (DRG) neurons were investigated. Al (0.54 to 5.4 micrograms/ml = 20-200 microM) applied extracellularly reduces VACCCs in a concentration-dependent manner. The IC50 was calculated to be 2.3 micrograms/ml (83 microM). All types of VACCCs were similarly reduced by Al treatment. A slight shift of the current-voltage relation to depolarized potentials was observed for higher Al concentrations (> 2 micrograms/ml). The action of Al was found to be use dependent, with little recovery (max. 20%) after wash. 2. The effect of Al was highly pH dependent in the investigated range (pH 6.4 to 7.8). We observed a rightward shift of the concentration-response curve at pH 7.7 (IC50:3.1 micrograms/ml) and a leftward shift at pH 6.4 (IC50:0.56 microgram/ml) compared to the concentration-response curve at pH 7.3. 3. The VACCC declined when 2.7 micrograms/ml Al was added to the internal solution. A steady state was reached within a few minutes. Additional extracellular application of the same concentration lead to an additional decrease of the current. These observations strongly suggest the existence of both intracellular and extracellular accessible binding sites for Al on voltage-activated calcium channels (VACCs). 4. The special characteristics of the action of Al on VACCCs, i.e., the irreversibility, use dependence, and pH dependence, as well as the additional internal binding site may contribute to its neurotoxicity.
Collapse
Affiliation(s)
- B Platt
- Heinrich-Heine Universität Düsseldorf, Germany
| | | |
Collapse
|