1
|
Farooqui AA, Farooqui T. Phospholipids, Sphingolipids, and Cholesterol-Derived Lipid Mediators and Their Role in Neurological Disorders. Int J Mol Sci 2024; 25:10672. [PMID: 39409002 PMCID: PMC11476704 DOI: 10.3390/ijms251910672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Neural membranes are composed of phospholipids, sphingolipids, cholesterol, and proteins. In response to cell stimulation or injury, the metabolism of lipids generates various lipid mediators, which perform many cellular functions. Thus, phospholipids release arachidonic acid or docosahexaenoic acid from the sn-2 position of the glycerol moiety by the action of phospholipases A2. Arachidonic acid is a precursor for prostaglandins, leukotrienes, thromboxane, and lipoxins. Among these mediators, prostaglandins, leukotrienes, and thromboxane produce neuroinflammation. In contrast, lipoxins produce anti-inflammatory and pro-resolving effects. Prostaglandins, leukotrienes, and thromboxane are also involved in cell proliferation, differentiation, blood clotting, and blood vessel permeability. In contrast, DHA-derived lipid mediators are called specialized pro-resolving lipid metabolites (SPMs). They include resolvins, protectins, and maresins. These mediators regulate immune function by producing anti-inflammatory, pro-resolving, and cell protective effects. Sphingolipid-derived metabolites are ceramide, ceramide1-phosphate, sphingosine, and sphingosine 1 phosphate. They regulate many cellular processes, including enzyme activities, cell migration and adhesion, inflammation, and immunity. Cholesterol is metabolized into hydroxycholesterols and 7-ketocholesterol, which not only disrupts membrane fluidity, but also promotes inflammation, oxidative stress, and apoptosis. These processes lead to cellular damage.
Collapse
Affiliation(s)
| | - Tahira Farooqui
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
2
|
Wang W(J, Snider N. Discovery and Potential Utility of a Novel Non-Invasive Ocular Delivery Platform. Pharmaceutics 2023; 15:2344. [PMID: 37765311 PMCID: PMC10535219 DOI: 10.3390/pharmaceutics15092344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
To this day, the use of oily eye drops and non-invasive retinal delivery remain a major challenge. Oily eye drops usually cause ocular irritation and interfere with the normal functioning of the eye, while ocular injections for retinal drug delivery cause significant adverse effects and a high burden on the healthcare system. Here, the authors report a novel topical non-invasive ocular delivery platform (NIODP) through the periorbital skin for high-efficiency anterior and posterior ocular delivery in a non-human primate model (NHP). A single dose of about 7 mg JV-MD2 (omega 3 DHA) was delivered via the NIODP and reached the retina at a Cmax of 111 µg/g and the cornea at a Cmax of 66 µg/g. The NIODP also delivered JV-DE1, an anti-inflammatory agent in development for dry eye diseases, as efficiently as eye drops did to the anterior segments of the NHP. The topical NIODP seems to transport drug candidates through the corneal pathway to the anterior and via the conjunctiva/sclera pathway to the posterior segments of the eye. The novel NIODP method has the potential to reshape the landscape of ocular drug delivery. This is especially the case for oily eye drops and retinal delivery, where the success of the treatment lies in the ocular tolerability and bioavailability of drugs in the target tissue.
Collapse
|
3
|
Lv H, Jia S, Sun Y, Pang M, Lv E, Li X, Meng Q, Wang Y. Else_BRB_110660Docosahexaenoic acid promotes M2 microglia phenotype via activating PPARγ-mediated ERK/AKT pathway against cerebral ischemia-reperfusion injury. Brain Res Bull 2023; 199:110660. [PMID: 37149267 DOI: 10.1016/j.brainresbull.2023.110660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
In ischemia-reperfusion stroke, microglia play a dual role in brain injury as well as brain repair, and promoting their switch from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 phenotype is considered to be a potential therapeutic strategy. Docosahexaenoic acid (DHA) is an essential long-chain omega-3 polyunsaturated fatty acid that exhibits potent anti-inflammatory properties in the acute phase of ischemic stroke, but its effect on microglia polarization is unknown. Thus, the objective of this study was to investigate the neuroprotective effects of DHA on rat brain following ischemia-reperfusion injury, and to investigate the mechanism by which DHA regulates microglia polarization. We administered DHA 5mg/kg intraperitoneally daily for 3 d following a transient middle cerebral artery occlusion reperfusion model in rats. The protective effects of DHA on cerebral ischemia-reperfusion injury were detected by TTC staining, HE staining, Nissler staining, and TUNEL staining. Quantitative real-time PCR, immunofluorescence, western blot, and enzyme-linked immunosorbent assay were used to detect the expression of M1 and M2 microglia-associated markers and PPARγ-mediated ERK/AKT signaling pathway proteins. We found that DHA significantly improved brain injury by decreasing the expression of the M1 phenotypic marker (iNOS, CD16) and increasing the expression of the M2 phenotypic marker (Arg-1, CD206). DHA also increased the expression of peroxisome proliferator-activated receptor gamma (PPARγ) mRNA and protein, increased the expression of the pathway protein AKT, and decreased the expression of ERK1/2. In addition, DHA promoted the expression of anti-inflammatory factor IL-10 and decreased the expression of pro-inflammatory factors TNF-α and IL-1β. However, the PPARγ antagonist GW9662 greatly blocked these beneficial effects. These results suggest that DHA may activate PPARγ to inhibit ERK and activate AKT signaling pathways to regulate microglia polarization, thereby reducing neuroinflammation and promoting neurological recovery to alleviate cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Huijing Lv
- School of Nursing, Wei fang Medical University, Weifang, Shandong, China
| | - Shuai Jia
- Department II of Neurology, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Yanan Sun
- School of Nursing, Wei fang Medical University, Weifang, Shandong, China
| | - Meng Pang
- Department II of Neurology, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - E Lv
- Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong, China
| | - Xiangling Li
- Department of Internal Medicine, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Qinghui Meng
- School of Nursing, Wei fang Medical University, Weifang, Shandong, China.
| | - Yanqiang Wang
- Department II of Neurology, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China.
| |
Collapse
|
4
|
Sahin C, Magomedova L, Ferreira TAM, Liu J, Tiefenbach J, Alves PS, Queiroz FJG, Oliveira ASD, Bhattacharyya M, Grouleff J, Nogueira PCN, Silveira ER, Moreira DC, Leite JRSDA, Brand GD, Uehling D, Poda G, Krause H, Cummins CL, Romeiro LAS. Phenolic Lipids Derived from Cashew Nut Shell Liquid to Treat Metabolic Diseases. J Med Chem 2022; 65:1961-1978. [PMID: 35089724 DOI: 10.1021/acs.jmedchem.1c01542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metabolic diseases are increasing at staggering rates globally. The peroxisome proliferator-activated receptors (PPARα/γ/δ) are fatty acid sensors that help mitigate imbalances between energy uptake and utilization. Herein, we report compounds derived from phenolic lipids present in cashew nut shell liquid (CNSL), an abundant waste byproduct, in an effort to create effective, accessible, and sustainable drugs. Derivatives of anacardic acid and cardanol were tested for PPAR activity in HEK293 cell co-transfection assays, primary hepatocytes, and 3T3-L1 adipocytes. In vivo studies using PPAR-expressing zebrafish embryos identified CNSL derivatives with varying tissue-specific activities. LDT409 (23) is an analogue of cardanol with partial agonist activity for PPARα and PPARγ. Pharmacokinetic profiling showed that 23 is orally bioavailable with a half-life of 4 h in mice. CNSL derivatives represent a sustainable source of selective PPAR modulators with balanced intermediate affinities (EC50 ∼ 100 nM to 10 μM) that provide distinct and favorable gene activation profiles for the treatment of diabetes and obesity.
Collapse
Affiliation(s)
- Cigdem Sahin
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Lilia Magomedova
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Thais A M Ferreira
- Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, DF 71910-900, Brazil
| | - Jiabao Liu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Jens Tiefenbach
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Priscilla S Alves
- Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, DF 71910-900, Brazil
| | - Fellipe J G Queiroz
- Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, DF 71910-900, Brazil
| | - Andressa S de Oliveira
- Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, DF 71910-900, Brazil
| | - Mousumi Bhattacharyya
- Ontario Institute for Cancer Research, MaRS Centre, Toronto, Ontario M5G 0A3, Canada
| | - Julie Grouleff
- Ontario Institute for Cancer Research, MaRS Centre, Toronto, Ontario M5G 0A3, Canada
| | - Patrícia C N Nogueira
- CENAUREMN, Federal University of Ceará, Campus do Pici, Fortaleza, CE 60020-181, Brazil
| | - Edilberto R Silveira
- CENAUREMN, Federal University of Ceará, Campus do Pici, Fortaleza, CE 60020-181, Brazil
| | - Daniel C Moreira
- Faculty of Medicine, University of Brasilia, Brasilia, DF 71910-900, Brazil
| | | | - Guilherme D Brand
- Chemistry Institute, University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF 70910-900, Brazil
| | - David Uehling
- Ontario Institute for Cancer Research, MaRS Centre, Toronto, Ontario M5G 0A3, Canada
| | - Gennady Poda
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada.,Ontario Institute for Cancer Research, MaRS Centre, Toronto, Ontario M5G 0A3, Canada
| | - Henry Krause
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Luiz A S Romeiro
- Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, DF 71910-900, Brazil
| |
Collapse
|
5
|
DHA and Its Metabolites Have a Protective Role against Methylmercury-Induced Neurotoxicity in Mouse Primary Neuron and SH-SY5Y Cells. Int J Mol Sci 2021; 22:ijms22063213. [PMID: 33809931 PMCID: PMC8004243 DOI: 10.3390/ijms22063213] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
The consumption of fish now involves a risk of methylmercury (MeHg) exposure but also provides the benefit of ω-3 polyunsaturated fatty acids (ω-3 PUFAs) such as docosahexaenoic acid (DHA). Some epidemiological studies have suggested that the intake of DHA can alleviate the neurotoxicity of MeHg, but the underlying mechanism is not known. Herein, we observed that pretreatment with 0.1–1 µM DHA suppressed MeHg-induced cytotoxicity in human neuroblastoma (SH-SY5Y) cells and mouse primary neuronal cells. These effects of DHA were canceled in the presence of the retinoid X receptor (RXR) antagonist UVI3003. An RXR agonist, bexarotene, suppressed the cytotoxicity of MeHg. DHA also suppressed the MeHg-induced production of reactive oxygen species (ROS) via an induction of antioxidant genes (catalase and SOD1). Pretreatment with DHA did not change the incorporation of MeHg. We showed previously that in the brain, the intake of DHA increased the level of 19,20-DHDP, which is the metabolite produced by cytochrome P450 and soluble epoxide hydrolase from DHA. In the present study, we observed that 19,20-DHDP also suppressed neurotoxicity from MeHg. These results indicate that DHA and its metabolites have a protective role in MeHg-induced neurotoxicity.
Collapse
|
6
|
Gellrich L, Heitel P, Heering J, Kilu W, Pollinger J, Goebel T, Kahnt A, Arifi S, Pogoda W, Paulke A, Steinhilber D, Proschak E, Wurglics M, Schubert-Zsilavecz M, Chaikuad A, Knapp S, Bischoff I, Fürst R, Merk D. l-Thyroxin and the Nonclassical Thyroid Hormone TETRAC Are Potent Activators of PPARγ. J Med Chem 2020; 63:6727-6740. [DOI: 10.1021/acs.jmedchem.9b02150] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Leonie Gellrich
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Pascal Heitel
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Jan Heering
- Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Whitney Kilu
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Julius Pollinger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Tamara Goebel
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Astrid Kahnt
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Silvia Arifi
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Werner Pogoda
- Department of Forensic Toxicology, Institute of Forensic Medicine, Goethe University Frankfurt, Kennedyallee 104, D-60596 Frankfurt, Germany
| | - Alexander Paulke
- Department of Forensic Toxicology, Institute of Forensic Medicine, Goethe University Frankfurt, Kennedyallee 104, D-60596 Frankfurt, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
- Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
- Branch for Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Mario Wurglics
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Manfred Schubert-Zsilavecz
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Apirat Chaikuad
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 15, D-60438 Frankfurt, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 15, D-60438 Frankfurt, Germany
| | - Iris Bischoff
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Robert Fürst
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| |
Collapse
|
7
|
Yamamoto K. Discovery of Nuclear Receptor Ligands and Elucidation of Their Mechanisms of Action. Chem Pharm Bull (Tokyo) 2019; 67:609-619. [DOI: 10.1248/cpb.c19-00131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Keiko Yamamoto
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University
| |
Collapse
|
8
|
Krężel W, Rühl R, de Lera AR. Alternative retinoid X receptor (RXR) ligands. Mol Cell Endocrinol 2019; 491:110436. [PMID: 31026478 DOI: 10.1016/j.mce.2019.04.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/06/2019] [Accepted: 04/22/2019] [Indexed: 12/15/2022]
Abstract
Retinoid X receptors (RXRs) control a wide variety of functions by virtue of their dimerization with other nuclear hormone receptors (NRs), contributing thereby to activities of different signaling pathways. We review known RXR ligands as transcriptional modulators of specific RXR-dimers and the associated biological processes. We also discuss the physiological relevance of such ligands, which remains frequently a matter of debate and which at present is best met by member(s) of a novel family of retinoids, postulated as Vitamin A5. Through comparison with other natural, but also with synthetic ligands, we discuss high diversity in the modes of ligand binding to RXRs resulting in agonistic or antagonistic profiles and selectivity towards specific subtypes of permissive heterodimers. Despite such diversity, direct ligand binding to the ligand binding pocket resulting in agonistic activity was preferentially preserved in the course of animal evolution pointing to its functional relevance, and potential for existence of other, species-specific endogenous RXR ligands sharing the same mode of function.
Collapse
Affiliation(s)
- Wojciech Krężel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U 1258, Illkirch, France; Université de Strasbourg, Illkirch, France.
| | - Ralph Rühl
- Paprika Bioanalytics BT, Debrecen, Hungary
| | - Angel R de Lera
- Departamento de Química Orgánica, Facultade de Química, Lagoas-Marcosende, 36310, Vigo, Spain
| |
Collapse
|
9
|
Furse S, Koulman A. The Lipid and Glyceride Profiles of Infant Formula Differ by Manufacturer, Region and Date Sold. Nutrients 2019; 11:E1122. [PMID: 31137537 PMCID: PMC6567151 DOI: 10.3390/nu11051122] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 12/26/2022] Open
Abstract
We tested the hypothesis that the lipid composition of infant formula is consistent between manufacturers, countries and target demographic. We developed techniques to profile the lipid and glyceride fraction of milk and formula in a high throughput fashion. Formula from principal brands in the UK (2017-2019; bovine-, caprine-, soya-based), the Netherlands (2018; bovine-based) and South Africa (2018; bovine-based) were profiled along with fresh British animal and soya milk and skimmed milk powder. We found that the lipid and glyceride composition of infant formula differed by region, manufacturer and date of manufacture. The formulations within some brands, aimed at different target age ranges, differed considerably where others were similar across the range. Soya lecithin and milk lipids had characteristic phospholipid profiles. Particular sources of fat, such as coconut oil, were also easy to distinguish. Docosahexaenoic acid is typically found in triglycerides rather than phospholipids in formula. The variety by region, manufacturer, date of manufacture and sub-type for target demographics lead to an array of lipid profiles in formula. This makes it impossible to predict its molecular profile. Without detailed profile of the formula fed to infants, it is difficult to characterise the relationship between infant nutrition and their growth and development.
Collapse
Affiliation(s)
- Samuel Furse
- Core Metabolomics and Lipidomics Laboratory, Wellcome Trust-MRL Institute of Metabolic Science, University of Cambridge, Level 4 Addenbrooke's Treatment Centre, Keith Day Road, Cambridge CB2 0QQ, UK.
| | - Albert Koulman
- Core Metabolomics and Lipidomics Laboratory, Wellcome Trust-MRL Institute of Metabolic Science, University of Cambridge, Level 4 Addenbrooke's Treatment Centre, Keith Day Road, Cambridge CB2 0QQ, UK.
| |
Collapse
|
10
|
Jin A, Shi XC, Liu Y, Sun J, Ji H. Docosahexaenoic acid induces PPARγ-dependent preadipocytes apoptosis in grass carp Ctenopharyngodon idella. Gen Comp Endocrinol 2018; 266:211-219. [PMID: 29782840 DOI: 10.1016/j.ygcen.2018.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 03/26/2018] [Accepted: 05/17/2018] [Indexed: 01/04/2023]
Abstract
Our previous study showed that docosahexaenoic acid (DHA) plays an important role in decreasing lipid accumulation by inducing apoptosis of the adipocytes in grass carp. However, the mechanism involved remains unclear. DHA has been reported as the natural ligand of PPARγ. The present study aimed to assess whether PPARγ mediates the pro-apoptotic effects by DHA. Adipocytes of grass carp were cultured until 2 days post-confluence and were treated with DHA at various concentrations-0, 25, 50, 100, 200, and 400 μmol/L for 24 h and at 200 μmol/L for various time periods (0, 12, 24, and 48 h, respectively). Besides, the adipocytes were exposed to 200 μM DHA and PPARγ antagonist or inhibitor of certain key enzymes of apoptosis, following which the expression levels of key genes of the cell apoptotic and mitochondrial apoptotic pathways were detected. We found that DHA induced apoptosis of grass carp adipocytes in a time- and dose-dependent manner (P < 0.05). In addition, DHA treatment significantly increased the protein and gene expression levels of PPARγ (P < 0.05), but the PPARγ antagonist significantly abolished this effect and the DHA pro-apoptotic effect (P < 0.05). Moreover, treatment with caspase 9 inhibitor significantly attenuated the DHA-induced preadipocytes apoptosis effects, while treatment with caspase 8 inhibitor showed no influence. These observations suggest that the DHA-induced apoptosis in adipocytes might be mediated by PPARγ and via the intrinsic apoptotic pathway in grass carp.
Collapse
Affiliation(s)
- Ai Jin
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China
| | - Xiao-Chen Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China
| | - Yangyang Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China
| | - Jian Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
11
|
Nitric Oxide and Mitochondrial Function in Neurological Diseases. Neuroscience 2018; 376:48-71. [DOI: 10.1016/j.neuroscience.2018.02.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/20/2018] [Accepted: 02/09/2018] [Indexed: 12/17/2022]
|
12
|
Bowers RR, Temkin AM, Guillette LJ, Baatz JE, Spyropoulos DD. The commonly used nonionic surfactant Span 80 has RXRα transactivation activity, which likely increases the obesogenic potential of oil dispersants and food emulsifiers. Gen Comp Endocrinol 2016; 238:61-68. [PMID: 27131391 DOI: 10.1016/j.ygcen.2016.04.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 04/26/2016] [Indexed: 01/22/2023]
Abstract
Obesity has reached pandemic proportions, and there is mounting evidence that environmental exposures to endocrine disrupting chemicals known as "obesogens" may contribute to obesity and associated medical conditions. The Deepwater Horizon (DWH) oil spill resulted in a massive environmental release of crude oil and remediation efforts applied large quantities of Corexit dispersants to the oil spill. The Corexit-enhanced Water Accommodated Fraction (CWAF) of DWH crude oil contains PPARγ transactivation activity, which is attributed to dioctyl sodium sulfosuccinate (DOSS), a probable obesogen. In addition to its use in oil dispersants, DOSS is commonly used as a stool softener and food additive. Because PPARγ functions as a heterodimer with RXRα to transcriptionally regulate adipogenesis we investigated the potential of CWAF to transactivate RXRα and herein demonstrated that the Corexit component Span 80 has RXRα transactivation activity. Span 80 bound to RXRα in the low micromolar range and promoted adipocyte differentiation of 3T3-L1 preadipocytes. Further, the combination of DOSS and Span 80 increased 3T3-L1 adipocyte differentiation substantially more than treatment with either chemical individually, likely increasing the obesogenic potential of Corexit dispersants. From a public health standpoint, the use of DOSS and Span 80 as food additives heightens concerns regarding their use and mandates further investigations.
Collapse
Affiliation(s)
- Robert R Bowers
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Alexis M Temkin
- Marine Biomedical Sciences Program, Medical University of South Carolina, Charleston, SC, USA
| | - Louis J Guillette
- Marine Biomedical Sciences Program, Medical University of South Carolina, Charleston, SC, USA; Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC, USA
| | - John E Baatz
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC, USA; Department of Pediatrics and Neonatology, Medical University of South Carolina, Charleston, SC, USA
| | - Demetri D Spyropoulos
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA; Marine Biomedical Sciences Program, Medical University of South Carolina, Charleston, SC, USA; Department of Pediatrics and Neonatology, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
13
|
Prostek A, Gajewska M, Bałasińska B. The influence of eicosapentaenoic acid and docosahexaenoic acid on expression of genes connected with metabolism and secretory functions of ageing 3T3-L1 adipocytes. Prostaglandins Other Lipid Mediat 2016; 125:48-56. [DOI: 10.1016/j.prostaglandins.2016.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 11/29/2022]
|
14
|
Belkouch M, Hachem M, Elgot A, Lo Van A, Picq M, Guichardant M, Lagarde M, Bernoud-Hubac N. The pleiotropic effects of omega-3 docosahexaenoic acid on the hallmarks of Alzheimer's disease. J Nutr Biochem 2016; 38:1-11. [PMID: 27825512 DOI: 10.1016/j.jnutbio.2016.03.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/14/2015] [Accepted: 03/03/2016] [Indexed: 12/17/2022]
Abstract
Among omega-3 polyunsaturated fatty acids (PUFAs), docosahexaenoic acid (DHA, 22:6n-3) is important for adequate brain development and cognition. DHA is highly concentrated in the brain and plays an essential role in brain functioning. DHA, one of the major constituents in fish fats, readily crosses the blood-brain barrier from blood to the brain. Its critical role was further supported by its reduced levels in the brain of Alzheimer's disease (AD) patients. This agrees with a potential role of DHA in memory, learning and cognitive processes. Since there is yet no cure for dementia such as AD, there is growing interest in the role of DHA-supplemented diet in the prevention of AD pathogenesis. Accordingly, animal, epidemiological, preclinical and clinical studies indicated that DHA has neuroprotective effects in a number of neurodegenerative conditions including AD. The beneficial effects of this key omega-3 fatty acid supplementation may depend on the stage of disease progression, other dietary mediators and the apolipoprotein ApoE genotype. Herein, our review investigates, from animal and cell culture studies, the molecular mechanisms involved in the neuroprotective potential of DHA with emphasis on AD.
Collapse
Affiliation(s)
- Mounir Belkouch
- Université de Lyon, UMR INSERM 1060, UMR INRA 1397, IMBL/INSA-Lyon, Cardiovasculaire, Métabolisme, Diabétologie et Nutrition Laboratory, Bât Louis Pasteur, INSA, Villeurbanne, France.
| | - Mayssa Hachem
- Université de Lyon, UMR INSERM 1060, UMR INRA 1397, IMBL/INSA-Lyon, Cardiovasculaire, Métabolisme, Diabétologie et Nutrition Laboratory, Bât Louis Pasteur, INSA, Villeurbanne, France
| | - Abdeljalil Elgot
- Laboratoire des Sciences et Technologies de la Santé, Unité des Sciences Biomédicales, Institut Supérieur des Sciences de la Santé, Université Hassan 1er, Settat, Morocco
| | - Amanda Lo Van
- Université de Lyon, UMR INSERM 1060, UMR INRA 1397, IMBL/INSA-Lyon, Cardiovasculaire, Métabolisme, Diabétologie et Nutrition Laboratory, Bât Louis Pasteur, INSA, Villeurbanne, France
| | - Madeleine Picq
- Université de Lyon, UMR INSERM 1060, UMR INRA 1397, IMBL/INSA-Lyon, Cardiovasculaire, Métabolisme, Diabétologie et Nutrition Laboratory, Bât Louis Pasteur, INSA, Villeurbanne, France
| | - Michel Guichardant
- Université de Lyon, UMR INSERM 1060, UMR INRA 1397, IMBL/INSA-Lyon, Cardiovasculaire, Métabolisme, Diabétologie et Nutrition Laboratory, Bât Louis Pasteur, INSA, Villeurbanne, France
| | - Michel Lagarde
- Université de Lyon, UMR INSERM 1060, UMR INRA 1397, IMBL/INSA-Lyon, Cardiovasculaire, Métabolisme, Diabétologie et Nutrition Laboratory, Bât Louis Pasteur, INSA, Villeurbanne, France
| | - Nathalie Bernoud-Hubac
- Université de Lyon, UMR INSERM 1060, UMR INRA 1397, IMBL/INSA-Lyon, Cardiovasculaire, Métabolisme, Diabétologie et Nutrition Laboratory, Bât Louis Pasteur, INSA, Villeurbanne, France
| |
Collapse
|
15
|
Heras-Sandoval D, Pedraza-Chaverri J, Pérez-Rojas JM. Role of docosahexaenoic acid in the modulation of glial cells in Alzheimer's disease. J Neuroinflammation 2016; 13:61. [PMID: 26965310 PMCID: PMC4787218 DOI: 10.1186/s12974-016-0525-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 03/03/2016] [Indexed: 01/25/2023] Open
Abstract
Docosahexaenoic acid (DHA) is an omega-3 (ω-3) long-chain polyunsaturated fatty acid (LCPUFA) relevant for brain function. It has largely been explored as a potential candidate to treat Alzheimer’s disease (AD). Clinical evidence favors a role for DHA in the improvement of cognition in very early stages of the AD. In response to stress or damage, DHA generates oxygenated derivatives called docosanoids that can activate the peroxisome proliferator-activated receptor γ (PPARγ). In conjunction with activated retinoid X receptors (RXR), PPARγ modulates inflammation, cell survival, and lipid metabolism. As an early event in AD, inflammation is associated with an excess of amyloid β peptide (Aβ) that contributes to neural insult. Glial cells are recognized to be actively involved during AD, and their dysfunction is associated with the early appearance of this pathology. These cells give support to neurons, remove amyloid β peptides from the brain, and modulate inflammation. Since DHA can modulate glial cell activity, the present work reviews the evidence about this modulation as well as the effect of docosanoids on neuroinflammation and in some AD models. The evidence supports PPARγ as a preferred target for gene modulation. The effective use of DHA and/or its derivatives in a subgroup of people at risk of developing AD is discussed.
Collapse
Affiliation(s)
- David Heras-Sandoval
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México, DF, México.,Laboratorio de Farmacología, Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Av. San Fernando #22, Tlalpan 14080, Apartado Postal 22026, México, DF, México
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México, DF, México
| | - Jazmin M Pérez-Rojas
- Laboratorio de Farmacología, Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Av. San Fernando #22, Tlalpan 14080, Apartado Postal 22026, México, DF, México.
| |
Collapse
|
16
|
Meher A, Sundrani D, Joshi S. Maternal nutrition influences angiogenesis in the placenta through peroxisome proliferator activated receptors: A novel hypothesis. Mol Reprod Dev 2015; 82:726-34. [DOI: 10.1002/mrd.22518] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 06/07/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Akshaya Meher
- Interactive Research School for Health Affairs; Bharati Vidyapeeth Deemed University; Pune India
| | - Deepali Sundrani
- Interactive Research School for Health Affairs; Bharati Vidyapeeth Deemed University; Pune India
| | - Sadhana Joshi
- Interactive Research School for Health Affairs; Bharati Vidyapeeth Deemed University; Pune India
| |
Collapse
|
17
|
El-Sayed E, Ibrahim K. Effect of the types of dietary fats and non-dietary oils on bone metabolism. Crit Rev Food Sci Nutr 2015; 57:653-658. [DOI: 10.1080/10408398.2014.914889] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Cacabelos D, Ayala V, Ramírez-Nunez O, Granado-Serrano AB, Boada J, Serrano JCE, Cabré R, Nadal-Rey G, Bellmunt MJ, Ferrer I, Pamplona R, Portero-Otin M. Dietary Lipid Unsaturation Influences Survival and Oxidative Modifications of an Amyotrophic Lateral Sclerosis Model in a Gender-Specific Manner. Neuromolecular Med 2014; 16:669-85. [DOI: 10.1007/s12017-014-8317-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 06/20/2014] [Indexed: 12/12/2022]
|
19
|
Meher AP, Joshi AA, Joshi SR. Maternal micronutrients, omega-3 fatty acids, and placental PPARγ expression. Appl Physiol Nutr Metab 2014; 39:793-800. [DOI: 10.1139/apnm-2013-0518] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An altered one-carbon cycle is known to influence placental and fetal development. We hypothesize that deficiency of maternal micronutrients such as folic acid and vitamin B12 will lead to increased oxidative stress, reduced long-chain polyunsaturated fatty acids, and altered expression of peroxisome proliferator activated receptor (PPARγ) in the placenta, and omega-3 fatty acid supplementation to these diets will increase the expression of PPARγ. Female rats were divided into 5 groups: control, folic acid deficient, vitamin B12 deficient, folic acid deficient + omega-3 fatty acid supplemented, and vitamin B12 deficient + omega-3 fatty acid supplemented. Dams were dissected on gestational day 20. Maternal micronutrient deficiency leads to lower (p < 0.05) levels of placental docosahexaenoic acid, arachidonic acid, PPARγ expression and higher (p < 0.05) levels of plasma malonidialdehyde, placental IL-6, and TNF-α. Omega-3 fatty acid supplementation to a vitamin B12 deficient diet normalized the expression of PPARγ and lowered the levels of placental TNF-α. In the case of supplementation to a folic acid deficient diet it lowered the levels of malonidialdehyde and placental IL-6 and TNF-α. This study has implications for fetal growth as oxidative stress, inflammation, and PPARγ are known to play a key role in the placental development.
Collapse
Affiliation(s)
- Akshaya P. Meher
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune 411043, India
| | - Asmita A. Joshi
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune 411043, India
| | - Sadhana R. Joshi
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune 411043, India
| |
Collapse
|
20
|
Murali G, Desouza CV, Clevenger ME, Ramalingam R, Saraswathi V. Differential effects of eicosapentaenoic acid and docosahexaenoic acid in promoting the differentiation of 3T3-L1 preadipocytes. Prostaglandins Leukot Essent Fatty Acids 2014; 90:13-21. [PMID: 24332315 DOI: 10.1016/j.plefa.2013.10.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/01/2013] [Accepted: 10/30/2013] [Indexed: 11/24/2022]
Abstract
The objective of this study was to determine the effects of enrichment with n-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), on the differentiation of 3T3-L1 preadipocytes. Enrichment with DHA but not EPA significantly increased the differentiation markers compared to control differentiated cells. DHA compared to EPA treatment led to a greater increase in adiponectin secretion and, conditioned media collected from DHA treated cells inhibited monocyte migration. Moreover, DHA treatment resulted in inhibition of pro-inflammatory signaling pathways. DHA treated cells predominantly accumulated DHA in phospholipids whereas EPA treatment led to accumulation of both EPA and its elongation product docosapentaenoic acid (DPA), an n-3 fatty acid. Of note, adding DPA to DHA inhibited DHA-induced differentiation. The differential effects of EPA and DHA on preadipocyte differentiation may be due, in part, to differences in their intracellular modification which could impact the type of n-3 fatty acids incorporated into the cells.
Collapse
Affiliation(s)
- Ganesan Murali
- Departments of Internal Medicine, Division of Diabetes, Endocrinology, and Metabolism, Omaha, NE, United States; Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States; Research Services, VA Nebraska Western Iowa Health Care System, Omaha, NE, United States
| | - Cyrus V Desouza
- Research Services, VA Nebraska Western Iowa Health Care System, Omaha, NE, United States; Departments of Internal Medicine, Division of Diabetes, Endocrinology, and Metabolism, Omaha, NE, United States
| | - Michelle E Clevenger
- Departments of Internal Medicine, Division of Diabetes, Endocrinology, and Metabolism, Omaha, NE, United States; Research Services, VA Nebraska Western Iowa Health Care System, Omaha, NE, United States
| | - Ramesh Ramalingam
- Departments of Internal Medicine, Division of Diabetes, Endocrinology, and Metabolism, Omaha, NE, United States; Research Services, VA Nebraska Western Iowa Health Care System, Omaha, NE, United States
| | - Viswanathan Saraswathi
- Departments of Internal Medicine, Division of Diabetes, Endocrinology, and Metabolism, Omaha, NE, United States; Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States; Research Services, VA Nebraska Western Iowa Health Care System, Omaha, NE, United States.
| |
Collapse
|
21
|
Shida T, Kamei N, Takeda-Morishita M, Isowa K, Takayama K. Colonic delivery of docosahexaenoic acid improves impaired glucose tolerance via GLP-1 secretion and suppresses pancreatic islet hyperplasia in diabetic KK-A(y) mice. Int J Pharm 2013; 450:63-9. [PMID: 23618969 DOI: 10.1016/j.ijpharm.2013.04.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/27/2013] [Accepted: 04/08/2013] [Indexed: 11/17/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin hormone that regulates the insulin secretion depending on blood glucose level. Recent studies show that the unsaturated fatty acids can promote GLP-1 secretion from intestinal L-cells. We have shown previously that docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) administered into a mouse closed intestinal loop, especially into the colonic segment, stimulate GLP-1 and insulin secretion and have a hypoglycemic effect, suggesting that DHA and EPA have potential as antidiabetic agents. The present study examined the antidiabetic effect of DHA following long-term in vivo delivery to the colon using normal ddY and diabetic KK-A(y) mice. The plasma GLP-1 concentration of KK-A(y) mice increased after long-term DHA administration, and this had a significant hypoglycemic effect. In contrast, although GLP-1 secretion in ddY mice tended to increase after DHA administration, blood glucose concentration did not differ between vehicle- and DHA-treated ddY mice. Immunostaining of the pancreas after long-term DHA administration showed that continuous DHA treatment stimulated β-cell apoptosis and accordingly suppressed islet cell growth in KK-A(y) mice. Colon targeting of DHA may provide a new strategy for improving impaired glucose tolerance in type 2 diabetes mellitus by stimulating GLP-1 secretion, which may subsequently suppress the compensatory hyperplasia of pancreatic islets.
Collapse
Affiliation(s)
- Takayuki Shida
- Ono Pharmaceutical Co., Ltd., 1-8-2 Kyutaro-machi, Chuo-ku, Osaka-shi, Osaka 541-8564, Japan
| | | | | | | | | |
Collapse
|
22
|
Abstract
Long chain omega-3 polyunsaturated fatty acids (LC n-3 PUFAs) are recommended for management of patients with wide-ranging chronic diseases, including coronary heart disease, rheumatoid arthritis, dementia, and depression. Increased consumption of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is recommended by many health authorities to prevent (up to 0.5 g/day) or treat chronic disease (1.0 g/day for coronary heart disease; 1.2–4 g/day for elevated triglyceride levels). Recommendations for dietary intake of LC n-3 PUFAs are often provided for α-linolenic acid, and for the combination of EPA and DHA. However, many studies have also reported differential effects of EPA, DHA and their metabolites in the clinic and at the laboratory bench. The aim of this article is to review studies that have identified divergent responses to EPA and DHA, and to explore reasons for these differences. In particular, we review potential contributing factors such as differential membrane incorporation, modulation of gene expression, activation of signaling pathways and metabolite formation. We suggest that there may be future opportunity to refine recommendations for intake of individual LC n-3 PUFAs.
Collapse
Affiliation(s)
- Fraser D Russell
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland 4556, Australia.
| | | |
Collapse
|
23
|
Anderson EJ, Taylor DA. Stressing the heart of the matter: re-thinking the mechanisms underlying therapeutic effects of n-3 polyunsaturated fatty acids. F1000 MEDICINE REPORTS 2012; 4:13. [PMID: 22802872 PMCID: PMC3391752 DOI: 10.3410/m4-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite their clear therapeutic effects in coronary heart disease, use of n-3 polyunsaturated fatty acids (PUFAs) to treat other types of cardiovascular disease remains controversial, and serious obstacles exist in implementing them as a reliable and consistent drug therapy. The foremost of these is that a molecular mechanism and relevant dosages have not been firmly established in other forms of cardiovascular disease. In this brief review, we highlight the current state of knowledge regarding the mechanisms behind n-3 PUFA action in the cardiovascular system. We also propose the novel hypothesis that lipid peroxidation products derived from n-3 PUFAs may be driving much of their beneficial cardiovascular effects, particularly in the myocardium. We conclude by discussing evidence to support this hypothesis, and its possible clinical ramifications.
Collapse
Affiliation(s)
- Ethan J. Anderson
- Department of Pharmacology & Toxicology, East Carolina University600 Moye Blvd. Greenville, NC 27834
- Cardiovascular Sciences, East Carolina University600 Moye Blvd. Greenville, NC 27834
- East Carolina Diabetes and Obesity Institute, East Carolina University600 Moye Blvd. Greenville, NC 27834
| | - David A. Taylor
- Department of Pharmacology & Toxicology, East Carolina University600 Moye Blvd. Greenville, NC 27834
| |
Collapse
|
24
|
Nutraceuticals as Ligands of PPARγ. PPAR Res 2012; 2012:858352. [PMID: 22792089 PMCID: PMC3388323 DOI: 10.1155/2012/858352] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 04/10/2012] [Accepted: 04/13/2012] [Indexed: 01/10/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated nuclear receptors that respond to several exogenous and endogenous ligands by modulating genes related to lipid, glucose, and insulin homeostasis. PPARγ, expressed in adipose tissue and liver, regulates lipid storage and glucose metabolism and is the target of type 2 diabetes drugs, thiazolidinediones (TZDs). Due to high levels of toxicity associated with the first generation TZDs, troglitazone (Rezulin), rosiglitazone (Avandia), and pioglitazone (Actos), there is a renewed search for newer PPAR drugs that exhibit better efficacy but lesser toxicity. In recent years, there has been a definite increase in the consumption of dietary supplements among diabetics, due to the possible health benefits associated with these nutraceutical components. With this impetus, investigations into alternative natural ligands of PPARs has also risen. This review highlights some of the dietary compounds (dietary lipids, isoflavones, and other flavanoids) that bind and transactivate PPARγ. A better understanding of the physiological effects of this PPAR activation by nutraceuticals and the availability of high-throughput technologies should lead to the discovery of less toxic alternatives to the PPAR drugs currently on the market.
Collapse
|
25
|
Increasing intake of long-chain n-3 PUFA enhances lipoperoxidation and modulates hepatic gene expression in a dose-dependent manner. Br J Nutr 2011; 107:1254-73. [PMID: 21914239 DOI: 10.1017/s0007114511004259] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Long-chain (LC) n-3 PUFA have a broad range of biological properties that can be achieved at the gene expression level. This has been well described in liver, where LC n-3 PUFA modulate the expression of genes related to lipid metabolism. However, the complexity of biological pathway modulations and the nature of bioactive molecules are still under investigation. The present study aimed to investigate the dose-response effects of LC n-3 PUFA on the production of peroxidised metabolites, as potential bioactive molecules, and on global gene expression in liver. Hypercholesterolaemic rabbits received by daily oral administration (7 weeks) either oleic acid-rich oil or a mixture of oils providing 0.1, 0.5 or 1 % (groups 1, 2 and 3 respectively) of energy as DHA. Levels of specific peroxidised metabolites, namely 4-hydroxyhexenal (4-HHE)-protein adducts, issued from LC n-3 PUFA were measured by GC/MS/MS in liver in parallel to transcription profiling. The intake of LC n-3 PUFA increased, in a dose-dependent manner, the hepatic production of 4-HHE. At the highest dose, LC n-3 PUFA provoked an accumulation of TAG in liver, which can be directly linked to increased mRNA levels of lipoprotein hepatic receptors (LDL-receptor and VLDL-receptor). In groups 1 and 2, the mRNA levels of microsomal TAG transfer protein decreased, suggesting a possible new mechanism to reduce VLDL secretion. These modulations of genes related to lipoprotein metabolism were independent of PPARα signalling but were probably linked to the activation of the farnesol X receptor pathway by LC n-3 PUFA and/or their metabolites such as HHE.
Collapse
|
26
|
Omega-3 Fatty Acids and PPARgamma in Cancer. PPAR Res 2011; 2008:358052. [PMID: 18769551 PMCID: PMC2526161 DOI: 10.1155/2008/358052] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 05/30/2008] [Accepted: 06/24/2008] [Indexed: 01/25/2023] Open
Abstract
Omega-3 (or n-3) polyunsaturated fatty acids (PUFAs) and their metabolites are natural ligands for peroxisome proliferator receptor activator (PPAR)gamma and, due to the effects of PPARgamma on cell proliferation, survival, and differentiation, are potential anticancer agents. Dietary intake of omega-3 PUFAs has been associated with a reduced risk of certain cancers in human populations and in animal models. In vitro studies have shown that omega-3 PUFAs inhibit cell proliferation and induce apoptosis in cancer cells through various pathways but one of which involves PPARgamma activation. The differential activation of PPARgamma and PPARgamma-regulated genes by specific dietary fatty acids may be central to their distinct roles in cancer. This review summarizes studies relating PUFAs to PPARgamma and cancer and offers a new paradigm relating an n-3 PUFA through PPARgamma to the expression of the cell surface proteoglycan, syndecan-1, and to the death of cancer cells.
Collapse
|
27
|
Sapieha P, Stahl A, Chen J, Seaward MR, Willett KL, Krah NM, Dennison RJ, Connor KM, Aderman CM, Liclican E, Carughi A, Perelman D, Kanaoka Y, Sangiovanni JP, Gronert K, Smith LEH. 5-Lipoxygenase metabolite 4-HDHA is a mediator of the antiangiogenic effect of ω-3 polyunsaturated fatty acids. Sci Transl Med 2011; 3:69ra12. [PMID: 21307302 DOI: 10.1126/scitranslmed.3001571] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lipid signaling is dysregulated in many diseases with vascular pathology, including cancer, diabetic retinopathy, retinopathy of prematurity, and age-related macular degeneration. We have previously demonstrated that diets enriched in ω-3 polyunsaturated fatty acids (PUFAs) effectively reduce pathological retinal neovascularization in a mouse model of oxygen-induced retinopathy, in part through metabolic products that suppress microglial-derived tumor necrosis factor-α. To better understand the protective effects of ω-3 PUFAs, we examined the relative importance of major lipid metabolic pathways and their products in contributing to this effect. ω-3 PUFA diets were fed to four lines of mice deficient in each key lipid-processing enzyme (cyclooxygenase 1 or 2, or lipoxygenase 5 or 12/15), retinopathy was induced by oxygen exposure; only loss of 5-lipoxygenase (5-LOX) abrogated the protection against retinopathy of dietary ω-3 PUFAs. This protective effect was due to 5-LOX oxidation of the ω-3 PUFA lipid docosahexaenoic acid to 4-hydroxy-docosahexaenoic acid (4-HDHA). 4-HDHA directly inhibited endothelial cell proliferation and sprouting angiogenesis via peroxisome proliferator-activated receptor γ (PPARγ), independent of 4-HDHA's anti-inflammatory effects. Our study suggests that ω-3 PUFAs may be profitably used as an alternative or supplement to current anti-vascular endothelial growth factor (VEGF) treatment for proliferative retinopathy and points to the therapeutic potential of ω-3 PUFAs and metabolites in other diseases of vasoproliferation. It also suggests that cyclooxygenase inhibitors such as aspirin and ibuprofen (but not lipoxygenase inhibitors such as zileuton) might be used without losing the beneficial effect of dietary ω-3 PUFA.
Collapse
Affiliation(s)
- Przemyslaw Sapieha
- Department of Ophthalmology, Harvard Medical School, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Efficient synthesis of the very-long-chain n-3 fatty acids, tetracosahexaenoic acid (C24:6n-3) and tricosahexaenoic acid (C23:6n-3). Lipids 2011; 46:455-61. [PMID: 21347745 DOI: 10.1007/s11745-011-3541-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Accepted: 02/04/2011] [Indexed: 10/18/2022]
Abstract
Tetracosahexaenoic acid (C(24):6n-3, THA, 3) is an essential biosynthetic precursor in mammals of docosahexaenoic acid (C(22):6n-3, DHA, 1), the end-product of the metabolism of n-3 fatty acids. THA 3 is present in commercially valuable fishes, such as flathead flounder. Tricosahexaenoic acid (C(23):6n-3, TrHA, 2), an odd-numbered-chain fatty acid, has been identified from marine organisms such as the dinoflagellate, Amphidinium carterae. To date, few studies have examined THA 3 and TrHA 2 due to difficulties in detecting and identifying these compounds, so their chemical and biological properties remain poorly characterized. Only one methodology for the chemical synthesis of THA 3 has been presented, and no method for the synthesis of TrHA 2 has been reported. We report here the efficient synthesis of THA 3 in four steps in 56% overall yield, and the synthesis of TrHA 2 in six steps in 48% overall yield. We also present the synthesis of Δ(2)-THA 4, an intermediate of β-oxidation of THA 3 to DHA 1, in three steps in 73% overall yield.
Collapse
|
29
|
Yokoi H, Mizukami H, Nagatsu A, Tanabe H, Inoue M. Hydroxy monounsaturated fatty acids as agonists for peroxisome proliferator-activated receptors. Biol Pharm Bull 2010; 33:854-61. [PMID: 20460766 DOI: 10.1248/bpb.33.854] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The physiological and pathological role of oxidized polyunsaturated fatty acids (PUFAs) has been extensively studied, whereas those of hydroxy monounsaturated fatty acids (MUFAs) are not well understood. This study demonstrated that 11-hydroxy-(9Z)-octadecenoic acid ((9Z)-11-HOE), which was isolated from adlay seeds (Coix lacryma-jobi L. var. ma-yuen STAF.), can activate peroxisome proliferator-activated receptor (PPAR)alpha, delta and gamma in luciferase reporter assays more efficiently than (9Z)-octadecenoic acid (oleic acid), and to the same degree as linoleic acid. (9Z)-11-HOE increased the mRNA levels of UCP2 and CD36 in C2C12 myotubes and THP- 1 cells, respectively, and these effects were blocked by the PPARdelta- and gamma-specific antagonists GSK0660 and T0070907, respectively. Evaluation of the structure.activity relationship between hydroxy MUFAs and PPAR activation revealed that (9E)-11-HOE, the geometrical isomer of (9Z)-11-HOE, activated PPARs more potently than (9Z)-11-HOE, and that PPAR activation by hydroxyl MUFAs was not markedly influenced by the position of the hydroxy group or the double bond, although PPARdelta seemed to possess ligand specificity different to that of PPARalpha or gamma . Additionally, the finding that 11-hydroxy octadecanoic acid, the hydrogenated product of (9E)-11- HOE, was also capable of activating PPARs to a similar extent as (9E)-11-HOE indicates that the double bond in hydroxy MUFAs is not essential for PPAR activation. In conclusion, (9Z)-11-HOE derived from alday seeds and hydroxy MUFAs with a chain length of 16 or 18 acted as PPAR agonists. Hydroxylation of MUFAs may change these compounds from silent PPAR ligands to active PPAR agonists.
Collapse
Affiliation(s)
- Hiroshi Yokoi
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | | | | | | | | |
Collapse
|
30
|
Bioenergetic pathways in tumor mitochondria as targets for cancer therapy and the importance of the ROS-induced apoptotic trigger. Mol Aspects Med 2010; 31:29-59. [DOI: 10.1016/j.mam.2009.12.006] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 12/11/2009] [Indexed: 12/22/2022]
|
31
|
Yamamoto K, Itoh T, Yoshimoto N. Synthesis of Oxidized Fatty Acid Derivatives via an Iodolactonization Reaction. HETEROCYCLES 2010. [DOI: 10.3987/com-09-s(s)90] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Gillam M, Noto A, Zahradka P, Taylor CG. Improved n-3 fatty acid status does not modulate insulin resistance in fa/fa Zucker rats. Prostaglandins Leukot Essent Fatty Acids 2009; 81:331-9. [PMID: 19864121 DOI: 10.1016/j.plefa.2009.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 09/23/2009] [Accepted: 09/30/2009] [Indexed: 01/13/2023]
Abstract
The objective was to examine the effect of polyunsaturated fatty acid type (plant vs fish oil-derived n-3, compared to n-6 fatty acids in the presence of constant proportions of saturated, monounsaturated and polyunsaturated fatty acids) on obesity, insulin resistance and tissue fatty acid composition in genetically obese rats. Six-week-old fa/fa and lean Zucker rats were fed with a 10% (w/w) mixed fat diet containing predominantly flax-seed, menhaden or safflower oils for 9 weeks. There was no effect of dietary lipid on obesity, oral glucose tolerance (except t=60min insulin), pancreatic function or molecular markers related to insulin, glucose and lipid metabolism, despite increased n-3 fatty acids in muscle and adipose tissue. The menhaden oil diet reduced fasting serum free fatty acids in both fa/fa and lean rats. These data suggest that n-3 composition does not alter obesity and insulin resistance in the fa/fa Zucker rat model when dietary lipid classes are balanced.
Collapse
Affiliation(s)
- M Gillam
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada R2H 2A6
| | | | | | | |
Collapse
|
33
|
Jeninga EH, Gurnell M, Kalkhoven E. Functional implications of genetic variation in human PPARgamma. Trends Endocrinol Metab 2009; 20:380-7. [PMID: 19748282 DOI: 10.1016/j.tem.2009.04.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 04/15/2009] [Accepted: 04/15/2009] [Indexed: 12/25/2022]
Abstract
The peroxisome proliferator-activated receptor gamma (PPARgamma) plays a key role in the regulation of lipid and glucose metabolism. Human genetic evidence supporting this view comes from the study of both common (e.g. the Pro12Ala polymorphism) and rare (loss-of-function mutations) variants in the gene encoding PPARgamma. Indeed, patients harbouring mutant PPARgamma exhibit familial partial lipodystrophy type 3 and an extreme monogenic form of the metabolic syndrome. The recent elucidation of the crystal structure of the full-length PPARgamma-RXRalpha heterodimer bound to DNA has shed new light on the functional consequences of these genetic PPARgamma alterations and provides novel insights as to why different perturbations of receptor function unite in a common pathway of metabolic dysfunction.
Collapse
Affiliation(s)
- Ellen H Jeninga
- Department of Metabolic and Endocrine Diseases, UMC Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | | | | |
Collapse
|
34
|
Muskiet F. Pathophysiology and Evolutionary Aspects of Dietary Fats and Long-Chain Polyunsaturated Fatty Acids across the Life Cycle. Front Neurosci 2009. [DOI: 10.1201/9781420067767-c2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
|
35
|
Michael-Titus AT. Omega-3 fatty acids: their neuroprotective and regenerative potential in traumatic neurological injury. ACTA ACUST UNITED AC 2009. [DOI: 10.2217/clp.09.19] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Lu IF, Hasio AC, Hu MC, Yang FM, Su HM. Docosahexaenoic acid induces proteasome-dependent degradation of estrogen receptor alpha and inhibits the downstream signaling target in MCF-7 breast cancer cells. J Nutr Biochem 2009; 21:512-7. [PMID: 19369047 DOI: 10.1016/j.jnutbio.2009.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 02/04/2009] [Accepted: 02/16/2009] [Indexed: 02/07/2023]
Abstract
About two thirds of breast cancers in women are hormone-dependent and require estrogen for growth, its effects being mainly mediated through estrogen receptor alpha (ERalpha). Docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (AA, 20:4n-6) have opposite effects on carcinogenesis, with DHA suppressing and AA promoting tumor growth both in vitro and in vivo. However, the mechanism is not clear. Here, we examined whether the effect is mediated through changes in ERalpha distribution. MCF-7 cells, an ERalpha-positive human breast cancer cell line, was cultured in estrogen-free medium containing 0, 10 or 60 microM DHA or AA, then were stimulated with estradiol. DHA supplementation resulted in down-regulation of ERalpha expression (particularly in the extranuclear fraction), a reduction in phosphorylated MAPK, a decrease in cyclin D1 levels and an inhibition in cell viability. In contrast, AA had no such effects. The DHA-induced decrease in ERalpha expression resulted from proteasome-dependent degradation and not from decreased ERalpha mRNA expression. We propose that breast cancer cell proliferation is inhibited by DHA through proteasome-dependent degradation of ERalpha, reduced cyclin D1 expression and inhibition of MAPK signaling.
Collapse
Affiliation(s)
- I-Fen Lu
- Department of Physiology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | | | | | | | | |
Collapse
|