1
|
Wang R, Liao G, Tang DD. TET1 Regulates Nestin Expression and Human Airway Smooth Muscle Proliferation. Am J Respir Cell Mol Biol 2024; 71:420-429. [PMID: 38861343 PMCID: PMC11450309 DOI: 10.1165/rcmb.2024-0139oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024] Open
Abstract
Asthma is characterized by aberrant airway smooth muscle (ASM) proliferation, which increases the thickness of the ASM layer within the airway wall and exacerbates airway obstruction during asthma attacks. The mechanisms that drive ASM proliferation in asthma are not entirely elucidated. Ten-eleven translocation methylcytosine dioxygenase (TET) is an enzyme that participates in the regulation of DNA methylation by catalyzing the hydroxylation of 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC). The generation of 5-hmC disinhibits the gene silencing effect of 5-mC. In this study, TET1 activity and protein were enhanced in asthmatic human ASM cell cultures. Moreover, the concentration of 5-hmC was higher in asthmatic ASM cells than in nonasthmatic ASM cells. Knockdown (KD) of TET1, but not TET2, reduced the concentration of 5-hmC in asthmatic cells. Because the cytoskeletal protein nestin controls cell proliferation by modulating mTOR, we evaluated the effects of TET1 KD on this pathway. TET1 KD reduced nestin expression in ASM cells. In addition, TET1 inhibition alleviated the platelet-derived growth factor-induced phosphorylation of p70S6K, 4E-BP, S6, and Akt. TET1 inhibition also attenuated the proliferation of ASM cells. Taken together, these results suggest that TET1 drives ASM proliferation via the nestin-mTOR axis.
Collapse
Affiliation(s)
- Ruping Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Guoning Liao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Dale D Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| |
Collapse
|
2
|
Parker M, Annamdevula NS, Pleshinger D, Ijaz Z, Jalkh J, Penn R, Deshpande D, Rich TC, Leavesley SJ. Comparing Performance of Spectral Image Analysis Approaches for Detection of Cellular Signals in Time-Lapse Hyperspectral Imaging Fluorescence Excitation-Scanning Microscopy. Bioengineering (Basel) 2023; 10:642. [PMID: 37370573 PMCID: PMC10295298 DOI: 10.3390/bioengineering10060642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Hyperspectral imaging (HSI) technology has been applied in a range of fields for target detection and mixture analysis. While HSI was originally developed for remote sensing applications, modern uses include agriculture, historical document authentication, and medicine. HSI has also shown great utility in fluorescence microscopy. However, traditional fluorescence microscopy HSI systems have suffered from limited signal strength due to the need to filter or disperse the emitted light across many spectral bands. We have previously demonstrated that sampling the fluorescence excitation spectrum may provide an alternative approach with improved signal strength. Here, we report on the use of excitation-scanning HSI for dynamic cell signaling studies-in this case, the study of the second messenger Ca2+. Time-lapse excitation-scanning HSI data of Ca2+ signals in human airway smooth muscle cells (HASMCs) were acquired and analyzed using four spectral analysis algorithms: linear unmixing (LU), spectral angle mapper (SAM), constrained energy minimization (CEM), and matched filter (MF), and the performances were compared. Results indicate that LU and MF provided similar linear responses to increasing Ca2+ and could both be effectively used for excitation-scanning HSI. A theoretical sensitivity framework was used to enable the filtering of analyzed images to reject pixels with signals below a minimum detectable limit. The results indicated that subtle kinetic features might be revealed through pixel filtering. Overall, the results suggest that excitation-scanning HSI can be employed for kinetic measurements of cell signals or other dynamic cellular events and that the selection of an appropriate analysis algorithm and pixel filtering may aid in the extraction of quantitative signal traces. These approaches may be especially helpful for cases where the signal of interest is masked by strong cellular autofluorescence or other competing signals.
Collapse
Affiliation(s)
- Marina Parker
- Department of Chemical and Biomolecular Engineering, University of South Alabama, 150 Student Services Dr., Mobile, AL 36688, USA
- Department of Systems Engineering, University of South Alabama, 150 Student Services Dr., Mobile, AL 36688, USA
| | - Naga S. Annamdevula
- Department of Pharmacology, University of South Alabama, 5851 USA Drive N., Mobile, AL 36688, USA; (N.S.A.)
- Center for Lung Biology, University of South Alabama, 5851 USA Drive N., Mobile, AL 36688, USA
| | - Donald Pleshinger
- Department of Pharmacology, University of South Alabama, 5851 USA Drive N., Mobile, AL 36688, USA; (N.S.A.)
- Center for Lung Biology, University of South Alabama, 5851 USA Drive N., Mobile, AL 36688, USA
| | - Zara Ijaz
- College of Medicine, University of South Alabama, 5851 USA Drive N., Mobile, AL 36688, USA
| | - Josephine Jalkh
- College of Medicine, University of South Alabama, 5851 USA Drive N., Mobile, AL 36688, USA
| | - Raymond Penn
- College of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Deepak Deshpande
- College of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Thomas C. Rich
- Department of Pharmacology, University of South Alabama, 5851 USA Drive N., Mobile, AL 36688, USA; (N.S.A.)
- Center for Lung Biology, University of South Alabama, 5851 USA Drive N., Mobile, AL 36688, USA
| | - Silas J. Leavesley
- Department of Chemical and Biomolecular Engineering, University of South Alabama, 150 Student Services Dr., Mobile, AL 36688, USA
- Department of Systems Engineering, University of South Alabama, 150 Student Services Dr., Mobile, AL 36688, USA
- Department of Pharmacology, University of South Alabama, 5851 USA Drive N., Mobile, AL 36688, USA; (N.S.A.)
- Center for Lung Biology, University of South Alabama, 5851 USA Drive N., Mobile, AL 36688, USA
| |
Collapse
|
3
|
Wang R, Wang Y, Liao G, Chen B, Panettieri RA, Penn RB, Tang DD. Abi1 mediates airway smooth muscle cell proliferation and airway remodeling via Jak2/STAT3 signaling. iScience 2022; 25:103833. [PMID: 35198891 PMCID: PMC8851273 DOI: 10.1016/j.isci.2022.103833] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/10/2021] [Accepted: 01/21/2022] [Indexed: 11/05/2022] Open
Abstract
Asthma is a complex pulmonary disorder with multiple pathological mechanisms. A key pathological feature of chronic asthma is airway remodeling, which is largely attributed to airway smooth muscle (ASM) hyperplasia that contributes to thickening of the airway wall and further drives asthma pathology. The cellular processes that mediate ASM cell proliferation are not completely elucidated. Using multiple approaches, we demonstrate that the adapter protein Abi1 (Abelson interactor 1) is upregulated in ∼50% of ASM cell cultures derived from patients with asthma. Loss-of-function studies demonstrate that Abi1 regulates the activation of Jak2 (Janus kinase 2) and STAT3 (signal transducers and activators of transcription 3) as well as the proliferation of both nonasthmatic and asthmatic human ASM cell cultures. These findings identify Abi1 as a molecular switch that activates Jak2 kinase and STAT3 in ASM cells and demonstrate that a dysfunctional Abi1-associated pathway contributes to the progression of asthma.
Collapse
Affiliation(s)
- Ruping Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Yinna Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Guoning Liao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Bohao Chen
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Reynold A. Panettieri
- Department of Medicine, Rutgers Institute for Translational Medicine and Science, Robert Wood Johnson School of Medicine, New Brunswick, NJ 08901, USA
| | - Raymond B. Penn
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Dale D. Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
4
|
Liao G, Wang R, Tang DD. Plk1 Regulates Caspase-9 Phosphorylation at Ser-196 and Apoptosis of Human Airway Smooth Muscle Cells. Am J Respir Cell Mol Biol 2022; 66:223-234. [PMID: 34705620 PMCID: PMC8845127 DOI: 10.1165/rcmb.2021-0192oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/21/2021] [Indexed: 11/24/2022] Open
Abstract
Airway smooth muscle thickening, a key characteristic of chronic asthma, is largely attributed to increased smooth muscle cell proliferation and reduced smooth muscle apoptosis. Polo-like kinase 1 (Plk1) is a serine/threonine protein kinase that participates in the pathogenesis of airway smooth muscle remodeling. Although the role of Plk1 in cell proliferation and migration is recognized, its function in smooth muscle apoptosis has not been previously investigated. Caspase-9 (Casp9) is a key enzyme that participates in the execution of apoptosis. Casp9 phosphorylation at Ser-196 and Thr-125 is implicated in regulating its activity in cancer cells and epithelial cells. Here, exposure of human airway smooth muscle (HASM) cells to platelet-derived growth factorfor 24 hours enhanced the expression of Plk1 and Casp9 phosphorylation at Ser-196, but not Thr-125. Overexpression of Plk1 in HASM cells increased Casp9 phosphorylation at Ser-196. Moreover, the expression of Plk1 increased the levels of pro-Casp9 and pro-Casp3 and inhibited apoptosis, demonstrating a role of Plk1 in inhibiting apoptosis. Knockdown of Plk1 reduced Casp9 phosphorylation at Ser-196, reduced pro-Casp9/3 expression, and increased apoptosis. Furthermore, Casp9 phosphorylation at Ser-196 was upregulated in asthmatic HASM cells, which was associated with increased Plk1 expression. Knockdown of Plk1 in asthmatic HASM cells decreased Casp9 phosphorylation at Ser-196 and enhanced apoptosis. Together, these studies disclose a previously unknown mechanism that the Plk1-Casp9/3 pathway participates in the controlling of smooth muscle apoptosis.
Collapse
Affiliation(s)
- Guoning Liao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Ruping Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Dale D Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| |
Collapse
|
5
|
Pera T, Loblundo C, Penn RB. Pharmacological Management of Asthma and COPD. COMPREHENSIVE PHARMACOLOGY 2022:762-802. [DOI: 10.1016/b978-0-12-820472-6.00095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Warren R, Rich T, Leavesley S, Phan AV. A three-dimensional finite element model of cAMP signals. FORCES IN MECHANICS 2021; 4. [PMID: 35072121 PMCID: PMC8773462 DOI: 10.1016/j.finmec.2021.100041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- R. Warren
- Department of Mechanical, Aerospace and Biomedical Engineering, University of South Alabama, Mobile, AL 36688, USA
| | - T.C. Rich
- Center for Lung Biology & Department of Pharmacology, University of South Alabama, Mobile, AL 36688, USA
| | - S.J. Leavesley
- Center for Lung Biology & Department of Pharmacology, University of South Alabama, Mobile, AL 36688, USA
- Department of Chemical and Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA
| | - A.-V. Phan
- Department of Mechanical, Aerospace and Biomedical Engineering, University of South Alabama, Mobile, AL 36688, USA
- Corresponding author. (A.-V. Phan)
| |
Collapse
|
7
|
Meurer F, Schulte-Michels J, Häberlein H, Franken S. Ivy leaves dry extract EA 575® mediates biased β 2-adrenergic receptor signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153645. [PMID: 34280828 DOI: 10.1016/j.phymed.2021.153645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/07/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND β2-adrenergic receptor (β2-AR) stimulation activates the G protein/cAMP pathway, which is opposed by the GRK2/β-arrestin 2 pathway. The latter is undesirable in the treatment of respiratory diseases. HYPOTHESIS/PURPOSE EA 575® is capable of mediating a biased β2-adrenergic signaling pathway. METHODS The impact of the ivy leaves dry extract EA 575® on β2-adrenergic signaling was tested in a dynamic mass redistribution assay in HEK wild-type and in HEK β-arrestin knock-out cells. cAMP formation and recruitment of β-arrestin 2 were investigated using GloSensor™ and PathHunter® assays, respectively. NFκB transcriptional activity was determined in both HEK wild-type as well as HEK β-arrestin knock-out cells. RESULTS EA 575® inhibits the recruitment of β-arrestin 2 and thereby enhances G protein/cAMP signaling under β2-stimulating conditions, as evidenced by a corresponding increase in cAMP formation. While β2-AR-mediated inhibition of NFκB transcriptional activity is β-arrestin-dependent, EA 575® leads to significant inhibition of NFκB transcriptional activity in β-arrestin knock-out cells and thus via a β-arrestin-independent signaling pathway. CONCLUSION EA 575® is the first active phytopharmaceutical ingredient for which biased β2-adrenergic activation has been described. This shift towards G protein/cAMP signaling provides the molecular basis for the clinically proven efficacy of EA 575® in the treatment of lower respiratory tract diseases. In this light, EA 575® could potentially reduce β-arrestin-mediated adverse effects in new combinatorial therapeutic approaches.
Collapse
Affiliation(s)
- Fabio Meurer
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Janka Schulte-Michels
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Hanns Häberlein
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Sebastian Franken
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany.
| |
Collapse
|
8
|
Nayak AP, Lim JM, Arbel E, Wang R, Villalba DR, Nguyen TL, Schaible N, Krishnan R, Tang DD, Penn RB. Cooperativity between β-agonists and c-Abl inhibitors in regulating airway smooth muscle relaxation. FASEB J 2021; 35:e21674. [PMID: 34115899 DOI: 10.1096/fj.202100154r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 01/29/2023]
Abstract
Current therapeutic approaches to avoid or reverse bronchoconstriction rely primarily on β2 adrenoceptor agonists (β-agonists) that regulate pharmacomechanical coupling/cross bridge cycling in airway smooth muscle (ASM). Targeting actin cytoskeleton polymerization in ASM represents an alternative means to regulate ASM contraction. Herein we report the cooperative effects of targeting these distinct pathways with β-agonists and inhibitors of the mammalian Abelson tyrosine kinase (Abl1 or c-Abl). The cooperative effect of β-agonists (isoproterenol) and c-Abl inhibitors (GNF-5, or imatinib) on contractile agonist (methacholine, or histamine) -induced ASM contraction was assessed in cultured human ASM cells (using Fourier Transfer Traction Microscopy), in murine precision cut lung slices, and in vivo (flexiVent in mice). Regulation of intracellular signaling that regulates contraction (pMLC20, pMYPT1, pHSP20), and actin polymerization state (F:G actin ratio) were assessed in cultured primary human ASM cells. In each (cell, tissue, in vivo) model, c-Abl inhibitors and β-agonist exhibited additive effects in either preventing or reversing ASM contraction. Treatment of contracted ASM cells with c-Abl inhibitors and β-agonist cooperatively increased actin disassembly as evidenced by a significant reduction in the F:G actin ratio. Mechanistic studies indicated that the inhibition of pharmacomechanical coupling by β-agonists is near optimal and is not increased by c-Abl inhibitors, and the cooperative effect on ASM relaxation resides in further relaxation of ASM tension development caused by actin cytoskeleton depolymerization, which is regulated by both β-agonists and c-Abl inhibitors. Thus, targeting actin cytoskeleton polymerization represents an untapped therapeutic reserve for managing airway resistance.
Collapse
Affiliation(s)
- Ajay P Nayak
- Department of Medicine, Pulmonary and Critical Care Medicine, Center for Translational Medicine, Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA, USA
| | - John M Lim
- Department of Medicine, Pulmonary and Critical Care Medicine, Center for Translational Medicine, Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA, USA
| | - Eylon Arbel
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Ruping Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Dominic R Villalba
- Department of Medicine, Pulmonary and Critical Care Medicine, Center for Translational Medicine, Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA, USA
| | - Tahn L Nguyen
- Department of Medicine, Pulmonary and Critical Care Medicine, Center for Translational Medicine, Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA, USA
| | - Niccole Schaible
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ramaswamy Krishnan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Dale D Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Raymond B Penn
- Department of Medicine, Pulmonary and Critical Care Medicine, Center for Translational Medicine, Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
9
|
Sharma P, Penn RB. Can GPCRs Be Targeted to Control Inflammation in Asthma? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:1-20. [PMID: 34019260 DOI: 10.1007/978-3-030-68748-9_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Historically, the drugs used to manage obstructive lung diseases (OLDs), asthma, and chronic obstructive pulmonary disease (COPD) either (1) directly regulate airway contraction by blocking or relaxing airway smooth muscle (ASM) contraction or (2) indirectly regulate ASM contraction by inhibiting the principal cause of ASM contraction/bronchoconstriction and airway inflammation. To date, these tasks have been respectively assigned to two diverse drug types: agonists/antagonists of G protein-coupled receptors (GPCRs) and inhaled or systemic steroids. These two types of drugs "stay in their lane" with respect to their actions and consequently require the addition of the other drug to effectively manage both inflammation and bronchoconstriction in OLDs. Indeed, it has been speculated that safety issues historically associated with beta-agonist use (beta-agonists activate the beta-2-adrenoceptor (β2AR) on airway smooth muscle (ASM) to provide bronchoprotection/bronchorelaxation) are a function of pro-inflammatory actions of β2AR agonism. Recently, however, previously unappreciated roles of various GPCRs on ASM contractility and on airway inflammation have been elucidated, raising the possibility that novel GPCR ligands targeting these GPCRs can be developed as anti-inflammatory therapeutics. Moreover, we now know that many GPCRs can be "tuned" and not just turned "off" or "on" to specifically activate the beneficial therapeutic signaling a receptor can transduce while avoiding detrimental signaling. Thus, the fledging field of biased agonism pharmacology has the potential to turn the β2AR into an anti-inflammatory facilitator in asthma, possibly reducing or eliminating the need for steroids.
Collapse
Affiliation(s)
- Pawan Sharma
- Center for Translational Medicine, Division of Pulmonary, Allergy, & Critical Care Medicine Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College Thomas Jefferson University, Philadelphia, PA, USA
| | - Raymond B Penn
- Center for Translational Medicine, Division of Pulmonary, Allergy, & Critical Care Medicine Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Xing G, Yi C, Dou P, Zhi Z, Lin B, Cheng M. Recent progress in the development of β2 adrenergic receptor agonists: a patent review (2015-2020). Expert Opin Ther Pat 2020; 31:239-246. [PMID: 33320034 DOI: 10.1080/13543776.2021.1865312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
INTRODUCTION The β2 adrenergic receptor (β2AR) is a member of G protein-coupled receptors (GPCRs) that mediate the majority of cellular responses to external stimuli. The agonists can cause smooth muscle relaxation; therefore, many β2AR agonists have been developed especially for the treatment of pulmonary disorders such as asthma and chronic obstructive pulmonary disease (COPD). Many new natural and synthetic compounds have been discovered and developed as novel β2AR agonists over the past 5 years. AREAS COVERED This review offers an update for the development of β2AR agonists in the patents published from 2015 to 2020, including new natural and synthetic compounds for the treatment of asthma and COPD. In particular, the latest patents about compounds possessing both muscarinic receptor antagonist and β2 adrenergic receptor agonist activity are reviewed. EXPERT OPINION β2AR agonists have been developed extensively for the treatment of asthma and COPD. In the past 5 years, novel agonists from both natural sources and synthetic methods were intensively developed. Compounds possessing both muscarinic receptor antagonist and β2AR agonist activity represent a new trend in this area because they are possibly able to act together in a synergistic fashion, therefore, relieve the symptoms of patients through two distinct mechanisms.
Collapse
Affiliation(s)
- Gang Xing
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang China
| | - Ce Yi
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang China
| | - Peiyuan Dou
- School of Chemistry, Cardiff University, Cardiff, UK
| | - Zhengxing Zhi
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang China
| | - Bin Lin
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang China
| | - Maosheng Cheng
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang China
| |
Collapse
|
11
|
Mondejar-Parreño G, Perez-Vizcaino F, Cogolludo A. Kv7 Channels in Lung Diseases. Front Physiol 2020; 11:634. [PMID: 32676036 PMCID: PMC7333540 DOI: 10.3389/fphys.2020.00634] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/18/2020] [Indexed: 12/23/2022] Open
Abstract
Lung diseases constitute a global health concern causing disability. According to WHO in 2016, respiratory diseases accounted for 24% of world population mortality, the second cause of death after cardiovascular diseases. The Kv7 channels family is a group of voltage-dependent K+ channels (Kv) encoded by KCNQ genes that are involved in various physiological functions in numerous cell types, especially, cardiac myocytes, smooth muscle cells, neurons, and epithelial cells. Kv7 channel α-subunits are regulated by KCNE1–5 ancillary β-subunits, which modulate several characteristics of Kv7 channels such as biophysical properties, cell-location, channel trafficking, and pharmacological sensitivity. Kv7 channels are mainly expressed in two large groups of lung tissues: pulmonary arteries (PAs) and bronchial tubes. In PA, Kv7 channels are expressed in pulmonary artery smooth muscle cells (PASMCs); while in the airway (trachea, bronchus, and bronchioles), Kv7 channels are expressed in airway smooth muscle cells (ASMCs), airway epithelial cells (AEPs), and vagal airway C-fibers (VACFs). The functional role of Kv7 channels may vary depending on the cell type. Several studies have demonstrated that the impairment of Kv7 channel has a strong impact on pulmonary physiology contributing to the pathophysiology of different respiratory diseases such as cystic fibrosis, asthma, chronic obstructive pulmonary disease, chronic coughing, lung cancer, and pulmonary hypertension. Kv7 channels are now recognized as playing relevant physiological roles in many tissues, which have encouraged the search for Kv7 channel modulators with potential therapeutic use in many diseases including those affecting the lung. Modulation of Kv7 channels has been proposed to provide beneficial effects in a number of lung conditions. Therefore, Kv7 channel openers/enhancers or drugs acting partly through these channels have been proposed as bronchodilators, expectorants, antitussives, chemotherapeutics and pulmonary vasodilators.
Collapse
Affiliation(s)
- Gema Mondejar-Parreño
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Francisco Perez-Vizcaino
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Angel Cogolludo
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| |
Collapse
|
12
|
Lu RA, Zeki AA, Ram-Mohan S, Nguyen N, Bai Y, Chmiel K, Pecic S, Ai X, Krishnan R, Ghosh CC. Inhibiting Airway Smooth Muscle Contraction Using Pitavastatin: A Role for the Mevalonate Pathway in Regulating Cytoskeletal Proteins. Front Pharmacol 2020; 11:469. [PMID: 32435188 PMCID: PMC7218099 DOI: 10.3389/fphar.2020.00469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/25/2020] [Indexed: 12/16/2022] Open
Abstract
Despite maximal use of currently available therapies, a significant number of asthma patients continue to experience severe, and sometimes life-threatening bronchoconstriction. To fill this therapeutic gap, we examined a potential role for the 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) inhibitor, pitavastatin. Using human airway smooth muscle (ASM) cells and murine precision-cut lung slices, we discovered that pitavastatin significantly inhibited basal-, histamine-, and methacholine (MCh)-induced ASM contraction. This occurred via reduction of myosin light chain 2 (MLC2) phosphorylation, and F-actin stress fiber density and distribution, in a mevalonate (MA)- and geranylgeranyl pyrophosphate (GGPP)-dependent manner. Pitavastatin also potentiated the ASM relaxing effect of a simulated deep breath, a beneficial effect that is notably absent with the β2-agonist, isoproterenol. Finally, pitavastatin attenuated ASM pro-inflammatory cytokine production in a GGPP-dependent manner. By targeting all three hallmark features of ASM dysfunction in asthma—contraction, failure to adequately relax in response to a deep breath, and inflammation—pitavastatin may represent a unique asthma therapeutic.
Collapse
Affiliation(s)
- Robin A Lu
- Department of Emergency Medicine, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Amir A Zeki
- Division of Pulmonary, Critical Care, and Sleep Medicine, U.C. Davis Lung Center, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Sumati Ram-Mohan
- Department of Emergency Medicine, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Nhan Nguyen
- Department of Emergency Medicine, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Yan Bai
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Kenneth Chmiel
- Division of Pulmonary, Critical Care, and Sleep Medicine, U.C. Davis Lung Center, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University, Fullerton, CA, United States
| | - Xingbin Ai
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ramaswamy Krishnan
- Department of Emergency Medicine, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Chandra C Ghosh
- Department of Emergency Medicine, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
13
|
Abstract
Asthma is a heterogeneous inflammatory disease of the airways that is associated with airway hyperresponsiveness and airflow limitation. Although asthma was once simply categorized as atopic or nonatopic, emerging analyses over the last few decades have revealed a variety of asthma endotypes that are attributed to numerous pathophysiological mechanisms. The classification of asthma by endotype is primarily routed in different profiles of airway inflammation that contribute to bronchoconstriction. Many asthma therapeutics target G protein-coupled receptors (GPCRs), which either enhance bronchodilation or prevent bronchoconstriction. Short-acting and long-acting β 2-agonists are widely used bronchodilators that signal through the activation of the β 2-adrenergic receptor. Short-acting and long-acting antagonists of muscarinic acetylcholine receptors are used to reduce bronchoconstriction by blocking the action of acetylcholine. Leukotriene antagonists that block the signaling of cysteinyl leukotriene receptor 1 are used as an add-on therapy to reduce bronchoconstriction and inflammation induced by cysteinyl leukotrienes. A number of GPCR-targeting asthma drug candidates are also in different stages of development. Among them, antagonists of prostaglandin D2 receptor 2 have advanced into phase III clinical trials. Others, including antagonists of the adenosine A2B receptor and the histamine H4 receptor, are in early stages of clinical investigation. In the past decade, significant research advancements in pharmacology, cell biology, structural biology, and molecular physiology have greatly deepened our understanding of the therapeutic roles of GPCRs in asthma and drug action on these GPCRs. This review summarizes our current understanding of GPCR signaling and pharmacology in the context of asthma treatment. SIGNIFICANCE STATEMENT: Although current treatment methods for asthma are effective for a majority of asthma patients, there are still a large number of patients with poorly controlled asthma who may experience asthma exacerbations. This review summarizes current asthma treatment methods and our understanding of signaling and pharmacology of G protein-coupled receptors (GPCRs) in asthma therapy, and discusses controversies regarding the use of GPCR drugs and new opportunities in developing GPCR-targeting therapeutics for the treatment of asthma.
Collapse
Affiliation(s)
- Stacy Gelhaus Wendell
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| | - Hao Fan
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| |
Collapse
|
14
|
Stone N, Shettlesworth S, Rich TC, Leavesley SJ, Phan AV. A two-dimensional finite element model of cyclic adenosine monophosphate (cAMP) intracellular signaling. SN APPLIED SCIENCES 2019; 1. [PMID: 33615142 DOI: 10.1007/s42452-019-1757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
In this work, we present a two-dimensional finite element analysis (FEA) model that describes fundamental intracellular signals of cyclic adenosine monophosphate (cAMP) in a general fashion. The model was subsequently solved numerically and the results were displayed in forms of time-course plots of cAMP concentration at a cellular location or color-filled contour maps of cAMP signal distribution within the cell at specific time points. Basic intracellular cAMP signaling was described in this model so it can be numerically validated by verifying its numerical results against available analytical solutions and against results obtained from other numerical techniques reported in the literature. This is the first important step before the model can be expanded in future work. Model simulations demonstrate that under certain conditions, sustained cAMP concentrations can be formed within endothelial cells (ECs), similar to those observed in rat pulmonary microvascular ECs. Spatial and temporal cAMP dynamic simulations indicated that the proposed FEA model is an effective tool for the study of the kinetics and spatial spread of second messenger signaling and can be expanded to simulate second messenger signals in the pulmonary vasculature.
Collapse
Affiliation(s)
- N Stone
- William B. Burnsed, Jr. Department of Mechanical Engineering, University of South Alabama, Mobile, AL 36688, USA
| | - S Shettlesworth
- William B. Burnsed, Jr. Department of Mechanical Engineering, University of South Alabama, Mobile, AL 36688, USA
| | - T C Rich
- Center for Lung Biology & Department of Pharmacology, University of South Alabama, Mobile, AL 36688, USA
| | - S J Leavesley
- Department of Chemical and Biomolecular Engineering & Department of Pharmacology, University of South Alabama, Mobile, AL 36688, USA
| | - A-V Phan
- William B. Burnsed, Jr. Department of Mechanical Engineering, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
15
|
Panettieri RA, Pera T, Liggett SB, Benovic JL, Penn RB. Pepducins as a potential treatment strategy for asthma and COPD. Curr Opin Pharmacol 2018; 40:120-125. [PMID: 29729548 DOI: 10.1016/j.coph.2018.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 12/18/2022]
Abstract
Current therapies to treat asthma and other airway diseases primarily include anti-inflammatory agents and bronchodilators. Anti-inflammatory agents target trafficking and resident immunocytes and structural cells, while bronchodilators act to prevent or reverse shortening of airway smooth muscle (ASM), the pivotal tissue regulating bronchomotor tone. Advances in our understanding of the biology of G protein-coupled receptors (GPCRs) and biased agonism offers unique opportunities to modulate GPCR function that include the use of pepducins and allosteric modulators. Recent evidence suggests that small molecule inhibitors of Gαq as well as pepducins targeting Gq-coupled receptors can broadly inhibit contractile agonist-induced ASM function. Given these advances, new therapeutic approaches can be leveraged to diminish the global rise in morbidity and mortality associated with asthma and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 89 French Street, Suite 4211, New Brunswick, NJ 08901, United States.
| | - Tonio Pera
- Sidney Kimmel Medical College, Center for Translational Medicine, Jane and Leonard Korman Lung Institute, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Stephen B Liggett
- USF Health Office of Research, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Raymond B Penn
- Sidney Kimmel Medical College, Center for Translational Medicine, Jane and Leonard Korman Lung Institute, Thomas Jefferson University, Philadelphia, PA 19107, United States
| |
Collapse
|
16
|
Abstract
History suggests β agonists, the cognate ligand of the β2 adrenoceptor, have been used as bronchodilators for around 5,000 years, and β agonists remain today the frontline treatment for asthma and chronic obstructive pulmonary disease (COPD). The β agonists used clinically today are the products of significant expenditure and over 100 year's intensive research aimed at minimizing side effects and enhancing therapeutic usefulness. The respiratory physician now has a therapeutic toolbox of long acting β agonists to prophylactically manage bronchoconstriction, and short acting β agonists to relieve acute exacerbations. Despite constituting the cornerstone of asthma and COPD therapy, these drugs are not perfect; significant safety issues have led to a black box warning advising that long acting β agonists should not be used alone in patients with asthma. In addition there are a significant proportion of patients whose asthma remains uncontrolled. In this chapter we discuss the evolution of β agonist use and how the understanding of β agonist actions on their principal target tissue, airway smooth muscle, has led to greater understanding of how these drugs can be further modified and improved in the future. Research into the genetics of the β2 adrenoceptor will also be discussed, as will the implications of individual DNA profiles on the clinical outcomes of β agonist use (pharmacogenetics). Finally we comment on what the future may hold for the use of β agonists in respiratory disease.
Collapse
Affiliation(s)
| | - Raymond B Penn
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ian P Hall
- Division of Respiratory Medicine, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
17
|
Banathy A, Cheung-Flynn J, Goleniewska K, Boyd KL, Newcomb DC, Peebles RS, Komalavilas P. Heat Shock-Related Protein 20 Peptide Decreases Human Airway Constriction Downstream of β2-Adrenergic Receptor. Am J Respir Cell Mol Biol 2017; 55:225-33. [PMID: 26909644 DOI: 10.1165/rcmb.2015-0139oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Severe bronchospasm refractory to β-agonists is a challenging aspect of asthma therapy, and novel therapeutics are needed. β-agonist-induced airway smooth muscle (ASM) relaxation is associated with increases in the phosphorylation of the small heat shock-related protein (HSP) 20. We hypothesized that a transducible phosphopeptide mimetic of HSP20 (P20 peptide) causes relaxation of human ASM (HASM) by interacting with target(s) downstream of the β2-adrenergic receptor (β2AR) pathway. The effect of the P20 peptide on ASM contractility was determined in human and porcine ASM using a muscle bath. The effect of the P20 peptide on filamentous actin dynamics and migration was examined in intact porcine ASM and cultured primary HASM cells. The efficacy of the P20 peptide in vivo on airway hyperresponsiveness (AHR) was determined in an ovalbumin (OVA) sensitization and challenge murine model of allergic airway inflammation. P20 peptide caused dose-dependent relaxation of carbachol-precontracted ASM and blocked carbachol-induced contraction. The β2AR inhibitor, (±)-1-[2,3-(dihydro-7-methyl-1H-inden-4-yl)oxy]-3-[(1-methylethyl)amino]-2-butanol hydrochloride (ICI 118,551), abrogated isoproterenol but not P20 peptide-mediated relaxation. The P20 peptide decreased filamentous actin levels in intact ASM, disrupted stress fibers, and inhibited platelet-derived growth factor-induced migration of HASM cells. The P20 peptide treatment reduced methacholine-induced AHR in OVA mice without affecting the inflammatory response. These results suggest that the P20 peptide decreased airway constriction and disrupted stress fibers through regulation of the actin cytoskeleton downstream of β2AR. Thus, the P20 peptide may be a potential therapeutic for asthma refractory to β-agonists.
Collapse
Affiliation(s)
| | | | | | - Kelly L Boyd
- 3 Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | | | - R Stokes Peebles
- 2 Medicine, and.,4 Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Padmini Komalavilas
- Departments of 1 Surgery.,4 Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| |
Collapse
|
18
|
Pera T, Penn RB. Bronchoprotection and bronchorelaxation in asthma: New targets, and new ways to target the old ones. Pharmacol Ther 2016; 164:82-96. [PMID: 27113408 PMCID: PMC4942340 DOI: 10.1016/j.pharmthera.2016.04.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/07/2016] [Indexed: 01/01/2023]
Abstract
Despite over 50years of inhaled beta-agonists and corticosteroids as the default management or rescue drugs for asthma, recent research suggests that new therapeutic options are likely to emerge. This belief stems from both an improved understanding of what causes and regulates airway smooth muscle (ASM) contraction, and the identification of new targets whose inhibition or activation can relax ASM. In this review we discuss the recent findings that provide new insight into ASM contractile regulation, a revolution in pharmacology that identifies new ways to "tune" G protein-coupled receptors to improve therapeutic efficacy, and the discovery of several novel targets/approaches capable of effecting bronchoprotection or bronchodilation.
Collapse
Affiliation(s)
- Tonio Pera
- Center for Translational Medicine and Jane and Leonard Korman Lung Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States.
| | - Raymond B Penn
- Center for Translational Medicine and Jane and Leonard Korman Lung Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
19
|
Pelaia G, Vatrella A, Busceti MT, Gallelli L, Calabrese C, Terracciano R, Lombardo N, Maselli R. Pharmacologic rationale underlying the therapeutic effects of tiotropium/olodaterol in COPD. Ther Clin Risk Manag 2015; 11:1563-72. [PMID: 26504398 PMCID: PMC4603718 DOI: 10.2147/tcrm.s84151] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bronchodilators are the most important drugs used for the treatment of chronic obstructive pulmonary disease (COPD). In particular, these therapeutic agents are mostly long-acting compounds utilized via inhalation, and include LAMA (long-acting muscarinic receptor antagonists) and LABA (long-acting β2-adrenoceptor agonists). Because LAMA and LABA induce bronchodilation by distinct mechanisms of action, LABA/LAMA combinations provide a reciprocal potentiation of the pharmacological effects caused by each component. Hence, many COPD patients who do not achieve a satisfactory control of their symptoms using a single, either LAMA or LABA bronchodilator, can experience relevant benefits with the use of LAMA/LABA fixed combinations. Many different LAMA/LABA combinations have been recently developed and evaluated in randomized clinical trials. In this context, our review focuses on the pharmacological mechanisms underpinning the bronchodilation elicited by the LAMA tiotropium bromide and the LABA olodaterol. We also discuss the results of the most important clinical studies carried out in COPD patients to assess the efficacy and safety of tiotropium/olodaterol combinations.
Collapse
Affiliation(s)
- Girolamo Pelaia
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | | | - Maria Teresa Busceti
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Luca Gallelli
- Department of Health Science, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Cecilia Calabrese
- Department of Cardio-Thoracic and Respiratory Sciences, Second University of Naples, Naples, Italy
| | - Rosa Terracciano
- Department of Health Science, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Nicola Lombardo
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Rosario Maselli
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
20
|
Pera T, Hegde A, Deshpande DA, Morgan SJ, Tiegs BC, Theriot BS, Choi YH, Walker JKL, Penn RB. Specificity of arrestin subtypes in regulating airway smooth muscle G protein-coupled receptor signaling and function. FASEB J 2015; 29:4227-35. [PMID: 26103985 DOI: 10.1096/fj.15-273094] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/15/2015] [Indexed: 12/22/2022]
Abstract
Arrestins have been shown to regulate numerous G protein-coupled receptors (GPCRs) in studies employing receptor/arrestin overexpression in artificial cell systems. Which arrestin isoforms regulate which GPCRs in primary cell types is poorly understood. We sought to determine the effect of β-arrestin-1 or β-arrestin-2 inhibition or gene ablation on signaling and function of multiple GPCRs endogenously expressed in airway smooth muscle (ASM). In vitro [second messenger (calcium, cAMP generation)], ex vivo (ASM tension generation in suspended airway), and in vivo (invasive airway resistance) analyses were performed on human ASM cells and murine airways/whole animal subject to β-arrestin-1 or -2 knockdown or knockout (KO). In both human and murine model systems, knockdown or KO of β-arrestin-2 relative to control missense small interfering RNA or wild-type mice selectively increased (40-60%) β2-adrenoceptor signaling and function. β-arrestin-1 knockdown or KO had no effect on signaling and function of β2-adrenoceptor or numerous procontractile GPCRs, but selectively inhibited M3 muscarinic acetylcholine receptor signaling (∼50%) and function (∼25% ex vivo, >50% in vivo) without affecting EC50 values. Arrestin subtypes differentially regulate ASM GPCRs and β-arrestin-1 inhibition represents a novel approach to managing bronchospasm in obstructive lung diseases.
Collapse
Affiliation(s)
- Tonio Pera
- *Department of Medicine, Division of Pulmonary and Critical Care Medicine, Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; and Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Akhil Hegde
- *Department of Medicine, Division of Pulmonary and Critical Care Medicine, Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; and Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Deepak A Deshpande
- *Department of Medicine, Division of Pulmonary and Critical Care Medicine, Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; and Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Sarah J Morgan
- *Department of Medicine, Division of Pulmonary and Critical Care Medicine, Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; and Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Brian C Tiegs
- *Department of Medicine, Division of Pulmonary and Critical Care Medicine, Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; and Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Barbara S Theriot
- *Department of Medicine, Division of Pulmonary and Critical Care Medicine, Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; and Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Yeon H Choi
- *Department of Medicine, Division of Pulmonary and Critical Care Medicine, Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; and Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Julia K L Walker
- *Department of Medicine, Division of Pulmonary and Critical Care Medicine, Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; and Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Raymond B Penn
- *Department of Medicine, Division of Pulmonary and Critical Care Medicine, Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; and Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
21
|
Pelaia G, Maselli R, Gallelli L. Pharmacologic rationale, efficacy and safety of the fixed-dose co-formulation of indacaterol and glycopyrronium. Multidiscip Respir Med 2015; 9:64. [PMID: 25699181 PMCID: PMC4333835 DOI: 10.1186/2049-6958-9-64] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/13/2014] [Indexed: 12/22/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a widespread respiratory disorder, usually characterized by progressive and poorly reversible airflow limitation. Inhaled long-acting bronchodilators, namely LABA (long-acting β2-adrenergic agonists) and LAMA (long-acting muscarinic receptor antagonists) are the mainstay of COPD treatment. Because the symptoms of many patients with COPD do not satisfactorily improve by using a single, either LABA or LAMA bronchodilator, the synergism of action resulting from the combination of the different bronchodilating mechanisms activated by LABA and LAMA, respectively, can significantly contribute to a better disease control. Based on these clinical and pharmacological considerations, several LABA/LAMA fixed-dose combinations have been developed and experimentally evaluated. Within such a context, the drug co-formulation containing indacaterol and glycopyrronium is probably the LABA/LAMA association which has been most extensively studied during the last few years.
Collapse
Affiliation(s)
- Girolamo Pelaia
- Department of Medical and Surgical Sciences, Section of Respiratory Diseases, University "Magna Graecia" of Catanzaro, Campus Universitario "S. Venuta", Viale Europa, Località, Germaneto, 88100 Catanzaro, Italy
| | - Rosario Maselli
- Department of Medical and Surgical Sciences, Section of Respiratory Diseases, University "Magna Graecia" of Catanzaro, Campus Universitario "S. Venuta", Viale Europa, Località, Germaneto, 88100 Catanzaro, Italy
| | - Luca Gallelli
- Department of Health Science, Section of Pharmacology, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| |
Collapse
|
22
|
Balenga NA, Jester W, Jiang M, Panettieri RA, Druey KM. Loss of regulator of G protein signaling 5 promotes airway hyperresponsiveness in the absence of allergic inflammation. J Allergy Clin Immunol 2014; 134:451-9. [PMID: 24666695 PMCID: PMC4119844 DOI: 10.1016/j.jaci.2014.01.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Although eosinophilic inflammation typifies allergic asthma, it is not a prerequisite for airway hyperresponsiveness (AHR), suggesting that underlying abnormalities in structural cells, such as airway smooth muscle (ASM), contribute to the asthmatic diathesis. Dysregulation of procontractile G protein-coupled receptor (GPCR) signaling in ASM could mediate enhanced contractility. OBJECTIVE We explored the role of a regulator of procontractile GPCR signaling, regulator of G protein signaling 5 (RGS5), in unprovoked and allergen-induced AHR. METHODS We evaluated GPCR-evoked Ca(2+) signaling, precision-cut lung slice (PCLS) contraction, and lung inflammation in naive and Aspergillus fumigatus-challenged wild-type and Rgs5(-/-) mice. We analyzed lung resistance and dynamic compliance in live anesthetized mice using invasive plethysmography. RESULTS Loss of RGS5 promoted constitutive AHR because of enhanced GPCR-induced Ca(2+) mobilization in ASM. PCLSs from naive Rgs5(-/-) mice contracted maximally at baseline independently of allergen challenge. RGS5 deficiency had little effect on the parameters of allergic inflammation, including cell counts in bronchoalveolar lavage fluid, mucin production, ASM mass, and subepithelial collagen deposition. Unexpectedly, induced IL-13 and IL-33 levels were much lower in challenged lungs from Rgs5(-/-) mice relative to those seen in wild-type mice. CONCLUSION Loss of RGS5 confers spontaneous AHR in mice in the absence of allergic inflammation. Because it is selectively expressed in ASM within the lung and does not promote inflammation, RGS5 might be a therapeutic target for asthma.
Collapse
Affiliation(s)
- Nariman A Balenga
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases/National Institutes of Health, Bethesda, Md
| | - William Jester
- Pulmonary, Allergy and Critical Care Division, Airways Biology Initiative, University of Pennsylvania, Philadelphia, Pa
| | - Meiqi Jiang
- Pulmonary, Allergy and Critical Care Division, Airways Biology Initiative, University of Pennsylvania, Philadelphia, Pa
| | - Reynold A Panettieri
- Pulmonary, Allergy and Critical Care Division, Airways Biology Initiative, University of Pennsylvania, Philadelphia, Pa
| | - Kirk M Druey
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases/National Institutes of Health, Bethesda, Md.
| |
Collapse
|
23
|
Morgan SJ, Deshpande DA, Tiegs BC, Misior AM, Yan H, Hershfeld AV, Rich TC, Panettieri RA, An SS, Penn RB. β-Agonist-mediated relaxation of airway smooth muscle is protein kinase A-dependent. J Biol Chem 2014; 289:23065-23074. [PMID: 24973219 DOI: 10.1074/jbc.m114.557652] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Inhaled β-agonists are effective at reversing bronchoconstriction in asthma, but the mechanism by which they exert this effect is unclear and controversial. PKA is the historically accepted effector, although this assumption is made on the basis of associative and not direct evidence. Recent studies have asserted that exchange protein activated by cAMP (Epac), not PKA, mediates the relaxation of airway smooth muscle (ASM) observed with β-agonist treatment. This study aims to clarify the role of PKA in the prorelaxant effects of β-agonists on ASM. Inhibition of PKA activity via expression of the PKI and RevAB peptides results in increased β-agonist-mediated cAMP release, abolishes the inhibitory effect of isoproterenol on histamine-induced intracellular calcium flux, and significantly attenuates histamine-stimulated MLC-20 phosphorylation. Analyses of ASM cell and tissue contraction demonstrate that PKA inhibition eliminates most, if not all, β-agonist-mediated relaxation of contracted smooth muscle. Conversely, Epac knockdown had no effect on the regulation of contraction or procontractile signaling by isoproterenol. These findings suggest that PKA, not Epac, is the predominant and physiologically relevant effector through which β-agonists exert their relaxant effects.
Collapse
Affiliation(s)
- Sarah J Morgan
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Deepak A Deshpande
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Brian C Tiegs
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Anna M Misior
- Department of Internal Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27106
| | - Huandong Yan
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Alena V Hershfeld
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Thomas C Rich
- Department of Pharmacology, College of Medicine and Center for Lung Biology, University of South Alabama, Mobile, Alabama 36688
| | - Reynold A Panettieri
- Department of Medicine, Pulmonary, Allergy, and Critical Care Division, Airways Biology Initiative, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | - Steven S An
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, and
| | - Raymond B Penn
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201,; Department of Medicine, Division of Pulmonary and Critical Care Medicine, Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.
| |
Collapse
|
24
|
Brueggemann LI, Haick JM, Neuburg S, Tate S, Randhawa D, Cribbs LL, Byron KL. KCNQ (Kv7) potassium channel activators as bronchodilators: combination with a β2-adrenergic agonist enhances relaxation of rat airways. Am J Physiol Lung Cell Mol Physiol 2014; 306:L476-86. [PMID: 24441871 PMCID: PMC3949081 DOI: 10.1152/ajplung.00253.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 01/16/2014] [Indexed: 12/19/2022] Open
Abstract
KCNQ (Kv7 family) potassium (K(+)) channels were recently found in airway smooth muscle cells (ASMCs) from rodent and human bronchioles. In the present study, we evaluated expression of KCNQ channels and their role in constriction/relaxation of rat airways. Real-time RT-PCR analysis revealed expression of KCNQ4 > KCNQ5 > KCNQ1 > KCNQ2 > KCNQ3, and patch-clamp electrophysiology detected KCNQ currents in rat ASMCs. In precision-cut lung slices, the KCNQ channel activator retigabine induced a concentration-dependent relaxation of small bronchioles preconstricted with methacholine (MeCh; EC50 = 3.6 ± 0.3 μM). Bronchoconstriction was also attenuated in the presence of two other structurally unrelated KCNQ channel activators: zinc pyrithione (ZnPyr; 1 μM; 22 ± 7%) and 2,5-dimethylcelecoxib (10 μM; 24 ± 8%). The same three KCNQ channel activators increased KCNQ currents in ASMCs by two- to threefold. The bronchorelaxant effects of retigabine and ZnPyr were prevented by inclusion of the KCNQ channel blocker XE991. A long-acting β2-adrenergic receptor agonist, formoterol (10 nM), did not increase KCNQ current amplitude in ASMCs, but formoterol (1-1,000 nM) did induce a time- and concentration-dependent relaxation of rat airways, with a notable desensitization during a 30-min treatment or with repetitive treatments. Coadministration of retigabine (10 μM) with formoterol produced a greater peak and sustained reduction of MeCh-induced bronchoconstriction and reduced the apparent desensitization observed with formoterol alone. Our findings support a role for KCNQ K(+) channels in the regulation of airway diameter. A combination of a β2-adrenergic receptor agonist with a KCNQ channel activator may improve bronchodilator therapy.
Collapse
Affiliation(s)
- Lioubov I Brueggemann
- Dept. of Molecular Pharmacology & Therapeutics, Loyola Univ. Chicago, Stritch School of Medicine, 2160 S. First Ave., Bldg. 102, Rm. 3634, Maywood, IL 60153.
| | | | | | | | | | | | | |
Collapse
|
25
|
Prakash YS. Airway smooth muscle in airway reactivity and remodeling: what have we learned? Am J Physiol Lung Cell Mol Physiol 2013; 305:L912-33. [PMID: 24142517 PMCID: PMC3882535 DOI: 10.1152/ajplung.00259.2013] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/12/2013] [Indexed: 12/12/2022] Open
Abstract
It is now established that airway smooth muscle (ASM) has roles in determining airway structure and function, well beyond that as the major contractile element. Indeed, changes in ASM function are central to the manifestation of allergic, inflammatory, and fibrotic airway diseases in both children and adults, as well as to airway responses to local and environmental exposures. Emerging evidence points to novel signaling mechanisms within ASM cells of different species that serve to control diverse features, including 1) [Ca(2+)]i contractility and relaxation, 2) cell proliferation and apoptosis, 3) production and modulation of extracellular components, and 4) release of pro- vs. anti-inflammatory mediators and factors that regulate immunity as well as the function of other airway cell types, such as epithelium, fibroblasts, and nerves. These diverse effects of ASM "activity" result in modulation of bronchoconstriction vs. bronchodilation relevant to airway hyperresponsiveness, airway thickening, and fibrosis that influence compliance. This perspective highlights recent discoveries that reveal the central role of ASM in this regard and helps set the stage for future research toward understanding the pathways regulating ASM and, in turn, the influence of ASM on airway structure and function. Such exploration is key to development of novel therapeutic strategies that influence the pathophysiology of diseases such as asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis.
Collapse
Affiliation(s)
- Y S Prakash
- Dept. of Anesthesiology, Mayo Clinic, 4-184 W Jos SMH, 200 First St. SW, Rochester, MN 55905.
| |
Collapse
|
26
|
Michel MC. Do β-adrenoceptor agonists induce homologous or heterologous desensitization in rat urinary bladder? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2013; 387:215-24. [PMID: 24213882 DOI: 10.1007/s00210-013-0936-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 10/24/2013] [Indexed: 11/25/2022]
Abstract
β3-Adrenoceptor agonists have recently been introduced for the symptomatic treatment of the overactive bladder syndrome. As such treatment is not curative, long-term treatment is anticipated to be required. As the susceptibility of β3-adrenoceptors to undergo agonist-induced desensitization is cell type- and tissue-dependent, we have explored whether pre-treatment with a β-adrenoceptor agonist will attenuate subsequent relaxation responses to freshly added agonist using rat urinary bladder as a model. We have used the prototypical β-adrenoceptor agonist isoprenaline, the β2-selective fenoterol and the β3-selective CL 316,243 and mirabegron as well as the receptor-independent bladder relaxant forskolin. We show that a 6-h pre-treatment with agonist can significantly reduce subsequent relaxation against KCl-induced smooth muscle tone, but agonist-induced desensitization was also observed with longer pre-treatments or against passive tension. The agonist-induced desensitization was prominent for the β2 component of rat bladder relaxation but much weaker or even absent for the β3 component. Moreover, β-adrenoceptor agonist pre-treatment reduced contractile responses to the muscarinic agonist carbachol and the receptor-independent stimulus KCl. Taken together these data do not support the hypothesis that the long-term clinical efficacy of β3-adrenoceptor agonists in the treatment of the overactive bladder syndrome will be limited by receptor desensitization. Rather they raise the possibility that such treatment may not only cause smooth muscle relaxation but also may attenuate hyper-contractility of the bladder.
Collapse
Affiliation(s)
- Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Obere Zahlbacher Str. 67, 51101, Mainz, Germany,
| |
Collapse
|
27
|
Deshpande DA, Yan H, Kong KC, Tiegs BC, Morgan SJ, Pera T, Panettieri RA, Eckhart AD, Penn RB. Exploiting functional domains of GRK2/3 to alter the competitive balance of pro- and anticontractile signaling in airway smooth muscle. FASEB J 2013; 28:956-65. [PMID: 24132623 DOI: 10.1096/fj.13-240226] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
To clarify the potential utility of targeting GRK2/3-mediated desensitization as a means of manipulating airway smooth muscle (ASM) contractile state, we assessed the specificity of GRK2/3 regulation of procontractile and relaxant G-protein-coupled receptors in ASM. Functional domains of GRK2/3 were stably expressed, or siRNA-mediated GRK2/3 knockdown was performed, in human ASM cultures, and agonist-induced signaling was assessed. Regulation of contraction of murine tracheal rings expressing GRK2 C terminus was also assessed. GRK2/3 knockdown or expression of the GRK2 C terminus caused a significant (∼ 30-90%) increase in maximal β-agonist and histamine [phosphoinositide (PI) hydrolysis] signaling, without affecting the calculated EC50. GRK2 C-terminal expression did not affect signaling by methacholine, thrombin, or LTD4. Expression of the GRK2 N terminus or kinase-dead holo-GRK2 diminished (∼ 30-70%) both PI hydrolysis and Ca(2+) mobilization by every Gq-coupled receptor examined. Under conditions of GRK2 C-terminal expression, β-agonist inhibition of methacholine-stimulated PI hydrolysis was greater. Finally, transgenic expression of the GRK2 C terminus in murine ASM enabled ∼ 30-50% greater β-agonist-mediated relaxation of methacholine-induced contraction. Collectively these data demonstrate the relative selectivity of GRKs for the β2AR in ASM and the ability to exploit GRK2/3 functional domains to render ASM hyporesponsive to contractile agents while increasing responsiveness to bronchodilating β-agonist.
Collapse
Affiliation(s)
- Deepak A Deshpande
- 2Department of Medicine, Thomas Jefferson University, Room 317, College Bldg., 1025 Walnut St., Philadelphia, PA 19107, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Matera MG, Calzetta L, Cazzola M. β-Adrenoceptor Modulation in Chronic Obstructive Pulmonary Disease: Present and Future Perspectives. Drugs 2013; 73:1653-63. [DOI: 10.1007/s40265-013-0120-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
29
|
Cleary RA, Wang R, Wang T, Tang DD. Role of Abl in airway hyperresponsiveness and airway remodeling. Respir Res 2013; 14:105. [PMID: 24112389 PMCID: PMC3852349 DOI: 10.1186/1465-9921-14-105] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 10/09/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Asthma is a chronic disease that is characterized by airway hyperresponsiveness and airway remodeling. The underlying mechanisms that mediate the pathological processes are not fully understood. Abl is a non-receptor protein tyrosine kinase that has a role in the regulation of smooth muscle contraction and smooth muscle cell proliferation in vitro. The role of Abl in airway hyperresponsiveness and airway remodeling in vivo is largely unknown. METHODS To evaluate the role of Abl in asthma pathology, we assessed the expression of Abl in airway tissues from the ovalbumin sensitized and challenged mouse model, and human asthmatic airway smooth muscle cells. In addition, we generated conditional knockout mice in which Abl expression in smooth muscle was disrupted, and then evaluated the effects of Abl conditional knockout on airway resistance, smooth muscle mass, cell proliferation, IL-13 and CCL2 in the mouse model of asthma. Furthermore, we determined the effects of the Abl pharmacological inhibitors imatinib and GNF-5 on these processes in the animal model of asthma. RESULTS The expression of Abl was upregulated in airway tissues of the animal model of asthma and in airway smooth muscle cells of patients with severe asthma. Conditional knockout of Abl attenuated airway resistance, smooth muscle mass and staining of proliferating cell nuclear antigen in the airway of mice sensitized and challenged with ovalbumin. Interestingly, conditional knockout of Abl did not affect the levels of IL-13 and CCL2 in bronchoalveolar lavage fluid of animals treated with ovalbumin. However, treatment with imatinib and GNF-5 inhibited the ovalbumin-induced increase in IL-13 and CCL2 as well as airway resistance and smooth muscle growth in animals. CONCLUSIONS These results suggest that the altered expression of Abl in airway smooth muscle may play a critical role in the development of airway hyperresponsiveness and airway remodeling in asthma. Our findings support the concept that Abl may be a novel target for the development of new therapy to treat asthma.
Collapse
Affiliation(s)
- Rachel A Cleary
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue MC-8, Albany, NY 12208, USA.
| | | | | | | |
Collapse
|
30
|
Mizuta K, Zhang Y, Xu D, Mizuta F, D'Ovidio F, Masaki E, Emala CW. The dopamine D1 receptor is expressed and facilitates relaxation in airway smooth muscle. Respir Res 2013; 14:89. [PMID: 24004608 PMCID: PMC3847358 DOI: 10.1186/1465-9921-14-89] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 08/29/2013] [Indexed: 11/17/2022] Open
Abstract
Background Dopamine signaling is mediated by Gs protein-coupled “D1-like” receptors (D1 and D5) and Gi-coupled “D2-like” receptors (D2-4). In asthmatic patients, inhaled dopamine induces bronchodilation. Although the Gi-coupled dopamine D2 receptor is expressed and sensitizes adenylyl cyclase activity in airway smooth muscle (ASM) cells, the Gs-coupled dopamine D1-like receptor subtypes have never been identified on these cells. Activation of Gs-coupled receptors stimulates cyclic AMP (cAMP) production through the stimulation of adenylyl cyclase, which promotes ASM relaxation. We questioned whether the dopamine D1-like receptor is expressed on ASM, and modulates its function through Gs-coupling. Methods The mRNA and protein expression of dopamine D1-like receptor subtypes in both native human and guinea pig ASM tissue and cultured human ASM (HASM) cells was measured. To characterize the stimulation of cAMP through the dopamine D1 receptor, HASM cells were treated with dopamine or the dopamine D1-like receptor agonists (A68930 or SKF38393) before cAMP measurements. To evaluate whether the activation of dopamine D1 receptor induces ASM relaxation, guinea pig tracheal rings suspended under isometric tension in organ baths were treated with cumulatively increasing concentrations of dopamine or A68930, following an acetylcholine-induced contraction with or without the cAMP-dependent protein kinase (PKA) inhibitor Rp-cAMPS, the large-conductance calcium-activated potassium (BKCa) channel blocker iberiotoxin, or the exchange proteins directly activated by cAMP (Epac) antagonist NSC45576. Results Messenger RNA encoding the dopamine D1 and D5 receptors were detected in native human ASM tissue and cultured HASM cells. Immunoblots confirmed the protein expression of the dopamine D1 receptor in both native human and guinea pig ASM tissue and cultured HASM cells. The dopamine D1 receptor was also immunohistochemically localized to both human and guinea pig ASM. The dopamine D1-like receptor agonists stimulated cAMP production in HASM cells, which was reversed by the selective dopamine D1-like receptor antagonists SCH23390 or SCH39166. A68930 relaxed acetylcholine-contracted guinea pig tracheal rings, which was attenuated by Rp-cAMPS but not by iberiotoxin or NSC45576. Conclusions These results demonstrate that the dopamine D1 receptors are expressed on ASM and regulate smooth muscle force via cAMP activation of PKA, and offer a novel target for therapeutic relaxation of ASM.
Collapse
Affiliation(s)
- Kentaro Mizuta
- Departments of Anesthesiology, College of Physicians and Surgeons of Columbia University, 630W 168th St, P&S Box 46, New York, NY 10032, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Schmidt M, Dekker FJ, Maarsingh H. Exchange protein directly activated by cAMP (epac): a multidomain cAMP mediator in the regulation of diverse biological functions. Pharmacol Rev 2013; 65:670-709. [PMID: 23447132 DOI: 10.1124/pr.110.003707] [Citation(s) in RCA: 209] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Since the discovery nearly 60 years ago, cAMP is envisioned as one of the most universal and versatile second messengers. The tremendous feature of cAMP to tightly control highly diverse physiologic processes, including calcium homeostasis, metabolism, secretion, muscle contraction, cell fate, and gene transcription, is reflected by the award of five Nobel prizes. The discovery of Epac (exchange protein directly activated by cAMP) has ignited a new surge of cAMP-related research and has depicted novel cAMP properties independent of protein kinase A and cyclic nucleotide-gated channels. The multidomain architecture of Epac determines its activity state and allows cell-type specific protein-protein and protein-lipid interactions that control fine-tuning of pivotal biologic responses through the "old" second messenger cAMP. Compartmentalization of cAMP in space and time, maintained by A-kinase anchoring proteins, phosphodiesterases, and β-arrestins, contributes to the Epac signalosome of small GTPases, phospholipases, mitogen- and lipid-activated kinases, and transcription factors. These novel cAMP sensors seem to implement certain unexpected signaling properties of cAMP and thereby to permit delicate adaptations of biologic responses. Agonists and antagonists selective for Epac are developed and will support further studies on the biologic net outcome of the activation of Epac. This will increase our current knowledge on the pathophysiology of devastating diseases, such as diabetes, cognitive impairment, renal and heart failure, (pulmonary) hypertension, asthma, and chronic obstructive pulmonary disease. Further insights into the cAMP dynamics executed by the Epac signalosome will help to optimize the pharmacological treatment of these diseases.
Collapse
Affiliation(s)
- Martina Schmidt
- Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands.
| | | | | |
Collapse
|
32
|
Oldenburger A, Maarsingh H, Schmidt M. Multiple facets of cAMP signalling and physiological impact: cAMP compartmentalization in the lung. Pharmaceuticals (Basel) 2012; 5:1291-331. [PMID: 24281338 PMCID: PMC3816672 DOI: 10.3390/ph5121291] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/15/2012] [Accepted: 11/20/2012] [Indexed: 12/20/2022] Open
Abstract
Therapies involving elevation of the endogenous suppressor cyclic AMP (cAMP) are currently used in the treatment of several chronic inflammatory disorders, including chronic obstructive pulmonary disease (COPD). Characteristics of COPD are airway obstruction, airway inflammation and airway remodelling, processes encompassed by increased airway smooth muscle mass, epithelial changes, goblet cell and submucosal gland hyperplasia. In addition to inflammatory cells, airway smooth muscle cells and (myo)fibroblasts, epithelial cells underpin a variety of key responses in the airways such as inflammatory cytokine release, airway remodelling, mucus hypersecretion and airway barrier function. Cigarette smoke, being next to environmental pollution the main cause of COPD, is believed to cause epithelial hyperpermeability by disrupting the barrier function. Here we will focus on the most recent progress on compartmentalized signalling by cAMP. In addition to G protein-coupled receptors, adenylyl cyclases, cAMP-specific phospho-diesterases (PDEs) maintain compartmentalized cAMP signalling. Intriguingly, spatially discrete cAMP-sensing signalling complexes seem also to involve distinct members of the A-kinase anchoring (AKAP) superfamily and IQ motif containing GTPase activating protein (IQGAPs). In this review, we will highlight the interaction between cAMP and the epithelial barrier to retain proper lung function and to alleviate COPD symptoms and focus on the possible molecular mechanisms involved in this process. Future studies should include the development of cAMP-sensing multiprotein complex specific disruptors and/or stabilizers to orchestrate cellular functions. Compartmentalized cAMP signalling regulates important cellular processes in the lung and may serve as a therapeutic target.
Collapse
Affiliation(s)
- Anouk Oldenburger
- Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy, University of Groningen, 9713 AV, Groningen, The Netherlands.
| | | | | |
Collapse
|
33
|
Dekkers BGJ, Racké K, Schmidt M. Distinct PKA and Epac compartmentalization in airway function and plasticity. Pharmacol Ther 2012; 137:248-65. [PMID: 23089371 DOI: 10.1016/j.pharmthera.2012.10.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 10/09/2012] [Indexed: 12/15/2022]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are obstructive lung diseases characterized by airway obstruction, airway inflammation and airway remodelling. Next to inflammatory cells and airway epithelial cells, airway mesenchymal cells, including airway smooth muscle cells and (myo)fibroblasts, substantially contribute to disease features by the release of inflammatory mediators, smooth muscle contraction, extracellular matrix deposition and structural changes in the airways. Current pharmacological treatment of both diseases intends to target the dynamic features of the endogenous intracellular suppressor cyclic AMP (cAMP). This review will summarize our current knowledge on cAMP and will emphasize on key discoveries and paradigm shifts reflecting the complex spatio-temporal nature of compartmentalized cAMP signalling networks in health and disease. As airway fibroblasts and airway smooth muscle cells are recognized as central players in the development and progression of asthma and COPD, we will focus on the role of cAMP signalling in their function in relation to airway function and plasticity. We will recapture on the recent identification of cAMP-sensing multi-protein complexes maintained by cAMP effectors, including A-kinase anchoring proteins (AKAPs), proteins kinase A (PKA), exchange protein directly activated by cAMP (Epac), cAMP-elevating seven-transmembrane (7TM) receptors and phosphodiesterases (PDEs) and we will report on findings indicating that the pertubation of compartmentalized cAMP signalling correlates with the pathopysiology of obstructive lung diseases. Future challenges include studies on cAMP dynamics and compartmentalization in the lung and the development of novel drugs targeting these systems for therapeutic interventions in chronic obstructive inflammatory diseases.
Collapse
Affiliation(s)
- Bart G J Dekkers
- Department of Molecular Pharmacology, University Center of Pharmacy, University of Groningen, The Netherlands.
| | | | | |
Collapse
|
34
|
Meurs H, Dekkers BGJ, Maarsingh H, Halayko AJ, Zaagsma J, Gosens R. Muscarinic receptors on airway mesenchymal cells: novel findings for an ancient target. Pulm Pharmacol Ther 2012; 26:145-55. [PMID: 22842340 DOI: 10.1016/j.pupt.2012.07.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 07/15/2012] [Accepted: 07/17/2012] [Indexed: 01/25/2023]
Abstract
Since ancient times, anticholinergics have been used as a bronchodilator therapy for obstructive lung diseases. Targets of these drugs are G-protein-coupled muscarinic M(1), M(2) and M(3) receptors in the airways, which have long been recognized to regulate vagally-induced airway smooth muscle contraction and mucus secretion. However, recent studies have revealed that acetylcholine also exerts pro-inflammatory, pro-proliferative and pro-fibrotic actions in the airways, which may involve muscarinic receptor stimulation on mesenchymal, epithelial and inflammatory cells. Moreover, acetylcholine in the airways may not only be derived from vagal nerves, but also from non-neuronal cells, including epithelial and inflammatory cells. Airway smooth muscle cells seem to play a major role in the effects of acetylcholine on airway function. It has become apparent that these cells are multipotent cells that may reversibly adopt (hyper)contractile, proliferative and synthetic phenotypes, which are all under control of muscarinic receptors and differentially involved in bronchoconstriction, airway remodeling and inflammation. Cholinergic contractile tone is increased by airway inflammation associated with asthma and COPD, resulting from exaggerated acetylcholine release as well as increased expression of contraction related proteins in airway smooth muscle. Moreover, muscarinic receptor stimulation promotes proliferation of airway smooth muscle cells as well as fibroblasts, and regulates cytokine, chemokine and extracellular matrix production by these cells, which may contribute to airway smooth muscle growth, airway fibrosis and inflammation. In line, animal models of chronic allergic asthma and COPD have recently demonstrated that tiotropium may potently inhibit airway inflammation and remodeling. These observations indicate that muscarinic receptors have a much larger role in the pathophysiology of obstructive airway diseases than previously thought, which may have important therapeutic implications.
Collapse
Affiliation(s)
- Herman Meurs
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
35
|
Dekkers BGJ, Pehlic A, Mariani R, Bos IST, Meurs H, Zaagsma J. Glucocorticosteroids and β₂-adrenoceptor agonists synergize to inhibit airway smooth muscle remodeling. J Pharmacol Exp Ther 2012; 342:780-7. [PMID: 22685341 DOI: 10.1124/jpet.112.195867] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Airway remodeling, including increased airway smooth muscle (ASM) mass and contractility, contributes to increased airway narrowing in asthma. Increased ASM mass may be caused by exposure to mitogens, including platelet-derived growth factor (PDGF) and collagen type I, which induce a proliferative, hypocontractile ASM phenotype. In contrast, prolonged exposure to insulin induces a hypercontractile phenotype. Glucocorticosteroids and β₂-adrenoceptor agonists synergize to increase glucocorticosteroid receptor translocation in ASM cells; however, the impact of this synergism on phenotype modulation is unknown. Using bovine tracheal smooth muscle, we investigated the effects of the glucocorticosteroids fluticasone (10 nM), budesonide (30 nM), and dexamethasone (0.1-1 μM) and the combination of low concentrations of fluticasone (3-100 pM) and fenoterol (10 nM) on ASM phenotype switching in response to PDGF (10 ng/ml), collagen type I (50 μg/ml), and insulin (1 μM). All glucocorticosteroids inhibited PDGF- and collagen I-induced proliferation and hypocontractility, with the effects of collagen I being less susceptible to glucocorticosteroid action. At 100-fold lower concentrations, fluticasone (100 pM) synergized with fenoterol to prevent PDGF- and collagen I-induced phenotype switching. This inhibition of ASM phenotype switching was associated with a normalization of the PDGF-induced decrease in the cell cycle inhibitors p21(WAF1/CIP1) and p57(KIP2). At this concentration, fluticasone also prevented the insulin-induced hypercontractile phenotype. At even lower concentrations, fluticasone (3 pM) synergized with fenoterol to inhibit this phenotype switch. Collectively, these findings indicate that glucocorticosteroids and β₂-agonists synergistically inhibit ASM phenotype switching, which may contribute to the increased effectiveness of combined treatment with glucocorticosteroids and β₂-agonists in asthma.
Collapse
Affiliation(s)
- Bart G J Dekkers
- Department of Molecular Pharmacology, University Centre for Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
36
|
Brueggemann LI, Kakad PP, Love RB, Solway J, Dowell ML, Cribbs LL, Byron KL. Kv7 potassium channels in airway smooth muscle cells: signal transduction intermediates and pharmacological targets for bronchodilator therapy. Am J Physiol Lung Cell Mol Physiol 2011; 302:L120-32. [PMID: 21964407 DOI: 10.1152/ajplung.00194.2011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Expression and function of Kv7 (KCNQ) voltage-activated potassium channels in guinea pig and human airway smooth muscle cells (ASMCs) were investigated by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), patch-clamp electrophysiology, and precision-cut lung slices. qRT-PCR revealed expression of multiple KCNQ genes in both guinea pig and human ASMCs. Currents with electrophysiological and pharmacological characteristics of Kv7 currents were measured in freshly isolated guinea pig and human ASMCs. In guinea pig ASMCs, Kv7 currents were significantly suppressed by application of the bronchoconstrictor agonists methacholine (100 nM) or histamine (30 μM), but current amplitudes were restored by addition of a Kv7 channel activator, flupirtine (10 μM). Kv7 currents in guinea pig ASMCs were also significantly enhanced by another Kv7.2-7.5 channel activator, retigabine, and by celecoxib and 2,5-dimethyl celecoxib. In precision-cut human lung slices, constriction of airways by histamine was significantly reduced in the presence of flupirtine. Kv7 currents in both guinea pig and human ASMCs were inhibited by the Kv7 channel blocker XE991. In human lung slices, XE991 induced robust airway constriction, which was completely reversed by addition of the calcium channel blocker verapamil. These findings suggest that Kv7 channels in ASMCs play an essential role in the regulation of airway diameter and may be targeted pharmacologically to relieve airway hyperconstriction induced by elevated concentrations of bronchoconstrictor agonists.
Collapse
Affiliation(s)
- Lioubov I Brueggemann
- Department of Molecular Pharmacology & Therapeutics, Loyola University Chicago, Maywood, IL 60153, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Schmidt M, Michel MC. How can 1 + 1 = 3? β2-adrenergic and glucocorticoid receptor agonist synergism in obstructive airway diseases. Mol Pharmacol 2011; 80:955-8. [PMID: 21914841 DOI: 10.1124/mol.111.075481] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
For a long time it was believed that β(2)-adrenergic receptor agonists used in the treatment of obstructive airway diseases worked primarily on airway smooth muscle cells, causing relaxation, whereas glucocorticoids primarily improved airway function via their anti-inflammatory action, indicating that their clinical synergism occurred at the organism rather than the cellular level. However, it is now becoming clear that both drug classes can affect airway function at multiple levels, including an integrated effect on several cell types. This article summarizes data on the molecular interaction between the two receptor systems, particularly with relevance to phenomena of β(2)-adrenergic receptor desensitization and glucocorticoid insensitivity in the airways. These molecular interactions may contribute to the observed clinical synergism between both drug classes in the treatment of obstructive airway diseases.
Collapse
Affiliation(s)
- Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands
| | | |
Collapse
|
38
|
Khilnani G, Khilnani AK. Inverse agonism and its therapeutic significance. Indian J Pharmacol 2011; 43:492-501. [PMID: 22021988 PMCID: PMC3195115 DOI: 10.4103/0253-7613.84947] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 01/10/2011] [Accepted: 07/01/2011] [Indexed: 01/14/2023] Open
Abstract
A large number of G-protein-coupled receptors (GPCRs) show varying degrees of basal or constitutive activity. This constitutive activity is usually minimal in natural receptors but is markedly observed in wild type and mutated (naturally or induced) receptors. According to conventional two-state drug receptor interaction model, binding of a ligand may initiate activity (agonist with varying degrees of positive intrinsic activity) or prevent the effect of an agonist (antagonist with zero intrinsic activity). Inverse agonists bind with the constitutively active receptors, stabilize them, and thus reduce the activity (negative intrinsic activity). Receptors of many classes (α-and β-adrenergic, histaminergic, GABAergic, serotoninergic, opiate, and angiotensin receptors) have shown basal activity in suitable in vitro models. Several drugs that have been conventionally classified as antagonists (β-blockers, antihistaminics) have shown inverse agonist effects on corresponding constitutively active receptors. Nearly all H(1) and H(2) antihistaminics (antagonists) have been shown to be inverse agonists. Among the β-blockers, carvedilol and bucindolol demonstrate low level of inverse agonism as compared to propranolol and nadolol. Several antipsychotic drugs (D(2) receptors antagonist), antihypertensive (AT(1) receptor antagonists), antiserotoninergic drugs and opioid antagonists have significant inverse agonistic activity that contributes partly or wholly to their therapeutic value. Inverse agonism may also help explain the underlying mechanism of beneficial effects of carvedilol in congestive failure, naloxone-induced withdrawal syndrome in opioid dependence, clozapine in psychosis, and candesartan in cardiac hypertrophy. Understanding inverse agonisms has paved a way for newer drug development. It is now possible to develop agents, which have only desired therapeutic value and are devoid of unwanted adverse effect. Pimavanserin (ACP-103), a highly selective 5-HT(2A) inverse agonist, attenuates psychosis in patients with Parkinson's disease with psychosis and is devoid of extrapyramidal side effects. This dissociation is also evident from the development of anxioselective benzodiazepines devoid of habit-forming potential. Hemopressin is a peptide ligand that acts as an antagonist as well as inverse agonist. This agent acts as an antinociceptive agent in different in vivo models of pain. Treatment of obesity by drugs having inverse agonist activity at CB(1/2) receptors is also underway. An exciting development is evaluation of β-blockers in chronic bronchial asthma-a condition akin to congestive heart failure where β-blockade has become the standard mode of therapy. Synthesis and evaluation of selective agents is underway. Therefore, inverse agonism is an important aspect of drug-receptor interaction and has immense untapped therapeutic potential.
Collapse
|
39
|
Walker JKL, Penn RB, Hanania NA, Dickey BF, Bond RA. New perspectives regarding β(2) -adrenoceptor ligands in the treatment of asthma. Br J Pharmacol 2011; 163:18-28. [PMID: 21175591 DOI: 10.1111/j.1476-5381.2010.01178.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In the last two decades several significant changes have been proposed in the receptor theory that describes how ligands can interact with G protein-coupled receptors (GPCRs). Here we briefly summarize the evolution of receptor theory and detail recent prominent advances. These include: (i) the existence of spontaneously active GPCRs that are capable of signalling even though they are unoccupied by any ligand; (ii) the discovery of ligands that can inactivate these spontaneously active receptors; (iii) the notion that a ligand may simultaneously activate more than one GPCR signalling pathway; and (iv) the notion that certain ligands may be able to preferentially direct receptor signalling to a specific pathway. Because the data supporting these receptor theory ideas are derived primarily from studies using artificial expression systems, the physiological relevance of these new paradigms remains in question. As a potential example of how these new perspectives in receptor theory relate to drug actions and clinical outcomes, we discuss their relevance to the recent controversy regarding the chronic use of β(2) -adrenoceptor agonists in the treatment of asthma.
Collapse
Affiliation(s)
- J K L Walker
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | |
Collapse
|
40
|
Michel MC, Ochodnicky P, Homma Y, Igawa Y. β-adrenoceptor agonist effects in experimental models of bladder dysfunction. Pharmacol Ther 2011; 131:40-9. [PMID: 21510978 DOI: 10.1016/j.pharmthera.2011.03.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 03/25/2011] [Indexed: 12/17/2022]
Abstract
β-adrenoceptor stimulation can enhance the storage function of the urinary bladder by acting on detrusor smooth muscle tone, mediator release from the urothelium and/or afferent nerve activity. In humans this may occur predominantly if not exclusively via the β₃-subtype. The effects of β-adrenoceptor agonists including several β₃-selective agonists have been studied in vitro and in vivo, in healthy animals of both genders and various age groups and in a wide range of animal (mostly rat) models of genetic or acquired bladder dysfunction. Such models included bladder irritation by intravesical instillation of acetic acid or prostaglandin E₂, bladder outlet obstruction, stroke, diabetes, spontaneously hypertensive rats, and NO synthase inhibition. Across all of these models β-adrenoceptor agonists had effects consistent with improved bladder storage function. β₃-adrenoceptor effects are resistant to agonist-induced desensitization in many cell types, but whether this also applies to the human bladder is unknown. The efficacy of β-adrenoceptor agonists appears to be largely unaffected by common polymorphisms of the β₃-adrenoceptor gene. Taken together these findings suggest that β₃-adrenoceptor agonists may become useful drugs for the treatment of bladder storage dysfunction, a view supported by recent phase III clinical studies for one such agent, mirabegron.
Collapse
Affiliation(s)
- Martin C Michel
- Dept. Pharmacology and Pharmacotherapy, Academic Medical Center, University of Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
41
|
Dillon PF, Root-Bernstein R, Robinson NE, Abraham WM, Berney C. Receptor-mediated enhancement of beta adrenergic drug activity by ascorbate in vitro and in vivo. PLoS One 2010; 5:e15130. [PMID: 21179213 PMCID: PMC3001466 DOI: 10.1371/journal.pone.0015130] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 10/25/2010] [Indexed: 11/25/2022] Open
Abstract
Rationale Previous in vitro research demonstrated that ascorbate enhances potency and duration of activity of agonists binding to alpha 1 adrenergic and histamine receptors. Objectives Extending this work to beta 2 adrenergic systems in vitro and in vivo. Methods Ultraviolet spectroscopy was used to study ascorbate binding to adrenergic receptor preparations and peptides. Force transduction studies on acetylcholine-contracted trachealis preparations from pigs and guinea pigs measured the effect of ascorbate on relaxation due to submaximal doses of beta adrenergic agonists. The effect of inhaled albuterol with and without ascorbate was tested on horses with heaves and sheep with carbachol-induced bronchoconstriction. Measurements Binding constants for ascorbate binding to beta adrenergic receptor were derived from concentration-dependent spectral shifts. Dose- dependence curves were obtained for the relaxation of pre-contracted trachealis preparations due to beta agonists in the presence and absence of varied ascorbate. Tachyphylaxis and fade were also measured. Dose response curves were determined for the effect of albuterol plus-and-minus ascorbate on airway resistance in horses and sheep. Main Results Ascorbate binds to the beta 2 adrenergic receptor at physiological concentrations. The receptor recycles dehydroascorbate. Physiological and supra-physiological concentrations of ascorbate enhance submaximal epinephrine and isoproterenol relaxation of trachealis, producing a 3–10-fold increase in sensitivity, preventing tachyphylaxis, and reversing fade. In vivo, ascorbate improves albuterol's effect on heaves and produces a 10-fold enhancement of albuterol activity in “asthmatic” sheep. Conclusions Ascorbate enhances beta-adrenergic activity via a novel receptor-mediated mechanism; increases potency and duration of beta adrenergic agonists effective in asthma and COPD; prevents tachyphylaxis; and reverses fade. These novel effects are probably caused by a novel mechanism involving phosphorylation of aminergic receptors and have clinical and drug-development applications.
Collapse
Affiliation(s)
- Patrick F. Dillon
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States of America
| | - Robert Root-Bernstein
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| | - N. Edward Robinson
- Department of Large Animal Clinical Science, Michigan State University, East Lansing, Michigan, United States of America
| | - William M. Abraham
- Department of Research, Mount Sinai Medical Center, Miami Beach, Florida, United States of America
| | - Catherine Berney
- Department of Large Animal Clinical Science, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
42
|
Yan H, Deshpande DA, Misior AM, Miles MC, Saxena H, Riemer EC, Pascual RM, Panettieri RA, Penn RB. Anti-mitogenic effects of β-agonists and PGE2 on airway smooth muscle are PKA dependent. FASEB J 2010; 25:389-97. [PMID: 20805374 DOI: 10.1096/fj.10-164798] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Inhaled β-agonists are effective airway smooth muscle (ASM)-relaxing agents that help reverse bronchoconstriction in asthma, but their ability to affect the aberrant ASM growth that also occurs with asthma is poorly understood. β-Agonists exhibit PKA-dependent antimitogenic effects in several cell types. However, recent studies suggest that Epac, and not PKA, mediates the antimitogenic effect of cAMP in both ASM and fibroblasts. This study aims to clarify the role of PKA in mediating the effect of G(s)-coupled receptors on human ASM growth. Pretreatment of ASM cultures with β-agonists albuterol, isoproterenol, or salmeterol (100 nM to 10 μM) caused a significant (∼ 25-30%) inhibition of EGF-stimulated ASM thymidine incorporation and cell proliferation, whereas a much greater inhibition was observed from pretreatment with PGE(2) (75-80%). However, all agents were ineffective in cells expressing GFP chimeras of either PKI (a PKA inhibitor) or a mutant PKA regulatory subunit relative to the control cells expressing GFP. The antimitogenic efficacy of PGE(2) in inhibiting control cultures was associated with greater ability to stimulate sustained PKA activation and greater inhibition of late-phase promitogenic p42/p44 and PI3K activities. These findings suggest that therapeutic approaches enabling superior PKA activation in ASM will be most efficacious in deterring ASM growth.
Collapse
Affiliation(s)
- Huandong Yan
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201-1075, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Loza MJ, Penn RB. Regulation of T cells in airway disease by beta-agonist. Front Biosci (Schol Ed) 2010; 2:969-79. [PMID: 20515836 DOI: 10.2741/s113] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It is widely recognized that Th2 cytokines derived from T cells play a major role in the development of allergic lung inflammation that causes most asthma. Beta-agonists are important rescue and maintenance therapies for asthma, yet our understanding of beta-agonist effects on T cell biology is surprisingly poor. Recent studies using both cell culture and more integrative models are beginning to reveal beta-agonist regulation of T cell signaling and function that may be important in the pathogenesis and treatment of asthma and possibly other inflammatory diseases. Here we provide a comprehensive review of the literature concerning beta-agonist effects on T cells, and discuss the relevance of emerging paradigms of beta-adrenergic receptor signaling to T cell function.
Collapse
Affiliation(s)
- Matthew J Loza
- Department of Medicine, Division of Pulmonary and Critical Care Medicine University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | |
Collapse
|
44
|
Agonizing over agonism: should asthmatics turn their beta-receptors on or off? Proc Natl Acad Sci U S A 2009; 106:2095-6. [PMID: 19211783 DOI: 10.1073/pnas.0812935106] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
45
|
Michel MC, Wieland T, Tsujimoto G. How reliable are G-protein-coupled receptor antibodies? Naunyn Schmiedebergs Arch Pharmacol 2009; 379:385-8. [PMID: 19172248 DOI: 10.1007/s00210-009-0395-y] [Citation(s) in RCA: 247] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 01/07/2009] [Indexed: 11/29/2022]
Abstract
A cluster of manuscripts in this issue of the Journal highlights a lack of selectivity of 49 antibodies against 19 subtypes of alpha(1)- and beta-adrenoceptors, muscarinic, dopamine and galanin receptors as well as vanilloid (TRPV1) receptors. Taken together these data demonstrate that lack of selectivity appears to be the rule rather than the exception for antibodies against G-protein-coupled and perhaps also other receptors. Thus, the previously often applied validation of such antibodies by the disappearance of staining in the presence of blocking peptide, i.e. the antigen against which the antibody was raised, alone is insufficient to demonstrate specificity. We propose that receptor antibodies should be validated by at least one of the following techniques: a) disappearance of staining in knock-out animals of the target receptor, b) reduction of staining upon knock-down approaches such as siRNA treatment, c) selectivity of staining in immunoblots or immunocytochemistry for the target receptor vs. related subtypes when expressed in the same cell line and/or d) antibodies raised against multiple distinct epitopes of a receptor yielding very similar staining patterns. Other issues of consideration to obtain reliable results based on receptor antibodies in applications such as immunohistochemistry or immunoblotting are also being discussed.
Collapse
|
46
|
Beta2-adrenoceptor signaling is required for the development of an asthma phenotype in a murine model. Proc Natl Acad Sci U S A 2009; 106:2435-40. [PMID: 19171883 DOI: 10.1073/pnas.0810902106] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Chronic regular use of beta(2)-adrenoceptor (beta(2)-AR) agonists in asthma is associated with a loss of disease control and increased risk of death. Conversely, we have found that administration of beta(2)-AR inverse agonists results in attenuation of the asthma phenotype in an allergen-driven murine model. Besides antagonizing agonist-induced signaling and reducing signaling by empty receptors, beta-AR inverse agonists can also activate signaling by novel pathways. To determine the mechanism of the beta-AR inverse agonists, we compared the asthma phenotype in beta(2)-AR-null and wild-type mice. Antigen challenge of beta(2)-AR-null mice produced results similar to what was observed with chronic beta(2)-AR inverse agonist treatment, namely, reductions in mucous metaplasia, airway hyperresponsiveness (AHR), and inflammatory cells in the lungs. These results indicate that the effects of beta(2)-AR inverse agonists are caused by inhibition of beta(2)-AR signaling rather than by the induction of novel signaling pathways. Chronic administration of alprenolol, a beta-blocker without inverse agonist properties, did not attenuate the asthma phenotype, suggesting that it is signaling by empty receptors, rather than agonist-induced beta(2)-AR signaling, that supports the asthma phenotype. In conclusion, our results demonstrate that, in a murine model of asthma, beta(2)-AR signaling is required for the full development of three cardinal features of asthma: mucous metaplasia, AHR, and the presence of inflammatory cells in the lungs.
Collapse
|
47
|
Kong KC, Gandhi U, Martin TJ, Anz CB, Yan H, Misior AM, Pascual RM, Deshpande DA, Penn RB. Endogenous Gs-coupled receptors in smooth muscle exhibit differential susceptibility to GRK2/3-mediated desensitization. Biochemistry 2008; 47:9279-88. [PMID: 18690720 PMCID: PMC2947145 DOI: 10.1021/bi801056w] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Although G protein-coupled receptor (GPCR) kinases (GRKs) have been shown to mediate desensitization of numerous GPCRs in studies using cellular expression systems, their function under physiological conditions is less well understood. In the current study, we employed various strategies to assess the effect of inhibiting endogenous GRK2/3 on signaling and function of endogenously expressed G s-coupled receptors in human airway smooth muscle (ASM) cells. GRK2/3 inhibition by expression of a Gbetagamma sequestrant, a GRK2/3 dominant-negative mutant, or siRNA-mediated knockdown increased intracellular cAMP accumulation mediated via beta-agonist stimulation of the beta-2-adrenergic receptor (beta 2AR). Conversely, neither 5'-( N-ethylcarboxamido)-adenosine (NECA; activating the A2b adenosine receptor) nor prostaglandin E2 (PGE 2; activating EP2 or EP4 receptors)-stimulated cAMP was significantly increased by GRK2/3 inhibition. Selective knockdown using siRNA suggested the majority of PGE 2-stimulated cAMP in ASM was mediated by the EP2 receptor. Although a minor role for EP3 receptors in influencing PGE 2-mediated cAMP was determined, the GRK2/3-resistant nature of EP2 receptor signaling in ASM was confirmed using the EP2-selective agonist butaprost. Somewhat surprisingly, GRK2/3 inhibition did not augment the inhibitory effect of the beta-agonist on mitogen-stimulated increases in ASM growth. These findings demonstrate that with respect to G s-coupled receptors in ASM, GRK2/3 selectively attenuates beta 2AR signaling, yet relief of GRK2/3-dependent beta 2AR desensitization does not influence at least one important physiological function of the receptor.
Collapse
Affiliation(s)
- Kok Choi Kong
- Department of Internal Medicine and Center for Human Genomics, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157
| | - Uma Gandhi
- Department of Internal Medicine and Center for Human Genomics, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157
| | - T. J. Martin
- Department of Internal Medicine and Center for Human Genomics, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157
| | - Candace B. Anz
- Department of Internal Medicine and Center for Human Genomics, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157
| | - Huandong Yan
- Department of Internal Medicine and Center for Human Genomics, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157
| | - Anna M. Misior
- Department of Internal Medicine and Center for Human Genomics, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157
| | - Rodolfo M. Pascual
- Department of Internal Medicine and Center for Human Genomics, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157
| | - Deepak A. Deshpande
- Department of Internal Medicine and Center for Human Genomics, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157
| | - Raymond B. Penn
- Department of Internal Medicine and Center for Human Genomics, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157
| |
Collapse
|