1
|
Lasagni Vitar RM, Fonteyne P, Chaabane L, Rama P, Ferrari G. A Hypothalamic-Controlled Neural Reflex Promotes Corneal Inflammation. Invest Ophthalmol Vis Sci 2021; 62:21. [PMID: 34698773 PMCID: PMC8556564 DOI: 10.1167/iovs.62.13.21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose To test whether an acute corneal injury activates a proinflammatory reflex, involving corneal sensory nerves expressing substance P (SP), the hypothalamus, and the sympathetic nervous system. Methods C57BL6/N (wild-type [WT]) and SP-depleted B6.Cg-Tac1tm1Bbm/J (TAC1-KO) mice underwent bilateral corneal alkali burn. One group of WT mice received oxybuprocaine before alkali burn. One hour later, hypothalamic neuronal activity was assessed in vivo by magnetic resonance imaging and ex vivo by cFOS staining. Some animals were followed up for 14 days to evaluate corneal transparency and inflammation. Tyrosine hydroxylase (TH), neurokinin 1 receptor (NK1R), and neuronal nitric oxide synthase (nNOS) expression was assessed in brain sections. Sympathetic neuron activation was evaluated in the superior cervical ganglion (SCG). CD45+ leukocytes were quantified in whole-mounted corneas. Noradrenaline (NA) was evaluated in the cornea and bone marrow. Results Alkali burn acutely induced neuronal activation in the trigeminal ganglion, paraventricular hypothalamus, and lateral hypothalamic area (PVH and LHA), which was significantly lower in TAC1-KO mice (P < 0.05). Oxybuprocaine application similarly reduced neuronal activation (P < 0.05). TAC1-KO mice showed a reduced number of cFOS+/NK1R+/TH+ presympathetic neurons (P < 0.05) paralleled by higher nNOS expression (P < 0.05) in both PVH and LHA. A decrease in activated sympathetic neurons in the SCG and NA levels in both cornea/bone marrow and reduced corneal leukocyte infiltration (P < 0.05) in TAC1-KO mice were found. Finally, 14 days after injury, TAC1-KO mice showed reduced corneal opacity and inflammation (P < 0.05). Conclusions Our findings suggest that stimulation of corneal sensory nerves containing SP activates presympathetic neurons located in the PVH and LHA, leading to sympathetic activation, peripheral release of NA, and corneal inflammation.
Collapse
Affiliation(s)
- Romina Mayra Lasagni Vitar
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Philippe Fonteyne
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Linda Chaabane
- Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Rama
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulio Ferrari
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
2
|
Iftikhar K, Siddiq A, Baig SG, Zehra S. Substance P: A neuropeptide involved in the psychopathology of anxiety disorders. Neuropeptides 2020; 79:101993. [PMID: 31735376 DOI: 10.1016/j.npep.2019.101993] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 11/07/2019] [Accepted: 11/10/2019] [Indexed: 11/19/2022]
Abstract
Substance P (SP) is the most widely distributed neuropeptide in central nervous system (CNS) where it participates in numerous physiological and pathophysiological processes including stress and anxiety related behaviors. In line with this notion, brain areas that are thought to be involved in anxiety regulation contains SP and its specific NK1 receptors. SP concentration in different brain regions alters with the exposure of stressful stimulus and affected NK1 receptor binding is observed. SP is released in response to a stressor, which produces anxiogenic effects via activation of hypothalamic-pituitary-adrenal (HPA) axis, resulting in the liberation of cortisol. Moreover, SP is also involved in the activation of the sympathetic nervous system via stimulation of locus coeruleus (LC). This sympathetic surge initiates cortisol discharge by activation of HPA axis, representing the indirect anxiogenic effect of SP. Besides the aforementioned regions, SP also has an impact on other brain regions known to be involved in stress and anxiety mechanisms, including amygdala, lateral septum (LS), periaqueductal gray (PAG), ventromedial nucleus of the hypothalamus (VMH), and bed nucleus of stria terminalis (BNST). Thus, SP acts as an important neuromodulator in various brain regions in stress and anxiety response. Consistent with the above statement, SP makes a robust link in the psychopathology of anxiety disorders. As SP concentration is found elevated in stressed conditions, several studies have reported that the pharmacological antagonism or genetic depletion of NK-1 receptors results in the anxiolytic response making them a suitable therapeutic target for the treatment of stress and anxiety related disorders.
Collapse
Affiliation(s)
- Kanwal Iftikhar
- Hussain Ebrahim Jamal Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Pharmacology, Faculty of Pharmacy, University of Karachi, Karachi 75270, Pakistan.
| | - Afshan Siddiq
- Department of Pharmacology, Faculty of Pharmacy, University of Karachi, Karachi 75270, Pakistan
| | - Sadia Ghousia Baig
- Department of Pharmacology, Faculty of Pharmacy, University of Karachi, Karachi 75270, Pakistan
| | - Sumbul Zehra
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
3
|
Escalated Alcohol Self-Administration and Sensitivity to Yohimbine-Induced Reinstatement in Alcohol Preferring Rats: Potential Role of Neurokinin-1 Receptors in the Amygdala. Neuroscience 2019; 413:77-85. [PMID: 31242442 DOI: 10.1016/j.neuroscience.2019.06.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/08/2019] [Accepted: 06/15/2019] [Indexed: 12/16/2022]
Abstract
Genetic factors significantly contribute to the risk for developing alcoholism. To study these factors and other associated phenotypes, rodent lines have been developed using selective breeding for high alcohol preference. One of these models, the alcohol preferring (P) rat, has been used in hundreds of preclinical studies over the last few decades. However, very few studies have examined relapse-like behavior in this rat strain. In this study, we used operant self-administration and yohimbine-induced reinstatement models to examine relapse-like behavior in P rats. Our previous work has demonstrated that P rats show increased expression of the neurokinin-1 receptor (NK1R) in the central nucleus of the amygdala (CeA), and this functionally contributes to escalated alcohol consumption in this strain. We hypothesized that P rats would show increased sensitivity to yohimbine-induced reinstatement that is also mediated by NK1R in the CeA. Using Fos staining, site-specific infusion of NK1R antagonist, and viral vector overexpression, we examined the influence of NK1R on the sensitivity to yohimbine-induced reinstatement of alcohol seeking. We found that P rats displayed increased sensitivity to yohimbine-induced reinstatement as well as increased neuronal activation in the CeA after yohimbine injection compared to the control Wistar strain. Intra-CeA infusion of NK1R antagonist attenuates yohimbine-induced reinstatement in P rats. Conversely, upregulation of NK1R within the CeA of Wistar rats increases alcohol consumption and sensitivity to yohimbine-induced reinstatement. These findings suggest that NK1R upregulation in the CeA contributes to multiple alcohol-related phenotypes in the P rat, including alcohol consumption and sensitivity to relapse.
Collapse
|
4
|
Xu Y, Jia J, Xie C, Wu Y, Tu W. Transient Receptor Potential Ankyrin 1 and Substance P Mediate the Development of Gastric Mucosal Lesions in a Water Immersion Restraint Stress Rat Model. Digestion 2018; 97:228-239. [PMID: 29428952 DOI: 10.1159/000484980] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/04/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND Activation of substance P (SP) contributes to the development and maintenance of gastric lesions, but the mechanisms underlying the release of SP and SP-mediated damage to the gastric mucosa remain unknown. Transient receptor potential ankyrin 1 (TRPA1) is expressed in SP-positive neurons in the dorsal root ganglion (DRG) and stomach of rats. We hypothesized that water immersion restraint stress (WIRS) may activate and sensitize TRPA1 in DRG neurons, subsequently inducing the release of SP from DRG and stomach cells, causing the development of acute gastric mucosal lesions (AGML). METHODS Changes in TRPA1 and SP expression in T8-11 DRG sensory neurons and the stomach in an AGML rat model were determined by reverse transcription polymerase chain reaction, western blotting and immunohistochemistry. The SP levels of serum and gastric mucosa were measured by using an enzyme-linked immunosorbent assay (ELISA). Gastric lesions were evaluated by histopathological changes. The TRPA1 antagonist HC-030031 and TRPA1 agonists allyl isothiocyanate were used to verify effect of TRPA1 and SP on AGML. RESULTS SP and TRPA1 in the DRG and stomach were upregulated, and the serum and gastric mucosa levels of SP were increased after WIRS, which are closely associated with AGML. The release of SP was suppressed and AGML were alleviated following a selective TRPA1 antagonist HC-030031. TRPA1 agonists AITC increased release of SP and led to moderate gastric lesions. We confirmed that WIRS induced the release of SP in the DRG, stomach, serum and gastric mucosa, and in a TRPA1-dependent manner. CONCLUSIONS Upregulated SP and TRPA1 in the DRG and stomach and increased serum and gastric mucosa SP levels may contribute to stress-induced AGML. TRPA1 is a potential drug target to reduce stress-induced AGML development in patients with acute critical illnesses. This study may contribute to the discovery of drugs for AGML treatment.
Collapse
Affiliation(s)
- Yan Xu
- Department of anesthesiology, Guangzhou General Hospital of Guangzhou Military Command, The Second Military Medical University, Guangzhou, China.,Department of Anesthesiology, the 173rd Clinical Department of PLA, 421rd Hospital, Huizhou, China
| | - Ji Jia
- Department of anesthesiology, Guangzhou General Hospital of Guangzhou Military Command, The Second Military Medical University, Guangzhou, China
| | - Chuangbo Xie
- Department of anesthesiology, Guangzhou General Hospital of Guangzhou Military Command, The Second Military Medical University, Guangzhou, China
| | - Youping Wu
- Department of anesthesiology, Guangzhou General Hospital of Guangzhou Military Command, The Second Military Medical University, Guangzhou, China
| | - Weifeng Tu
- Department of anesthesiology, Guangzhou General Hospital of Guangzhou Military Command, The Second Military Medical University, Guangzhou, China
| |
Collapse
|
5
|
Pillidge K, Porter AJ, Dudley JA, Tsai YC, Heal DJ, Stanford SC. The behavioural response of mice lacking NK₁ receptors to guanfacine resembles its clinical profile in treatment of ADHD. Br J Pharmacol 2015; 171:4785-96. [PMID: 25074741 PMCID: PMC4209942 DOI: 10.1111/bph.12860] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 07/16/2014] [Accepted: 07/23/2014] [Indexed: 01/15/2023] Open
Abstract
Background and Purpose Mice with functional ablation of substance P-preferring neurokinin-1 receptors (NK1R−/− mice) display behavioural abnormalities resembling those in attention deficit hyperactivity disorder (ADHD). Here, we investigated whether the ADHD treatment, guanfacine, alleviated the hyperactivity and impulsivity/inattention displayed by NK1R−/− mice in the light/dark exploration box (LDEB) and 5-choice serial reaction–time task (5-CSRTT), respectively. Following reports of co-morbid anxiety in ADHD, we also investigated effects of guanfacine on anxiety-like behaviour displayed by NK1R−/− and wild-type (WT) mice in the elevated plus maze (EPM). Experimental Approach Mice were treated with guanfacine (0.1, 0.3 or 1.0 mg·kg−1, i.p.), vehicle or no injection and tested in the 5-CSRTT or the LDEB. Only the lowest dose of guanfacine was used in the EPM assays. Key Results In the 5-CSRTT, a low dose of guanfacine (0.1 mg·kg−1) increased attention in NK1R−/− mice, but not in WT mice. This dose did not affect the total number of trials completed, latencies to respond or locomotor activity in the LDEB. Impulsivity was decreased by the high dose (1.0 mg·kg−1) of guanfacine, but this was evident in both genotypes and is likely to be secondary to a generalized blunting of behaviour. Although the NK1R−/− mice displayed marked anxiety-like behaviour, guanfacine did not affect the behaviour of either genotype in the EPM. Conclusions and Implications This evidence that guanfacine improves attention at a dose that did not affect arousal or emotionality supports our proposal that NK1R−/− mice express an attention deficit resembling that of ADHD patients. Linked Articles This article is part of a themed section on Animal Models in Psychiatry Research. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-20
Collapse
Affiliation(s)
- Katharine Pillidge
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | | | | | | | | | | |
Collapse
|
6
|
Park HJ, Lim EJ, Zhao RJ, Oh SR, Jung JW, Ahn EM, Lee ES, Koo JS, Kim HY, Chang S, Shim HS, Kim KJ, Gwak YS, Yang CH. Effect of the fragrance inhalation of essential oil from Asarum heterotropoides on depression-like behaviors in mice. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:43. [PMID: 25881143 PMCID: PMC4354743 DOI: 10.1186/s12906-015-0571-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/21/2015] [Indexed: 12/16/2022]
Abstract
Background Psychological stressors may cause affective disorders, such as depression and anxiety, by altering expressions of corticotropin releasing factor (CRF), serotonin (5-HT), and tyrosine hydroxylase (TH) in the brain. This study investigated the effects of essential oil from Asarum heterotropoides (EOAH) on depression-like behaviors and brain expressions of CRF, 5-HT, and TH in mice challenged with stress. Methods Male ICR mice received fragrance inhalation of EOAH (0.25, 0.5, 1.0, and 2.0 g) for 3 h in the special cage capped with a filter paper before start of the forced swimming test (FST) and tail suspension test (TST). The duration of immobility was measured for the determination of depression-like behavior in the FST and TST. The selective serotonin reuptake inhibitor fluoxetine as positive control was administered at a dose of 15 mg/kg (i.p.) 30 min before start of behavioral testing. Immunoreactivities of CRF, 5-HT, and TH in the brain were also measured using separate groups of mice subjected to the FST. Results EOAH at higher doses (1.0 and 2.0 g) reduced immobility time in the FST and TST. In addition, EOAH at a dose of 1.0 g significantly reduced the expected increases in the expression of CRF positive neurons in the paraventricular nucleus and the expression of TH positive neurons in the locus coeruleus, and the expected decreases of the 5-HT positive neurons in the dorsal raphe nucleus. Conclusion These results provide strong evidence that EOAH effectively inhibits depression-like behavioral responses, brain CRF and TH expression increases, and brain 5-HT expression decreases in mice challenged with stress.
Collapse
|
7
|
Substance P exacerbates dopaminergic neurodegeneration through neurokinin-1 receptor-independent activation of microglial NADPH oxidase. J Neurosci 2015; 34:12490-503. [PMID: 25209287 DOI: 10.1523/jneurosci.2238-14.2014] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Although dysregulated substance P (SP) has been implicated in the pathophysiology of Parkinson's disease (PD), how SP affects the survival of dopaminergic neurons remains unclear. Here, we found that mice lacking endogenous SP (TAC1(-/-)), but not those deficient in the SP receptor (neurokinin-1 receptor, NK1R), were more resistant to lipopolysaccharide (LPS)- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigral dopaminergic neurodegeneration than wild-type controls, suggesting a NK1R-independent toxic action of SP. In vitro dose-response studies revealed that exogenous SP enhanced LPS- and 1-methyl-4-phenylpyridinium (MPP(+))-induced dopaminergic neurodegeneration in a bimodal manner, peaking at submicromolar and subpicomolar concentrations, but was substantially less effective at intermediate concentrations. Mechanistically, the actions of submicromolar levels of SP were NK1R-dependent, whereas subpicomolar SP-elicited actions required microglial NADPH oxidase (NOX2), the key superoxide-producing enzyme, but not NK1R. Subpicomolar concentrations of SP activated NOX2 by binding to the catalytic subunit gp91(phox) and inducing membrane translocation of the cytosolic subunits p47(phox) and p67(phox). The importance of NOX2 was further corroborated by showing that inhibition or disruption of NOX2 blocked subpicomolar SP-exacerbated neurotoxicity. Together, our findings revealed a critical role of microglial NOX2 in mediating the neuroinflammatory and dopaminergic neurodegenerative effects of SP, which may provide new insights into the pathogenesis of PD.
Collapse
|
8
|
Stanford SC. Psychostimulants, antidepressants and neurokinin-1 receptor antagonists ('motor disinhibitors') have overlapping, but distinct, effects on monoamine transmission: the involvement of L-type Ca2+ channels and implications for the treatment of ADHD. Neuropharmacology 2014; 87:9-18. [PMID: 24727210 DOI: 10.1016/j.neuropharm.2014.03.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/21/2014] [Accepted: 03/31/2014] [Indexed: 11/15/2022]
Abstract
Both psychostimulants and antidepressants target monoamine transporters and, as a consequence, augment monoamine transmission. These two groups of drugs also increase motor activity in preclinical behavioural screens for antidepressants. Substance P-preferring receptor (NK1R) antagonists similarly increase both motor activity in these tests and monoamine transmission in the brain. In this article, the neurochemical and behavioural responses to these three groups of drugs are compared. It becomes evident that NK1R antagonists represent a distinct class of compounds ('motor disinhibitors') that differ substantially from both psychostimulants and antidepressants, especially during states of heightened arousal or stress. Also, all three groups of drugs influence the activation of voltage-gated Ca(v)1.2 and Ca(v)1.3 L-type channels (LTCCs) in the brain, albeit in different ways. This article discusses evidence that points to disruption of these functional interactions between NK1R and LTCCs as a contributing factor in the cognitive and behavioural abnormalities that are prominent features of Attention Deficit Hyperactivity Disorder (ADHD). Arising from this is the interesting possibility that the hyperactivity and impulsivity (as in ADHD) and psychomotor retardation (as in depression) reflect opposite poles of a behavioural continuum. A better understanding of this pharmacological network could help explain why psychostimulants augment motor behaviour during stress (e.g., in preclinical screens for antidepressants) and yet reduce locomotor activity and impulsivity in ADHD. This article is part of the Special Issue entitled 'CNS Stimulants'.
Collapse
Affiliation(s)
- S Clare Stanford
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
9
|
Serafini G, Pompili M, Lindqvist D, Dwivedi Y, Girardi P. The role of neuropeptides in suicidal behavior: a systematic review. BIOMED RESEARCH INTERNATIONAL 2013; 2013:687575. [PMID: 23986909 PMCID: PMC3748411 DOI: 10.1155/2013/687575] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 12/18/2022]
Abstract
There is a growing evidence that neuropeptides may be involved in the pathophysiology of suicidal behavior. A critical review of the literature was conducted to investigate the association between neuropeptides and suicidal behavior. Only articles from peer-reviewed journals were selected for the inclusion in the present review. Twenty-six articles were assessed for eligibility but only 22 studies were included. Most studies have documented an association between suicidality and some neuropeptides such as corticotropin-releasing factor (CRF), VGF, cholecystokinin, substance P, and neuropeptide Y (NPY), which have been demonstrated to act as key neuromodulators of emotional processing. Significant differences in neuropeptides levels have been found in those who have attempted or completed suicide compared with healthy controls or those dying from other causes. Despite cross-sectional associations between neuropeptides levels and suicidal behavior, causality may not be inferred. The implications of the mentioned studies were discussed in this review paper.
Collapse
Affiliation(s)
- Gianluca Serafini
- Department of Neurosciences, Mental Health and Sensory Organs, Suicide Prevention Center, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy.
| | | | | | | | | |
Collapse
|
10
|
Yoshitake S, Ijiri S, Kehr J, Yoshitake T. Concurrent modulation of extracellular levels of noradrenaline and cAMP during stress and by anxiogenic- or anxiolytic-like neuropeptides in the prefrontal cortex of awake rats. Neurochem Int 2012; 62:314-23. [PMID: 23274451 DOI: 10.1016/j.neuint.2012.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 11/06/2012] [Accepted: 12/18/2012] [Indexed: 12/19/2022]
Abstract
The purpose of this study was to examine the effects of stress and the role of locally infused anxiogenic-like neuropeptides galanin, CCK-8, vasopressin, substance P and neurokinin A, and anxiolytic-like peptides NPY, nociceptin/orphanin FQ, somatostatin and neurotensin, on modulation of noradrenaline (NA) and cAMP efflux monitored simultaneously by microdialysis in the medial prefronatal cortex of awake rats. Concentrations of cAMP were determined by a newly developed method based on derivatization of cAMP with 2-chloroacetaldehyde followed by HPLC with fluorescence detection. Local infusion of forskolin (10 and 30 μM) dose-dependently increased the cAMP levels to 417% and 1050% of the control group, respectively. Similarly, local infusion of NA (10 μM) increased the cAMP to the peak level of 168%. A 5-min tail pinch and a 10-min swim stress rapidly increased the NA and cAMP levels to 167% and 203% (NA) and 141% and 161% (cAMP), respectively. Infusion of galanin and CCK-8 (0.5 nmol, and 1.5 nmol/0.5 μl) dose-dependently increased NA to the peak levels of 191% and 179% and cAMP levels to 174% and 166%, respectively. The peak levels following infusions of vasopressin, substance P and neurokinin A were 91%, 135% and 86% for NA and 131%, 83% and 76% for cAMP, respectively. Infusions of anxiolytic-like peptides at highest concentrations significantly increased (NPY, 136%) or decreased (nociceptin, 71%; somatostatin, 86%) the NA levels, whereas neurotensin had no effect. The cAMP levels decreased to 86% (NPY, neurotensin), 78% (nociceptin), somatostatin infusion was without effect. The present findings confirmed a close correlation between the stress-induced increases in prefrontal cortical NA and cAMP levels, as well as, concurrent changes in NA and cAMP levels following infusions of galanin and CCK-8 (increased levels) and nociceptin/orphanin FQ (decreased levels). Infusions of other neuropeptides showed a more complex pattern of NA and cAMP responses.
Collapse
Affiliation(s)
- Shimako Yoshitake
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
11
|
Muto Y, Sakai A, Sakamoto A, Suzuki H. Activation of NK₁ receptors in the locus coeruleus induces analgesia through noradrenergic-mediated descending inhibition in a rat model of neuropathic pain. Br J Pharmacol 2012; 166:1047-57. [PMID: 22188400 DOI: 10.1111/j.1476-5381.2011.01820.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE The locus coeruleus (LC) is a major source of noradrenergic projections to the dorsal spinal cord, and thereby plays an important role in the modulation of nociceptive information. The LC receives inputs from substance P (SP)-containing fibres from other regions, and expresses the NK(1) tachykinin receptor, a functional receptor for SP. In the present study, we investigated the roles of SP in the LC in neuropathic pain. EXPERIMENTAL APPROACH Chronic constriction injury (CCI) of the left sciatic nerve was performed in rats to induce neuropathic pain. After development of neuropathic pain, SP was injected into the LC and the nocifensive behaviours were assessed. The involvement of noradrenergic descending inhibition in SP-induced analgesia was examined by i.t. administration of yohimbine, an α(2) -adrenoceptor antagonist. NK(1) receptor expression in the LC was examined by immunohistochemistry. KEY RESULTS In CCI rats, mechanical allodynia was alleviated by SP injection into the LC. These effects were abolished by prior injection of WIN 51708, an NK(1) receptor antagonist, into the LC or i.t. treatment with yohimbine. NK(1) receptor-like immunoreactivity was observed in noradrenergic neurons throughout the LC in intact rats, and remained unchanged after CCI. CONCLUSION AND IMPLICATIONS SP in the LC exerted analgesic effects on neuropathic pain through NK(1) receptor activation and resulted in facilitation of spinal noradrenergic transmission. Accordingly, manipulation of the SP/NK(1) receptor signalling pathway in the LC may be a promising strategy for effective treatment of neuropathic pain.
Collapse
Affiliation(s)
- Y Muto
- Department of Anesthesiology, Nippon Medical School, Tokyo, Japan
| | | | | | | |
Collapse
|
12
|
Peters EM, Liezmann C, Klapp BF, Kruse J. The neuroimmune connection interferes with tissue regeneration and chronic inflammatory disease in the skin. Ann N Y Acad Sci 2012; 1262:118-26. [DOI: 10.1111/j.1749-6632.2012.06647.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Dittrich L, Heiss JE, Warrier DR, Perez XA, Quik M, Kilduff TS. Cortical nNOS neurons co-express the NK1 receptor and are depolarized by Substance P in multiple mammalian species. Front Neural Circuits 2012; 6:31. [PMID: 22679419 PMCID: PMC3367498 DOI: 10.3389/fncir.2012.00031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 05/06/2012] [Indexed: 11/17/2022] Open
Abstract
We have previously demonstrated that Type I neuronal nitric oxide synthase (nNOS)-expressing neurons are sleep-active in the cortex of mice, rats, and hamsters. These neurons are known to be GABAergic, to express Neuropeptide Y (NPY) and, in rats, to co-express the Substance P (SP) receptor NK1, suggesting a possible role for SP in sleep/wake regulation. To evaluate the degree of co-expression of nNOS and NK1 in the cortex among mammals, we used double immunofluorescence for nNOS and NK1 and determined the anatomical distribution in mouse, rat, and squirrel monkey cortex. Type I nNOS neurons co-expressed NK1 in all three species although the anatomical distribution within the cortex was species-specific. We then performed in vitro patch clamp recordings in cortical neurons in mouse and rat slices using the SP conjugate tetramethylrhodamine-SP (TMR-SP) to identify NK1-expressing cells and evaluated the effects of SP on these neurons. Bath application of SP (0.03–1 μM) resulted in a sustained increase in firing rate of these neurons; depolarization persisted in the presence of tetrodotoxin. These results suggest a conserved role for SP in the regulation of cortical sleep-active neurons in mammals.
Collapse
Affiliation(s)
- Lars Dittrich
- Biosciences Division, Center for Neuroscience, SRI International, Menlo Park CA, USA
| | | | | | | | | | | |
Collapse
|
14
|
Huang HP, Zhu FP, Chen XW, Xu ZQD, Zhang CX, Zhou Z. Physiology of quantal norepinephrine release from somatodendritic sites of neurons in locus coeruleus. Front Mol Neurosci 2012; 5:29. [PMID: 22408604 PMCID: PMC3295224 DOI: 10.3389/fnmol.2012.00029] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 02/20/2012] [Indexed: 12/13/2022] Open
Abstract
Norepinephrine (NE) released from the nerve terminal of locus coeruleus (LC) neurons contributes to about 70% of the total extracellular NE in primates brain. In addition, LC neurons also release NE from somatodendritic sites. Quantal NE release from soma of LC neurons has the characteristics of long latency, nerve activity-dependency, and autoinhibition by α2-adrenergic autoreceptor. The distinct kinetics of stimulus-secretion coupling in somata is regulated by action potential patterns. The physiological significance of soma and dendritic release is to produce negative-feedback and to down-regulate neuronal hyperactivity, which consequently inhibit NE release from axon terminal of LC projecting to many brain areas. Recent discoveries about the LC somatodendritic release may provide new insights into the pathogenesis of clinic disease involving LC-NE system dysfunction, and may help developing remedy targeted to the LC area.
Collapse
Affiliation(s)
- Hong-Ping Huang
- State Key Laboratory of Biomembrane Engineering and the Center for Life Sciences, Institute of Molecular Medicine, Peking University Beijing, China
| | | | | | | | | | | |
Collapse
|
15
|
Tillisch K, Labus J, Nam B, Bueller J, Smith S, Suyenobu B, Siffert J, McKelvy J, Naliboff B, Mayer E. Neurokinin-1-receptor antagonism decreases anxiety and emotional arousal circuit response to noxious visceral distension in women with irritable bowel syndrome: a pilot study. Aliment Pharmacol Ther 2012; 35:360-7. [PMID: 22221140 PMCID: PMC4073664 DOI: 10.1111/j.1365-2036.2011.04958.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Irritable bowel syndrome is characterised by chronic abdominal pain and frequent comorbid anxiety. The substance P ⁄ neurokinin-1 receptor system is implicated in the regulation of both pain and anxiety, suggesting a potential therapeutic target in IBS. AIM To determine whether inhibition of the neurokinin-1 receptor (NK1R) will change pain ratings and brain responses to experimental visceral pain and anxiety symptoms in women with IBS or not. METHODS Rome II positive IBS women were recruited for a double-blind, placebo-controlled, cross-over study of NK1R antagonist AV608. Treatment periods were 3 weeks with a 2-week washout period. Functional MRI during a visceral distension paradigm was performed before first treatment and after treatment blocks. SPM8 was used to compare brain activity during painful and nonpainful visceral stimuli in regions associated with emotional arousal and interoception. Negative affect, anxiety symptoms and pain ratings were assessed. RESULTS Eleven subjects completed the study and eight subjects provided fMRI data. AV608, compared with placebo, was associated with reduced anxiety, negative affect, and pain ratings. During AV608 treatment, the amygdala, hippocampus and anterior cingulate gyrus showed decreased activity during visceral distension. AV608 was also associated with decreases in activity in brain regions associated with interoception (posterior insula, anterior mid-cingulate gyrus). CONCLUSIONS Chronic treatment with AV608 in IBS is associated with improved mood and pain ratings and activity of emotional arousal related brain regions. This suggests that further exploration of NK1R antagonists is warranted in visceral pain disorders, particularly in patients with comorbid anxiety symptoms.
Collapse
Affiliation(s)
- K Tillisch
- Center for Neurobiology of Stress, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Neurokinin-1 receptor deletion modulates behavioural and neurochemical alterations in an animal model of depression. Behav Brain Res 2011; 228:91-8. [PMID: 22155476 DOI: 10.1016/j.bbr.2011.11.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 11/21/2011] [Accepted: 11/26/2011] [Indexed: 12/28/2022]
Abstract
The substance P/NK1 receptor system plays an important role in the regulation of stress and emotional responding and as such had been implicated in the pathophysiology of anxiety and depression. The present study investigated whether alterations in the substance P/NK1 receptor system in brain areas which regulate emotional responding accompany the depressive behavioural phenotype observed in the olfactory bulbectomised (OB) mouse. The effect of NK1 receptor deletion on behavioural responding and monoamine levels in discrete brain regions of the OB model, were also examined. Substance P levels in the frontal cortex and NK1 receptor expression in the amygdala and hippocampus were enhanced following olfactory bulbectomy. Although NK1 receptor knockout (NK1-/-) mice did not exhibit altered behavioural responding in the open field test, noradrenaline levels were enhanced in the frontal cortex, amygdala and hippocampus, as were serotonin levels in the frontal cortex. Locomotor activity and exploratory behaviour were enhanced in wild type OB mice, indicative of a depressive-like phenotype, an effect attenuated in NK1-/- mice. Bulbectomy induced a decrease in noradrenaline and 5-HIAA in the frontal cortex and an increase in serotonin in the amygdala, effects attenuated in OB NK1-/- mice. The present studies indicate that alterations in substance P/NK1 receptor system underlie, at least in part, the behavioural and monoaminergic changes in this animal model of depression.
Collapse
|
17
|
Translational and reverse translational research on the role of stress in drug craving and relapse. Psychopharmacology (Berl) 2011; 218:69-82. [PMID: 21494792 PMCID: PMC3192289 DOI: 10.1007/s00213-011-2263-y] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Accepted: 03/13/2011] [Indexed: 12/14/2022]
Abstract
RATIONALE AND BACKGROUND High relapse rates during abstinence are a pervasive problem in drug addiction treatment. Relapse is often associated with stress exposure, which can provoke a subjective state of drug craving that can also be demonstrated under controlled laboratory conditions. Stress-induced relapse and craving in humans can be modeled in mice, rats, and monkeys using a reinstatement model in which drug-taking behaviors are extinguished and then reinstated by acute exposure to certain stressors. Studies using the reinstatement model in rats have identified the role of several neurotransmitters and brain sites in stress-induced reinstatement of drug seeking, but the degree to which these preclinical findings are relevant to the human condition is largely unknown. OBJECTIVES AND HIGHLIGHTS Here, we address this topic by discussing recent results on the effect of alpha-2 adrenoceptors and substance P-NK1 receptor antagonists on stress-induced reinstatement in mice and rats and stress-induced craving and potentially stress-induced relapse in humans. We also discuss brain sites and circuits involved in stress-induced reinstatement of drug seeking in rats and those activated during stress-induced craving in humans. CONCLUSIONS There is evidence that alpha-2 adrenoceptor agonists and NK1 receptor antagonists decrease stress-induced drug seeking in rats and stress-induced craving in humans. Whether these drugs would also prevent stress-induced drug relapse in humans and whether similar or different brain mechanisms are involved in stress-induced reinstatement in non-humans and stress-induced drug craving and relapse in humans are subjects for future research.
Collapse
|
18
|
A mouse model of high trait anxiety shows reduced heart rate variability that can be reversed by anxiolytic drug treatment. Int J Neuropsychopharmacol 2011; 14:1341-55. [PMID: 21320392 PMCID: PMC3198175 DOI: 10.1017/s1461145711000058] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Increasing evidence suggests that specific physiological measures may serve as biomarkers for successful treatment to alleviate symptoms of pathological anxiety. Studies of autonomic function investigating parameters such as heart rate (HR), HR variability and blood pressure (BP) indicated that HR variability is consistently reduced in anxious patients, whereas HR and BP data show inconsistent results. Therefore, HR and HR variability were measured under various emotionally challenging conditions in a mouse model of high innate anxiety (high anxiety behaviour; HAB) vs. control normal anxiety-like behaviour (NAB) mice. Baseline HR, HR variability and activity did not differ between mouse lines. However, after cued Pavlovian fear conditioning, both elevated tachycardia and increased fear responses were observed in HAB mice compared to NAB mice upon re-exposure to the conditioning stimulus serving as the emotional stressor. When retention of conditioned fear was tested in the home cage, HAB mice again displayed higher fear responses than NAB mice, while the HR responses were similar. Conversely, in both experimental settings HAB mice consistently exhibited reduced HR variability. Repeated administration of the anxiolytic NK1 receptor antagonist L-822429 lowered the conditioned fear response and shifted HR dynamics in HAB mice to a more regular pattern, similar to that in NAB mice. Additional receiver-operating characteristic (ROC) analysis demonstrated the high specificity and sensitivity of HR variability to distinguish between normal and high anxiety trait. These findings indicate that assessment of autonomic response in addition to freezing might be a useful indicator of the efficacy of novel anxiolytic treatments.
Collapse
|
19
|
Distinct behavioral consequences of stress models of depression in the elevated T-maze. Behav Brain Res 2011; 225:590-5. [PMID: 21896290 DOI: 10.1016/j.bbr.2011.08.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 08/19/2011] [Accepted: 08/23/2011] [Indexed: 11/23/2022]
Abstract
Animals exposed to inescapable stress develop behavioral consequences that are similar to symptoms of depression. Therefore, most of the animal models of depression are based on animal exposure to such stressors. The stress-induced behavioral consequences induced by pre-exposure to shock in the learned helplessness model of depression have been proposed to be a consequence of excessive activation of fear/anxiety related structures which would lead to inhibitory avoidance and impaired escape performance. However, this hypothesis has not yet been investigated in a test that is able to generate these different defense strategies in a same rat, such as the elevated T-maze (ETM). Therefore, the objective of the present study was to test the effects of footshock pre-exposure (inescapable-IS or escapable-ES) on both inhibitory avoidance and escape responses of rats submitted to the ETM 24 h later. Moreover, since it is not known whether these effects would be a common feature to other inescapable stressors used as animal models of depression, we have also investigated the behavior of rats previously exposed to forced swimming or restraint. All stressed groups displayed anxiogenic-like behavior when compared to control groups (non-stressed), evidenced by facilitated acquisition of inhibitory avoidance in the ETM. However, only rats exposed to IS showed impaired escape performance. These results support the hypothesis that the facilitated inhibitory avoidance is a common behavioral consequence of distinct stressful stimuli. However, the impaired escape response is likely to be particularly involved in the mediation of the helpless behavior observed in rats pre-exposed to IS. The neurobiological mechanisms involved in these responses are discussed in the manuscript.
Collapse
|
20
|
Pavlovic S, Liezmann C, Blois SM, Joachim R, Kruse J, Romani N, Klapp BF, Peters EMJ. Substance P Is a Key Mediator of Stress-Induced Protection from Allergic Sensitization via Modified Antigen Presentation. THE JOURNAL OF IMMUNOLOGY 2010; 186:848-55. [DOI: 10.4049/jimmunol.0903878] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
21
|
Heilig M, Thorsell A, Sommer WH, Hansson AC, Ramchandani VA, George DT, Hommer D, Barr CS. Translating the neuroscience of alcoholism into clinical treatments: from blocking the buzz to curing the blues. Neurosci Biobehav Rev 2010; 35:334-44. [PMID: 19941895 PMCID: PMC2891917 DOI: 10.1016/j.neubiorev.2009.11.018] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 11/16/2009] [Accepted: 11/18/2009] [Indexed: 11/16/2022]
Abstract
Understanding the pathophysiology of addictive disorders is critical for development of new treatments. A major focus of addiction research has for a long time been on systems that mediate acute positively reinforcing effects of addictive drugs, most prominently the mesolimbic dopaminergic (DA) system and its connections. This research line has been successful in shedding light on the physiology of both natural and drug reward, but has not led to therapeutic breakthroughs. The role of classical reward systems is perhaps least clear in alcohol addiction. Here, recent work is summarized that points to some clinically important conclusions. First, important pharmacogenetic differences exist with regard to positively reinforcing effects of alcohol and the ability of this drug to activate classical reward pathways. This offers an opportunity for personalized treatment approaches in alcoholism. Second, brain stress and fear systems become pathologically activated in later stages of alcoholism and their activation is a major influence in escalation of alcohol intake, sensitization of stress responses, and susceptibility to relapse. These findings offer a new category of treatment mechanisms. Corticotropin-releasing hormone (CRH) signaling through CRH1 receptors is a major candidate target in this category, but recent data indicate that antagonists for substance P (SP) neurokinin 1 (NK1) receptors may have a similar potential.
Collapse
Affiliation(s)
- Markus Heilig
- Laboratory of Clinical and Translational Studies, National Inst. on Alcohol Abuse and Alcoholism, National Inst of Health, Bethesda, MD, United States.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Millan MJ, Dekeyne A, Gobert A, Mannoury la Cour C, Brocco M, Rivet JM, Di Cara B, Lejeune F, Cremers TI, Flik G, de Jong TR, Olivier B, de Nanteuil G. S41744, a dual neurokinin (NK)1 receptor antagonist and serotonin (5-HT) reuptake inhibitor with potential antidepressant properties: a comparison to aprepitant (MK869) and paroxetine. Eur Neuropsychopharmacol 2010; 20:599-621. [PMID: 20483567 DOI: 10.1016/j.euroneuro.2010.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 03/23/2010] [Accepted: 04/09/2010] [Indexed: 12/19/2022]
Abstract
Though neurokinin(1) (NK(1)) receptors are implicated in depressed states and their treatment, selective antagonists have disappointed in clinical trials. Accordingly, we designed a novel ligand, S41744 (2-piperazin-1-yl-indan-2-carboxylic-acid-(3-chloro-5-fluoro-benzyl)-methyl-amide), which both blocks NK(1) receptors and interferes with serotonin (5-HT) reuptake. S41744 mimicked the selective antagonist aprepitant in binding human (h)NK(1) receptors and in antagonising Substance-P-mediated Extracellular-Regulated-Kinase phosphorylation (pK(B), 7.7). Further, it dose-dependently (0.63-40.0 mg/kg, i.p.) displaced ex vivo [(3)H]-[Sar(9),Met(O(2))(11)]-Substance P binding to gerbil striatum, attenuated formalin-induced hind-paw licking in gerbils, and antagonised locomotion induced by i.c.v. administration of the NK(1) agonist GR73632 to guinea pigs. Like paroxetine, S41744 recognised h5-HT transporters, reduced synaptosomal uptake of 5-HT (pK(B), 7.9), and dose-dependently (0.63-10.0 mg/kg) elevated dialysis levels of 5-HT in the hippocampus and frontal cortex of freely-moving guinea pigs. Further, S41744 increased extracellular levels of 5-HT in frontal cortex and hippocampus of rats to a greater extent than paroxetine, and its inhibitory influence upon serotonergic perikarya was blunted relative to its affinity for 5-HT transporters. S41744 more potently blocked stress-induced vocalizations in guinea pigs than aprepitant and paroxetine, and it was active in forced-swim and marble-burying procedures of putative antidepressant properties in mice. While aprepitant displayed anxiolytic actions in stress-induced foot-tapping and social interaction tests in gerbils, paroxetine was anxiogenic and S41744 "neutral", reflecting balanced NK(1) antagonism and suppression of 5-HT reuptake. Moreover, S41744 shared anxiolytic actions of aprepitant in the rat Vogel Conflict Test. In conclusion, S41744 is an innovative NK(1) antagonist/5-HT reuptake inhibitor justifying further evaluation for treatment of stress-related disorders.
Collapse
Affiliation(s)
- Mark J Millan
- Psychopharmacology Department, Institut de Recherches Servier, Centre de Recherches de Croissy, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Alldredge B. Pathogenic involvement of neuropeptides in anxiety and depression. Neuropeptides 2010; 44:215-24. [PMID: 20096456 DOI: 10.1016/j.npep.2009.12.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 11/15/2009] [Accepted: 12/15/2009] [Indexed: 12/11/2022]
Abstract
Anxiety and depression are highly prevalent disorders of mood posing significant challenges to individuals and society. Current evidence indicates no single neurobiological determinant underpins these conditions and an integrated approach in both research and treatment is expedient. Basic, behavioral, and clinical science indicates various stress-responsive neuropeptides in the neuroendocrine, autonomic, and behavioral pathophysiology of stress-related disorders including anxiety and depression. This review draws on recent research to capture the consensus and implications of neuropeptide research concerning the pathogenesis of anxiety and depression.
Collapse
Affiliation(s)
- Brett Alldredge
- Kansas City University of Medicine and Bioscience, College of Medicine, 1705 Independence Ave., Kansas City, United States.
| |
Collapse
|
24
|
Culman J, Das G, Ohlendorf C, Haass M, Maser-Gluth C, Zuhayra M, Zhao Y, Itoi K. Blockade of tachykinin NK1/NK2 receptors in the brain attenuates the activation of corticotrophin-releasing hormone neurones in the hypothalamic paraventricular nucleus and the sympathoadrenal and pituitary-adrenal responses to formalin-induced pain in the rat. J Neuroendocrinol 2010; 22:467-76. [PMID: 20210847 DOI: 10.1111/j.1365-2826.2010.01987.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Evidence from pharmacological studies has implicated substance P (SP), a natural ligand of tachykinin NK(1) receptors which can also interact with NK(2) receptors, in the generation of pressor and tachycardic responses to stress. Using selective blockade of brain NK(1) and NK(2) receptors, we tested in conscious rats the hypothesis that SP initiates, within the neuronal brain circuits, the sympathoadrenal, hypothalamic-pituitary-adrenal (HPA) and behavioural responses to noxious stimuli. Formalin injected s.c. through a chronically implanted catheter in the area of the lower leg was used as a pain stimulus. Rats were pretreated i.c.v. with vehicle or the selective, nonpeptide antagonists of tachykinin NK(1) and NK(2) receptors, RP 67580 and SR 48968, respectively. Ten minutes thereafter, formalin was injected s.c. and the cardiovascular responses were recorded, plasma concentrations of catecholamines, adrenocorticotrophic hormone (ACTH) and corticosterone were determined and the expression of the inducible transcription factor c-Fos in the paraventricular (PVN) and supraoptic nuclei was detected to identify neurones which were activated during pain stimulation. Blockade of NK(1) and NK(2) receptors attenuated the formalin-induced increases in mean arterial pressure and heart rate, adrenaline and ACTH concentrations in plasma, and completely abolished the pain-induced c-Fos expression in corticotrophin-releasing hormone neurones localised in the parvocellular division of the PVN. The results obtained provide pharmacological evidence that tachykinins, most probably SP, act as mediators within the neuronal circuits linked to the initiation and control of the cardiovascular, sympathoadrenal, HPA and behavioural responses to pain stimuli and provide an excitatory input to corticotrophin-releasing hormone neurones in the PVN to activate the HPA axis. Our data demonstrating the inhibition of the complex response pattern to noxious stimuli and stress are consistent with the proposed anxiolytic and antidepressant activity of NK(1) and NK(2) receptor antagonists.
Collapse
Affiliation(s)
- J Culman
- Institute of Experimental and Clinical Pharmacology, University Hospital of Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Thorsell A, Schank JR, Singley E, Hunt SP, Heilig M. Neurokinin-1 receptors (NK1R:s), alcohol consumption, and alcohol reward in mice. Psychopharmacology (Berl) 2010; 209:103-11. [PMID: 20112009 DOI: 10.1007/s00213-010-1775-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 12/31/2009] [Indexed: 01/13/2023]
Abstract
RATIONALE Reduced voluntary alcohol consumption was recently found in neurokinin-1 receptor (NK1R)-deficient (KO) mice. It remains unknown whether this reflects developmental effects or direct regulation of alcohol consumption by NK1R:s, and whether the reduced consumption reflects motivational effects. OBJECTIVE The objective of this study is to obtain an expanded preclinical validation of NK1R antagonism as a candidate therapeutic mechanism in alcohol use disorders. METHODS The NK1R antagonist L-703,606 and NK1R KO mice were used in models that assess alcohol-related behaviors. RESULTS L-703,606 (3-10 mg/kg i.p.) dose-dependently suppressed alcohol intake in WT C57BL/6 mice under two-bottle free choice conditions but was ineffective in NK1R KO:s, demonstrating the receptor specificity of the effect. Alcohol reward, measured as conditioned place preference for alcohol, was reduced by NK1R receptor deletion in a gene dose-dependent manner. In a model where escalation of intake is induced by repeated cycles of deprivation and access, escalation was seen in WT mice, but not in KO mice. Among behavioral phenotypes previously reported for NK1R mice on a mixed background, an analgesic-like phenotype was maintained on the C57BL/6 background used here, while KO:s and WT:s did not differ in anxiety- and depression-related behaviors. CONCLUSIONS Acute blockade of NK1R:s mimics the effects of NKR1 gene deletion on alcohol consumption, supporting a direct rather than developmental role of the receptor in regulation of alcohol intake. Inactivation of NK1R:s critically modulates alcohol reward and escalation, two key characteristics of addiction. These data provide critical support for NK1R antagonism as a candidate mechanism for treatment of alcoholism.
Collapse
Affiliation(s)
- Annika Thorsell
- The Laboratory of Clinical and Translational Studies, National Institute On Alcohol Abuse and Alcoholism, 10 Center Drive, 10-CRC/1-5330, Bethesda, MD 20892-1108, USA
| | | | | | | | | |
Collapse
|
26
|
Yan TC, Hunt SP, Stanford SC. Behavioural and neurochemical abnormalities in mice lacking functional tachykinin-1 (NK1) receptors: A model of attention deficit hyperactivity disorder. Neuropharmacology 2009; 57:627-35. [DOI: 10.1016/j.neuropharm.2009.08.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 08/12/2009] [Accepted: 08/13/2009] [Indexed: 01/23/2023]
|
27
|
Roux JC, Villard L. Biogenic amines in Rett syndrome: the usual suspects. Behav Genet 2009; 40:59-75. [PMID: 19851857 DOI: 10.1007/s10519-009-9303-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 10/07/2009] [Indexed: 12/25/2022]
Abstract
Rett syndrome (RTT) is a severe postnatal neurological disorder caused by mutations in the methyl-CpG binding protein 2 (MECP2) gene. In affected children, most biological parameters, including brain structure, are normal (although acquired microcephaly is usually present). However, in recent years, a deficit in bioaminergic metabolism has been identified at the cellular and molecular levels, in more than 200 patients. Recently available transgenic mouse strains with a defective Mecp2 gene also show abnormalities, strongly suggesting that there is a direct link between the function of the MECP2 protein and the metabolism of biogenic amines. Biogenic amines appear to have an important role in the pathophysiology of Rett syndrome, for several reasons. Firstly, biogenic amines modulate a large number of autonomic and cognitive functions. Secondly, many of these functions are affected in RTT patients. Thirdly, biogenic amines are the only neurotransmitters that have repeatedly been found to be altered in RTT patients. Importantly, pharmacological interventions can be envisaged to try to counteract the deficits observed. Here, we review the available human and mouse data and present how they have been and could be used in the development of pharmacological treatments for children affected by the syndrome. Given our current knowledge and the tools available, modulating biogenic amine metabolism may prove to be the most promising strategy for improving the life quality of Rett syndrome patients in the short term.
Collapse
|
28
|
Gobert A, Brocco M, Dekeyne A, Di Cara B, Bouchez G, Lejeune F, Gannon RL, Millan MJ. Neurokinin1 antagonists potentiate antidepressant properties of serotonin reuptake inhibitors, yet blunt their anxiogenic actions: a neurochemical, electrophysiological, and behavioral characterization. Neuropsychopharmacology 2009; 34:1039-56. [PMID: 18830239 DOI: 10.1038/npp.2008.176] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Though neurokinin(1) (NK(1)) receptor antagonists are active in experimental models of depression, clinical efficacy has proven disappointing. This encourages interest in association of NK(1) receptor blockade with inhibition of serotonin (5-HT) reuptake. The selective NK(1) antagonist, GR205171, dose-dependently enhanced citalopram-induced elevations of extracellular levels of 5-HT in frontal cortex, an action expressed stereospecifically vs its less active distomer, GR226206. Further, increases in 5-HT levels in dorsal hippocampus, basolateral amygdala, nucleus accumbens, and striatum were likewise potentiated, and GR205171 similarly facilitated the influence of fluoxetine upon levels of 5-HT, as well as dopamine and noradrenaline. In parallel electrophysiological studies, the inhibitory influence of citalopram and fluoxetine upon raphe-localized serotonergic neurones was stereospecifically blunted by GR205171. Antidepressant actions of citalopram in a forced-swim test in mice were stereospecifically potentiated by GR205171, and it also enhanced attenuation by citalopram of stress-related ultrasonic vocalizations in rats. Further, GR205171 and citalopram additively abrogated the advance in circadian rhythms provoked by exposure to light in hamsters. By contrast, GR205171 stereospecifically blocked anxiogenic actions of citalopram in social interaction procedures in rats and gerbils, and stereospecifically abolished facilitation of fear-induced foot tapping by fluoxetine in gerbils. By analogy to GR205171, a further NK(1) antagonist, RP67580, enhanced the influence of citalopram upon frontocortical levels of 5-HT and potentiated its actions in the forced swim test. In conclusion, NK(1)receptor blockade differentially modulates functional actions of SSRIs: antidepressant properties are reinforced, whereas anxiogenic effects are attenuated. Combined NK(1) receptor antagonism/5-HT reuptake inhibition may offer advantages in the management of depressed and anxious states.
Collapse
Affiliation(s)
- Alain Gobert
- Psychopharmacology Department, Institut de Recherches Servier, Centre de Recherches de Croissy, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Ebner K, Muigg P, Singewald G, Singewald N. Substance P in Stress and Anxiety. Ann N Y Acad Sci 2008; 1144:61-73. [DOI: 10.1196/annals.1418.018] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
30
|
Singewald N, Chicchi GG, Thurner CC, Tsao KL, Spetea M, Schmidhammer H, Sreepathi HK, Ferraguti F, Singewald GM, Ebner K. Modulation of basal and stress-induced amygdaloid substance P release by the potent and selective NK1 receptor antagonist L-822429. J Neurochem 2008; 106:2476-88. [PMID: 18673452 DOI: 10.1111/j.1471-4159.2008.05596.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
It has been shown that anxiety and stress responses are modulated by substance P (SP) released within the amygdala. However, there is an important gap in our knowledge concerning the mechanisms regulating extracellular SP in this brain region. To study a possible self-regulating role of SP, we used a selective neurokinin-1 (NK1) receptor antagonist to investigate whether blockade of NK1 receptors results in altered basal and/or stress-evoked SP release in the medial amygdala (MeA), a critical brain area for a functional involvement of SP transmission in enhanced anxiety responses induced by stressor exposure. In vitro binding and functional receptor assays revealed that L-822429 represents a potent and selective rat NK1 receptor antagonist. Intra-amygdaloid administration of L-822429 via inverse microdialysis enhanced basal, but attenuated swim stress-induced SP release, while the low-affinity enantiomer of L-822429 had no effect. Using light and electron microscopy, synaptic contacts between SP-containing fibres and dendrites expressing NK1 receptors was demonstrated in the medial amygdala. Our findings suggest self-regulatory capacity of SP-mediated neurotransmission that differs in the effect on basal and stress-induced release of SP. Under basal conditions endogenous SP can serve as a signal that tonically inhibits its own release via a NK1 receptor-mediated negative feedback action, while under stress conditions SP release is further facilitated by activation of NK1 receptors, likely leading to high local levels of SP and activation of receptors to which SP binds with lower affinity.
Collapse
Affiliation(s)
- Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|