Pfeil K, Staudacher T, Luippold G. Effect of
L-Dopa Decarboxylase Inhibitor Benserazide on Renal Function in Streptozotocin-Diabetic Rats.
Kidney Blood Press Res 2006;
29:43-7. [PMID:
16636577 DOI:
10.1159/000092849]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Accepted: 12/22/2005] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND/AIMS
Benserazide (BZD), an inhibitor of the dopamine synthesis, abolished the increase in glomerular filtration rate (GFR) following the infusion of a mixed amino acid solution. These results reveal endogenous dopamine as a mediator in the renal response to amino acids. The aim of the present study was to evaluate whether dopamine is also involved in the regulation of glomerular hyperfiltration during the early state of diabetes mellitus (DM).
METHODS
Male Sprague-Dawley rats were injected with a single dose of streptozotocin (60 mg/kg i.p.) for induction of experimental DM (n = 7-8/group). Age-matched non-diabetic animals, injected with citrate buffer, served as controls (CON, n = 8/group). Clearance experiments were performed 2 weeks after induction of DM in thiopental-anesthetized rats (80 mg/kg i.p.), which were continuously infused either with BZD (30 microg/min/kg) or vehicle (VHC).
RESULTS
Mean arterial blood pressure was around 110 mm Hg and did not significantly differ among the groups. GFR was 0.95 +/- 0.02 ml/min/100 g b.w. in VHC-treated CON. BZD treatment did not significantly change GFR in the CON group (0.92 +/- 0.06 ml/min/100 g b.w.). As expected, glomerular hyperfiltration was observed in diabetic rats infused with VHC (1.24 +/- 0.08 ml/min/100 g b.w.). Treatment with BZD significantly reduced the diabetes-induced increase in GFR to control levels (0.95 +/- 0.05 ml/min/100 g b.w.).
CONCLUSION
Our results show that the inhibition of dopamine synthesis prevented the increase in GFR due to diabetic conditions, indicating that endogenous dopamine is involved in the regulation of DM-induced changes in renal hemodynamics.
Collapse