1
|
Abbas M, Gururani MA, Ali A, Bajwa S, Hassan R, Batool SW, Imam M, Wei D. Antimicrobial Properties and Therapeutic Potential of Bioactive Compounds in Nigella sativa: A Review. Molecules 2024; 29:4914. [PMID: 39459282 PMCID: PMC11510594 DOI: 10.3390/molecules29204914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Nigella sativa (N. sativa; Ranunculaceae), commonly referred to as black cumin, is one of the most widely used medicinal plants worldwide, with its seeds having numerous applications in the pharmaceutical and food industries. With the emergence of antibiotic resistance in pathogens as an important health challenge, the need for alternative microbe-inhibitory agents is on the rise, whereby black cumin has gained considerable attention from researchers for its strong antimicrobial characteristics owing to its high content in a wide range of bioactive compounds, including thymoquinone, nigellimine, nigellidine, quercetin, and O-cymene. Particularly, thymoquinone increases the levels of antioxidant enzymes that counter oxidative stress in the liver. Additionally, the essential oil in N. sativa seeds effectively inhibits intestinal parasites and shows moderate activity against some bacteria, including Bacillus subtilis and Staphylococcus aureus. Thymoquinone exhibits minimum inhibitory concentrations (MICs) of 8-16 μg/mL against methicillin-resistant Staphylococcus aureus (MRSA) and exhibits MIC 0.25 µg/mL against drug-resistant mycobacteria. Similarly, quercetin shows a MIC of 2 mg/mL against oral pathogens, such as Streptococcus mutans and Lactobacillus acidophilus. Furthermore, endophytic fungi isolated from N. sativa have demonstrated antibacterial activity. Therefore, N. sativa is a valuable medicinal plant with potential for medicinal and food-related applications. In-depth exploration of the corresponding therapeutic potential and scope of industrial application warrants further research.
Collapse
Affiliation(s)
- Munawar Abbas
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China;
| | - Mayank Anand Gururani
- Biology Department, College of Science, UAE University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Amjad Ali
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy;
| | - Sakeena Bajwa
- Department of Medical Laboratory Technology, Riphah International University, Faisalabad 44000, Pakistan
| | - Rafia Hassan
- Department of Biological Sciences, Pakistan Institute of Engineering and Applied Sciences, Islamabad 45650, Pakistan;
| | - Syeda Wajiha Batool
- Department of Biotechnology, National Institute for Biotechnology and Genetic Engineering, Faisalabad 38000, Pakistan
| | - Mahreen Imam
- Department of Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Dongqing Wei
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China;
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, 800 Dongchuan Road Shanghai, Minhang District, Shanghai 200240, China
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nanyang 473006, China
- Henan Biological Industry Group, 41, Nongye East Rd, Jinshui, Zhengzhou 450008, China
- Peng Cheng National Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen 518055, China
| |
Collapse
|
2
|
Abduh MS, Saghir SAM, Al-Gabri NA, Ahmeda AF, Abdelkarim M, Aldaqal SM, Alshawsh MA. Interleukin-35 and Thymoquinone nanoparticle-based intervention for liver protection against paracetamol-induced liver injury in rats. Saudi J Biol Sci 2023; 30:103806. [PMID: 37766887 PMCID: PMC10519855 DOI: 10.1016/j.sjbs.2023.103806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/18/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Paracetamol (PAR) is a commonly used antipyretic and analgesic agent, but its excessive usage can induce liver damage and major health consequences. Interleukin-35 (IL-35) is utilized to treat immunological disorders, intestinal illness, arthritis, allergic disease, hepatitis, and cancer. Thymoquinone (THYO) is also effective against a wide range of disorders. Consequently, this study sought out to explore the ameliorative effects of IL-35 and THYO against PAR-induced hepatotoxicity in rats. Sixty male rats were separated into six groups (10 rats/group): I control (0.5 mL NaCl, 0.9%/rat via oral gavage); II (IL-35), and III (TYHO) received intraperitoneal (i.p) injection of IL-35 (200 ng/kg) or THYO (0.5 mg/kg), respectively. Group IV (PAR) received 600 mg/kg of PAR orally; V (PAR + IL-35) and VI (PAR + TYHO); rats received 600 mg/kg of PAR orally and i.p injection of IL-35 (200 ng/kg) or THYO (0.5 mg/kg), respectively. Administration of IL-35 or THYO markedly mitigated the increasing in the levels of liver parameters triggered by PAR and noticeable enhancement of antioxidant and immunological markers were observed. Additionally, IL-35 or THYO decreased TNF-α, NF-κB, IL-10, IL-6 and IFN-γ in contrast to the PAR control group. Moreover, levels of Capase-3, and cytochrome C were significantly reduced by THYO or IL35, while, levels of Bcl-2 were markedly increased. Furthermore, significant downregulation of IL1-β, TNF-α, TGF-β, and Caspas-3 genes, as well as significant upregulation of Bcl-2 and IL-10 expression were detected. In conclusion, IL-35 and THYO insulated liver from PAR toxicity by mitigating oxidative stress, tissue damage, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Maisa Siddiq Abduh
- Immune Responses in Different Diseases Research Group, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sultan Ayesh Mohammed Saghir
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Medical Sciences, Al-Hussein Bin Talal University, Ma’an 71111, Jordan
| | - Naif Ahmed Al-Gabri
- Laboratory of Salam Veterinary Group, Burydha 51911, Saudi Arabia
- Department of Pathology, Faculty of Veterinary Medicine, Thamar University, Thamar 124401, Yemen
| | - Ahmad Faheem Ahmeda
- Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman 346, United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Mouaadh Abdelkarim
- College of General Education, University of Doha for Science and Technology, Jelaiah Street, Duhail North, 24449 Doha, Qatar
| | - Saleh Mohammad Aldaqal
- Immune Responses in Different Diseases Research Group, Department of Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed Abdullah Alshawsh
- School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, 246 Clayton Road, Clayton, VIC, 3168, Australia
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Grazul M, Kwiatkowski P, Hartman K, Kilanowicz A, Sienkiewicz M. How to Naturally Support the Immune System in Inflammation-Essential Oils as Immune Boosters. Biomedicines 2023; 11:2381. [PMID: 37760822 PMCID: PMC10525302 DOI: 10.3390/biomedicines11092381] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
Efficient functionality of the immune system is needed to fight against the development of infectious diseases, including, among others, serious recurrent chronic infections. Research has shown that many modern common diseases, such as inflammatory bowel diseases and cardiovascular diseases, e.g., thromboembolism, cancer, obesity, or depression, are connected with inflammatory processes. Therefore, new, good stimulators of the immune system's response are sought. They include synthetic compounds as well as biological preparations such as lipopolysaccharides, enzymes, bacterial metabolites, and secondary metabolites of plants, demonstrating a multidirectional effect. Essential oils are characterized by many invaluable activities, including antimicrobial, antioxidant, anti-inflammatory, and immunostimulating. Essential oils may stimulate the immune system via the utilization of their constituents, such as antibodies, cytokines, and dendritic cells. Some essential oils may stimulate the proliferation of immune-competent cells, including polymorphonuclear leukocytes, macrophages, dendritic cells, natural killer cells, and B and T lymphocytes. This review is focused on the ability of essential oils to affect the immune system. It is also possible that essential oil components positively interact with recommended anti-inflammatory and antimicrobial drugs. Thus, there is a need to explore possible synergies between essential oils and their active ingredients for medical use.
Collapse
Affiliation(s)
- Magdalena Grazul
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Paweł Kwiatkowski
- Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, al. Powstancow Wlkp. 72, 70-111 Szczecin, Poland
| | - Kacper Hartman
- Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, al. Powstancow Wlkp. 72, 70-111 Szczecin, Poland
| | - Anna Kilanowicz
- Department of Toxicology, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Monika Sienkiewicz
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
4
|
Yuan Y, Zhang Z, Mo F, Yang C, Jiao Y, Wang E, Zhang Y, Lin P, Hu C, Fu W, Chang J, Wang L. A biomaterial-based therapy for lower limb ischemia using Sr/Si bioactive hydrogel that inhibits skeletal muscle necrosis and enhances angiogenesis. Bioact Mater 2023; 26:264-278. [PMID: 36942010 PMCID: PMC10023857 DOI: 10.1016/j.bioactmat.2023.02.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/06/2023] [Accepted: 02/25/2023] [Indexed: 03/12/2023] Open
Abstract
Muscle necrosis and angiogenesis are two major challenges in the treatment of lower-limb ischemic diseases. In this study, a triple-functional Sr/Si-containing bioceramic/alginate composite hydrogel with simultaneous bioactivity in enhancing angiogenesis, regulating inflammation, and inhibiting muscle necrosis was designed to treat lower-limb ischemic diseases. In particular, sodium alginate, calcium silicate and strontium carbonate were used to prepare injectable hydrogels, which was gelled within 10 min. More importantly, this composite hydrogel sustainedly releases bioactive Sr2+ and SiO3 2- ions within 28 days. The biological activity of the bioactive ions released from the hydrogels was verified on HUVECs, SMCs, C2C12 and Raw 264.7 cells in vitro, and the therapeutic effect of the hydrogel was confirmed using C57BL/6 mouse model of femoral artery ligation in vivo. The results showed that the composite hydrogel stimulated angiogenesis, developed new collateral capillaries, and re-established the blood supply. In addition, the bioactive hydrogel directly promoted the expression of muscle-regulating factors (MyoG and MyoD) to protect skeletal muscle from necrosis, inhibited M1 polarization, and promoted M2 polarization of macrophages to reduce inflammation, thereby protecting skeletal muscle cells and indirectly promoting vascularization. Our results indicate that these bioceramic/alginate composite bioactive hydrogels are effective biomaterials for treating hindlimb ischemia and suggest that biomaterial-based approaches may have remarkable potential in treating ischemic diseases.
Collapse
Affiliation(s)
- Ye Yuan
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Zhaowenbin Zhang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China
| | - Fandi Mo
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Chen Yang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Yiren Jiao
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Enci Wang
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yuchong Zhang
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Peng Lin
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Chengkai Hu
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Weiguo Fu
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Department of Vascular Surgery, Zhongshan Xiamen Hospital, Fudan University, 668 JinhuRoad, Xiamen, 361015, China
| | - Jiang Chang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China
| | - Lixin Wang
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Department of Vascular Surgery, Zhongshan Xiamen Hospital, Fudan University, 668 JinhuRoad, Xiamen, 361015, China
| |
Collapse
|
5
|
Ferizi R, Ramadan MF, Maxhuni Q. Black Seeds ( Nigella sativa) Medical Application and Pharmaceutical Perspectives. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2023; 15:63-67. [PMID: 37469646 PMCID: PMC10353664 DOI: 10.4103/jpbs.jpbs_364_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/29/2022] [Accepted: 03/27/2023] [Indexed: 07/21/2023] Open
Abstract
Among the various medicinal plants, the black seed is emerging as a miracle herb with a rich historical background, as much research has revealed its wide spectrum of pharmacological potential. In this collection of literature, we have encountered and presented the preclinical treatment, as alternative medicine of Nigella sativa in the prevention and treatment of various diseases, as well as those that continue to be discovered by contemporary actual scientific data. Research to date has confirmed the pharmacological potential of the seed of Nigella sativa, its oil and extracts of some of its bioactive constituents, which possess remarkable pharmacological activity, in vitro and in vivo against a large spectrum of diseases, and it has been found that the use of black seed is relatively safe. Black Seed has been extensively studied for its biological activity and therapeutic potential and has been found to possess a broad spectrum of activities. Clinical trial investigations into the therapeutic effects of Nigella sativa affect the hypoglycemic, hypolipidemic, and bronchodilator effects and have passed clinical trials and received the green light to allow the next stage of clinical trials toward therapeutic drug design. However, there is still room and multidimensional research needed for prospective clinical trials in certain groups of animals before they can be applied to humans as pharmaceutical therapies.
Collapse
Affiliation(s)
- Rrahman Ferizi
- Premedical Department, Faculty of Medicine, University of Prishtina, 10000 Prishtine, Kosovo, Albania
| | - Mohamed F. Ramadan
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Qenan Maxhuni
- Department of Pharmacy, College of Medical Sciences Rezonanca, 10000 Prishtine, Kosovo, Albania
| |
Collapse
|
6
|
Abbas F, Eladl MA, El-Sherbiny M, Abozied N, Nabil A, Mahmoud SM, Mokhtar HI, Zaitone SA, Ibrahim D. Celastrol and thymoquinone alleviate aluminum chloride-induced neurotoxicity: Behavioral psychomotor performance, neurotransmitter level, oxidative-inflammatory markers, and BDNF expression in rat brain. Biomed Pharmacother 2022; 151:113072. [PMID: 35576663 DOI: 10.1016/j.biopha.2022.113072] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/02/2022] Open
Abstract
Exposure to aluminum chloride (AlCl3) induces progressive multiregional neurodegeneration in animal models by promoting oxidative stress and neuroinflammation. The current study was designed to assess the potential efficacy of the natural antioxidants celastrol and thymoquinone (TQ) for alleviating AlCl3-induced psychomotor abnormalities and oxidative-inflammatory burden in male albino rats. Four treatment groups were compared: (i) a vehicle control group, (ii) a AlCL3 group receiving daily intraperitoneal (i.p.) injection of AlCl3 (10 mg/kg) for 6 weeks, (iii) a AlCl3 plus TQ (10 mg/kg, i.p.) cotreatment group, and (iv) a AlCl3 plus celastrol (1 mg/kg, i.p.) cotreatment group. Open-field, rotarod, and forced swimming tests were conducted to assess locomotor activity, motor coordination, anxiety-like behavior, and depressive-like behavior. Acetylcholine (ACh), dopamine, and serotonin levels were measured in brain homogenates. Malondialdehyde (MDA), total antioxidant capacity (TAC), and catalase activity were measured as oxidative stress markers, while tumor necrosis factor-α (TNF-α) and interlukin-6 (IL-6) expression levels were measured as inflammatory markers. Brain derived neurotrophic factor (BDNF) mRNA was measured as an index for the endogenous neuroprotective response. Daily AlCl3 injection reduced free ambulation, impaired motor coordination, promoted anxiety- and depression-like behaviors, reduced whole-brain ACh, dopamine, and serotonin concentrations, increased MDA accumulation, reduced TAC, elevated TNF-α and IL-6, and suppressed BDNF mRNA expression. All of these effects were significantly reversed by TQ or celastrol cotreatment. Thus, TQ and celastrol may be promising treatments for AlCl3-induced neurotoxicity as well as neurodegenerative diseases involving oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Faten Abbas
- Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Mohamed Ahmed Eladl
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 71666, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nadia Abozied
- Pharmacology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Amaal Nabil
- Pharmacology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Shereen M Mahmoud
- Forensic Medicine & Toxicology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Hatem I Mokhtar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sinai University, Kantara branch, Ismailia 41636, Egypt
| | - Sawsan A Zaitone
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
| | - Dalia Ibrahim
- Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
7
|
Zhang L, Zhang H, Ma J, Wang Y, Pei Z, Ding H. Effects of thymoquinone against angiotensin II‑induced cardiac damage in apolipoprotein E‑deficient mice. Int J Mol Med 2022; 49:63. [PMID: 35293590 PMCID: PMC8930094 DOI: 10.3892/ijmm.2022.5119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/17/2022] [Indexed: 11/05/2022] Open
Abstract
Herbal medicines have attracted much attention in recent years and are increasingly being used as alternatives to pharmaceutical medicines. Thymoquinone (TQ) is one of the most active ingredients in Nigella sativa seeds, which has several beneficial properties, including anti‑inflammatory, anti‑oxidative stress, anti‑hypertensive, anti‑apoptotic and free radical‑scavenging effects. Angiotensin II (Ang II) is involved in cardiovascular diseases. The present study aimed to investigate the potential protective effects of TQ against Ang II‑induced cardiac damage in apolipoprotein E‑deficient (ApoE‑/‑) mice. Briefly, 8‑week‑old male ApoE‑/‑ mice were randomly divided into four groups: Control, TQ, Ang II and Ang II + TQ groups. Osmotic minipumps, filled with either a saline vehicle or an Ang II solution (1,000 ng/kg/min), were implanted in ApoE‑/‑ mice for up to 4 weeks. The serum levels of high‑sensitivity C‑reactive protein (hs‑CRP) and histopathological alterations in heart tissue were assessed. In addition, the mRNA and protein expression levels of molecules associated with fibrosis (collagen I and III), oxidative stress and apoptosis (Nox4 and p53), and inflammation [tumor necrosis factor (TNF)‑α, interleukin (IL)‑1β and IL‑6] were analyzed by reverse transcription‑quantitative PCR (RT‑qPCR) and western blotting. In the in vitro study, H9c2 cells were incubated with different concentrations of Ang II, and the expression levels of pro‑inflammatory cytokines were evaluated using RT‑qPCR, whereas the protein expression levels of phosphorylated‑extracellular signal‑regulated kinase (p‑ERK) were determined using western blotting. Western blotting was also performed to detect the expression levels of collagen I, collagen III, Nox4 and p53 in H9c2 cells. The results revealed that TQ inhibited the Ang II‑induced increases in serum hs‑CRP levels. TQ also significantly inhibited the high levels of TNF‑α, IL‑1β, IL‑6, collagen I, collagen III, Nox4 and p53 in Ang II‑treated mice. Furthermore, TQ protected against Ang II‑induced cardiac damage by inhibiting inflammatory cell infiltration, proinflammatory cytokine expression, fibrosis, oxidative stress and apoptosis by suppressing activation of the p‑ERK signaling pathway. In conclusion, TQ could be considered a potential therapeutic agent for Ang II‑induced cardiac damage.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Cardiology, Xi'an No. 3 Hospital, Xi'an, Shaanxi 710018, P.R. China
| | - Hujin Zhang
- Department of Neurosurgery, Xi'an Central Hospital, Xi'an, Shaanxi 710000, P.R. China
| | - Jing Ma
- Department of Cardiology, Xi'an No. 3 Hospital, Xi'an, Shaanxi 710018, P.R. China
| | - Yun Wang
- Department of Cardiology, Xi'an No. 3 Hospital, Xi'an, Shaanxi 710018, P.R. China
| | - Zuowei Pei
- Department of Cardiology, Beijing Hospital, Beijing 100730, P.R. China
- National Centre of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Hui Ding
- Department of Cardiology, Xi'an No. 3 Hospital, Xi'an, Shaanxi 710018, P.R. China
| |
Collapse
|
8
|
Thomas JV, Mohan ME, Prabhakaran P, Das S S, Maliakel B, Krishnakumar IM. A phase I clinical trial to evaluate the safety of thymoquinone -rich black cumin oil (BlaQmax®) on healthy subjects: Randomized, double-blinded, placebo-controlled prospective study. Toxicol Rep 2022; 9:999-1007. [DOI: 10.1016/j.toxrep.2022.04.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022] Open
|
9
|
Functionality of Films from Nigella sativa Defatted Seed Cake Proteins Plasticized with Grape Juice: Use in Wrapping Sweet Cherries. COATINGS 2021. [DOI: 10.3390/coatings11111383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The main aim of this work is to improve the functionality of Nigella sativa protein concentrate (NSPC) films by using grape juice (GJ). The film’s mechanical, antioxidant, and antimicrobial activities were evaluated. The obtained results showed, for the first time, that GJ at concentrations of 2%–10% (v/v) are able to act as plasticizer for the NSPC films with promising film properties. The results showed that the tensile strength and Young’s modulus of NSPC films were reduced significantly when the GJ increased. However, the NSPC films prepared with 6% GJ observed a higher elongation at break compared with other films. Moreover, the obtained films showed very interesting and promising results for their antioxidant and antimicrobial properties compared with the control films. The sweet cherries wrapped with NSPC film showed that the TSS (Brix) was significantly lower compared to the control, after 10 days of storage. However, the titratable acidity, pH value, and L* of all cherries, either wrapped or not, was not significantly different in all storage times. On the other hand, hue angle was significantly lower after 10 days of storage at −18 °C compared with control films. GJ has a multi-functional effect for protein-based films as plasticizer, antioxidant, and antimicrobial function.
Collapse
|
10
|
Badary OA, Hamza MS, Tikamdas R. Thymoquinone: A Promising Natural Compound with Potential Benefits for COVID-19 Prevention and Cure. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1819-1833. [PMID: 33976534 PMCID: PMC8106451 DOI: 10.2147/dddt.s308863] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022]
Abstract
COVID-19 has caused a major global health crisis, as excessive inflammation, oxidation, and exaggerated immune response in some sufferers can lead to a condition known as cytokine storm, which may progress to acute respiratory distress syndrome (ARDs), which can be fatal. So far, few effective drugs have emerged to assist in the treatment of patients with COVID-19, though some herbal medicine candidates may assist in the fight against COVID-19 deaths. Thymoquinone (TQ), the main active ingredient of black seed oil, possesses antioxidant, anti-inflammatory, antiviral, antimicrobial, immunomodulatory and anticoagulant activities. TQ also increases the activity and number of cytokine suppressors, lymphocytes, natural killer cells, and macrophages, and it has demonstrated antiviral potential against a number of viruses, including murine cytomegalovirus, Epstein-Barr virus, hepatitis C virus, human immunodeficiency virus, and other coronaviruses. Recently, TQ has demonstrated notable antiviral activity against a SARSCoV-2 strain isolated from Egyptian patients and, interestingly, molecular docking studies have also shown that TQ could potentially inhibit COVID-19 development through binding to the receptor-binding domain on the spike and envelope proteins of SARS-CoV-2, which may hinder virus entry into the host cell and inhibit its ion channel and pore forming activity. Other studies have shown that TQ may have an inhibitory effect on SARS CoV2 proteases, which could diminish viral replication, and it has also demonstrated good antagonism to angiotensin-converting enzyme 2 receptors, allowing it to interfere with virus uptake into the host cell. Several studies have also noted its potential protective capability against numerous chronic diseases and conditions, including diabetes, hypertension, dyslipidemia, asthma, renal dysfunction and malignancy. TQ has recently been tested in clinical trials for the treatment of several different diseases, and this review thus aims to highlight the potential therapeutic effects of TQ in the context of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Osama A Badary
- Clinical Pharmacy Practice Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt.,Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Marwa S Hamza
- Clinical Pharmacy Practice Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Rajiv Tikamdas
- Clinical Pharmacy Practice Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| |
Collapse
|
11
|
Islam MN, Hossain KS, Sarker PP, Ferdous J, Hannan MA, Rahman MM, Chu DT, Uddin MJ. Revisiting pharmacological potentials of Nigella sativa seed: A promising option for COVID-19 prevention and cure. Phytother Res 2020; 35:1329-1344. [PMID: 33047412 PMCID: PMC7675410 DOI: 10.1002/ptr.6895] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/08/2020] [Accepted: 09/17/2020] [Indexed: 01/08/2023]
Abstract
Nigella sativa seed and its active compounds have been historically recognized as an effective herbal panacea that can establish a balanced inflammatory response by suppressing chronic inflammation and promoting healthy immune response. The essential oil and other preparations of N. sativa seed have substantial therapeutic outcomes against immune disturbance, autophagy dysfunction, oxidative stress, ischemia, inflammation, in several COVID‐19 comorbidities such as diabetes, cardiovascular disorders, Kawasaki‐like diseases, and many bacterial and viral infections. Compelling evidence in the therapeutic efficiency of N. sativa along with the recent computational findings is strongly suggestive of combating emerged COVID‐19 pandemic. Also, being an available candidate in nutraceuticals, N. sativa seed oil could be immensely potential and feasible to prevent and cure COVID‐19. This review was aimed at revisiting the pharmacological benefits of N. sativa seed and its active metabolites that may constitute a potential basis for developing a novel preventive and therapeutic strategy against COVID‐19. Bioactive compounds of N. sativa seed, especially thymiquinone, α‐hederin, and nigellidine, could be alternative and promising herbal drugs to combat COVID‐19. Preclinical and clinical trials are required to delineate detailed mechanism of N. sativa's active components and to investigate their efficacy and potency under specific pathophysiological conditions of COVID‐19.
Collapse
Affiliation(s)
- Mohammad Nazrul Islam
- Department of Biotechnology, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh.,ABEx Bio-Research Center, Dhaka, Bangladesh
| | - Khandkar Shaharina Hossain
- ABEx Bio-Research Center, Dhaka, Bangladesh.,Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh
| | - Partha Protim Sarker
- ABEx Bio-Research Center, Dhaka, Bangladesh.,Mawlana Bhashani Science and Technology University Santosh, Tangail, Bangladesh
| | - Jannatul Ferdous
- ABEx Bio-Research Center, Dhaka, Bangladesh.,Department of Physiology, Biochemistry and Pharmacology, Chottogram Veterinary and Animal Science University, Chottogram, Bangladesh
| | - Md Abdul Hannan
- ABEx Bio-Research Center, Dhaka, Bangladesh.,Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, Bangladesh.,Department of Anatomy, Dongguk University College of Medicine, Gyeongju, South Korea
| | - Md Masudur Rahman
- Department of Pathology, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Dinh-Toi Chu
- Hanoi National University of Education, Hanoi, Vietnam
| | - Md Jamal Uddin
- ABEx Bio-Research Center, Dhaka, Bangladesh.,Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Mohebbati R, Abbasnezhad A. Effects of Nigella sativa on endothelial dysfunction in diabetes mellitus: A review. JOURNAL OF ETHNOPHARMACOLOGY 2020; 252:112585. [PMID: 31972323 DOI: 10.1016/j.jep.2020.112585] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Endothelial dysfunction is involved in lesion generation by the promotion of both early and late mechanism(s) of atherosclerosis such as adhesion molecules up-regulation, increased chemokine secretion and leukocyte adherence, increased cell permeability, enhanced low-density lipoprotein oxidation, cytokine elaboration, platelet activation and vascular smooth muscle cell migration, and proliferation. Nigella sativa is from the Ranunculaceae family which is used in some countries for various medicinal purposes. Nigella sativa seed has been widely used in traditional medicine for the treatment of diabetes. AIM OF THE REVIEW This review article summarized the therapeutic effects of Nigella sativa on endothelial dysfunction. METHODS Databases such as PubMed, Web of Science, Google Scholar, Scopus, and Iran Medex were considered. The search terms were " Nigella sativa " or "endothelium" and " Diabetes"," endothelial dysfunction ", " Thymoquinone " and " anti-inflammatory effect ". RESULTS The current review shows that Nigella sativa and Thymoquinone have a protective effect on endothelial dysfunction induced by diabetes. This is done by several mechanisms such as reduction of inflammatory and apoptotic markers, improving hyperglycemia, hyperlipidemia and antioxidant function, inhibiting platelet aggregation, and regulating eNOS, VCAM-1 and LOX-1 genes expression that involve in the endothelial dysfunction. Thymoquinone also reduces expression and secretion of some cytokines such as MCP-1, interleukin-1β, TNF-α, NF-κB, and Cox-2 that result in anti-inflammation effect. CONCLUSION Thymoquinone, the main phenolic terpene found in Nigella sativa, has several important properties such as antidiabetic, anti-inflammatory, and antioxidant activity. Therefore, Nigella sativa can improve endothelial dysfunction.
Collapse
Affiliation(s)
- Reza Mohebbati
- - Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Abbasali Abbasnezhad
- - Department of Physiology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| |
Collapse
|
13
|
Xiao J, Ke ZP, Shi Y, Zeng Q, Cao Z. The cardioprotective effect of thymoquinone on ischemia-reperfusion injury in isolated rat heart via regulation of apoptosis and autophagy. J Cell Biochem 2018; 119:7212-7217. [PMID: 29932232 DOI: 10.1002/jcb.26878] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 03/21/2018] [Indexed: 12/14/2022]
Abstract
Thymoquinone (TQ), as the active constituents of black cumin (Nigella sativa) seed oil, has been reported to have potential protective effects on the cardiovascular system. This study aimed to investigate the effects and the underlying mechanisms of TQ on myocardial ischemia-reperfusion (I/R) injury in Langendorff-perfused rat hearts. Wister rat hearts were subjected to I/R and the experimental group were pretreated with TQ prior to I/R. Hemodynamic parameters, myocardial infarct size, cardiac marker enzymes, superoxide dismutase (SOD), malondialdehyde (MDA) content, and cardiomyocyte apoptosis were assayed. Compared with the untreated group, TQ preconditioning significantly improved cardiac function, reduced infarct size, decreased cardiac lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) levels, suppressed enedoxidative stress, and apoptosis. In addition, TQ treatment promoted autophagy, which was partially reversed by chloroquine (CQ), a kind of autophagy blocker. Our study suggests that TQ can protect heart against I/R injury, which is associated with anti-oxidative and anti-apoptotic effects through activation of autophagy.
Collapse
Affiliation(s)
- Junhui Xiao
- Department of Cardiology, Huadu District People's Hospital, Southern Medical University, Guangzhou, China
| | - Zun-Ping Ke
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Yan Shi
- The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Qiutang Zeng
- Department of Cardiology, Huadu District People's Hospital, Southern Medical University, Guangzhou, China
| | - Zhe Cao
- Department of Cardiology,The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Moshiri M, Hosseiniyan SM, Moallem SA, Hadizadeh F, Jafarian AH, Ghadiri A, Hoseini T, Seifi M, Etemad L. The effects of vitamin B 12 on the brain damages caused by methamphetamine in mice. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2018; 21:434-438. [PMID: 29796230 PMCID: PMC5960763 DOI: 10.22038/ijbms.2018.23362.5897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Objective(s): Methamphetamine (METH) is a powerful stimulant drug that directly affects the brain and induces neurological deficits. B12 is a water-soluble vitamin (vit) that is reported to attenuate neuronal degeneration. The goal of the present study is to investigate the effect of vitamin B12 on METH’s neurodegenerative changes. Materials and Methods: Two groups of 6 animals received METH (10 mg/kg, interaperitoneally (IP)) four times with a 2 hr interval. Thirty mins before METH administration, vit B12 (1 mg/kg) or normal saline were injected IP. Animals were sacrificed 3 days after the last administration. Caspase proteins levels were measured by Western blotting. Also, samples were examined by TUNEL assay to detect the presence of DNA fragmentation. Reduced glutathione (GSH) was also determined by the Ellman method. Results: The pathological findings showed that vit B12 attenuates the gliosis induced by METH. Vit B12 administration also significantly decreased the apoptotic index in the striatum and the cerebral cortex (P<0.001). It also reduced caspase markers compared to the control (P<0.01 and P<0.001, respectively). Interestingly, co-administration of METH and Vit B12 elevates the levels of GSH in both regions of the brain and returned it to normal levels compared to the METH group. Conclusion: The current study suggests that parenteral vit B12 at safe doses may be a promising treatment for METH-induced brain damage via inhibition of neuron apoptosis and increasing the reduced GSH level. Research focusing on the mechanisms involved in the protective responses of vit B12 can be helpful in providing a novel therapeutic agent against METH-induced neurotoxicity.
Collapse
Affiliation(s)
- Mohammad Moshiri
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mojtaba Hosseiniyan
- Department of Toxicology, Faculty of Pharmacy, Islamic Azad University, Shahreza Branch, Shahreza, Iran
| | - Seyed Adel Moallem
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Ahl Al Bayt, Karbala, Iraq
| | - Farzin Hadizadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Jafarian
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ameneh Ghadiri
- Department of Toxicology, Faculty of Pharmacy, Islamic Azad University, Shahreza Branch, Shahreza, Iran
| | - Toktam Hoseini
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Seifi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Bouhlel A, Ben Mosbah I, Hadj Abdallah N, Ribault C, Viel R, Mannaï S, Corlu A, Ben Abdennebi H. Thymoquinone prevents endoplasmic reticulum stress and mitochondria-induced apoptosis in a rat model of partial hepatic warm ischemia reperfusion. Biomed Pharmacother 2017; 94:964-973. [DOI: 10.1016/j.biopha.2017.08.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 01/14/2023] Open
|
16
|
Mollazadeh H, Afshari AR, Hosseinzadeh H. Review on the Potential Therapeutic Roles of Nigella sativa in the Treatment of Patients with Cancer: Involvement of Apoptosis: - Black cumin and cancer. J Pharmacopuncture 2017; 20:158-172. [PMID: 30087792 PMCID: PMC5633668 DOI: 10.3831/kpi.2017.20.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/28/2017] [Accepted: 09/07/2017] [Indexed: 01/12/2023] Open
Abstract
Nigella sativa (N. sativa, family Ranunculaceae) is a medicinal plant that has been widely used for centuries throughout the world as a natural remedy. A wide range of chemical compounds found in N. sativa expresses its vast therapeutic effects. Thymoquinone (TQ) is the main component (up to 50%) in the essential oil of N. sativa. Also, pinene (up to 15%), p-cymene (40%), thymohydroquinone (THQ), thymol (THY), and dithymoquinone (DTQ) are other pharmacologically active compounds of its oil. Other terpenoid compounds, such as carvacrol, carvone, 4-terpineol, limonenes, and citronellol, are also found in small quantities in its oil. The main pharmacological characteristics of this plant are immune system stimulatory, anti-inflammatory, hypotensive, hepatoprotective, antioxidant, anti-cancer, hypoglycemic, anti-tussive, milk production, uricosuric, choleretic, anti-fertility, and spasmolytic properties. In this regard, we have searched the scientific databases PubMed, Web of Science, and Google Scholar with keywords of N. sativa, anti-cancer, apoptotic effect, antitumor, antioxidant, and malignancy over the period from 2000 to 2017. The effectiveness of N. sativa against cancer in the blood system, kidneys, lungs, prostate, liver, and breast and on many malignant cell lines has been shown in many studies, but the molecular mechanisms behind that anti-cancer role are still not clearly understood. From among the many effects of N. sativa, including its anti-proliferative effect, cell cycle arrest, apoptosis induction, ROS generation, anti-metastasis/anti-angiogenesis effects, Akt pathway control, modulation of multiple molecular targets, including p53, p73, STAT-3, PTEN, and PPAR-γ, and activation of caspases, the main suggestive anti-cancer mechanisms of N. sativa are its free radical scavenger activity and the preservation of various anti-oxidant enzyme activities, such as glutathione peroxidase, catalase, and glutathione-S-transferase. In this review, we highlight the molecular mechanisms of apoptosis and the anti-cancer effects of N. sativa, with a focus on its molecular targets in apoptosis pathways.
Collapse
Affiliation(s)
- Hamid Mollazadeh
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amir R Afshari
- Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Tavakkoli A, Mahdian V, Razavi BM, Hosseinzadeh H. Review on Clinical Trials of Black Seed (Nigella sativa ) and Its Active Constituent, Thymoquinone. J Pharmacopuncture 2017; 20:179-193. [PMID: 30087794 PMCID: PMC5633670 DOI: 10.3831/kpi.2017.20.021] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/21/2017] [Accepted: 08/30/2017] [Indexed: 12/12/2022] Open
Abstract
Objectives Nigella sativa (black seed or black cumin), which belongs to the Ranunculacea family, is an annual herb with many pharmacological properties. Among its many active constituents, thymoquinone (TQ) is the most abundant constituent of the volatile oil of Nigella sativa (N. sativa) seeds, and it is the constituent to which most properties of this herb are attributed. Methods PubMed-Medline, Scopus, and Web of Science databases were searched to identify randomized control trials (RCTs) investigating the therapeutic effects of N. sativa and/or TQ. In this review, we investigated the clinical uses of N. sativa and TQ in the prevention and the treatment of different diseases and morbidity conditions in humans. Results Black seed and TQ are shown to possess multiple useful effects for the treatment of patients with several diseases, such as inflammatory and auto-immune disorders, as well as metabolic syndrome. Also, other advantages, including antimicrobial, anti-nociceptive and anti-epileptic properties, have been documented. The side effects of this herbal medicine appear not to be serious, so it can be applied in clinical trials because of its many advantages. Conclusion Some effects of N. sativa, such as its hypoglycemic, hypolipidemic and bronchodilatory effects, have been sufficiently studied and are sufficiently understood to allow for the next phase of clinical trials or drug developments. However, most of its other effects and applications require further clinical and animal studies.
Collapse
Affiliation(s)
- Alireza Tavakkoli
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Mahdian
- Student Research Committee, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medi cal Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Javidi S, Razavi BM, Hosseinzadeh H. A review of Neuropharmacology Effects of Nigella sativa and Its Main Component, Thymoquinone. Phytother Res 2016; 30:1219-29. [PMID: 27169925 DOI: 10.1002/ptr.5634] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 12/23/2022]
Abstract
Neuropharmacology is the scientific study of drug effect on nervous system. In the last few years, different natural plants and their active constituents have been used in neurological therapy. The availability, lower price, and less toxic effects of herbal medicines compared with synthetic agents make them as simple and excellent choice in the treatment of nervous diseases. Nigella sativa, which belongs to the botanical family of Ranunculaceae, is a widely used medicinal plant all over the world. In traditional and modern medicines several beneficial properties have been attributed to N. sativa and its main component, thymoquinone (TQ). In this review, various studies in scientific databases regarding the neuropharmacological aspects of N. sativa and TQ have been introduced. Results of these studies showed that N. sativa and TQ have several properties including anticonvulsant, antidepressant, anxiolytic, anti-ischemic, analgesic, antipsychotic, and memory enhancer. Furthermore, its protective effects against neurodegenerative diseases such as Alzheimer, Parkinson and multiple sclerosis have been discussed. Although there are many studies indicating the beneficial actions of this plant in nervous system, the number of research projects relating to the human reports is rare. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Soheila Javidi
- Medical Plants and Natural Product Research Center, School of Medicine, Bojnurd University of Medical Science, Bojnurd, Iran
| | - Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Alanazi IO, Benabdelkamel H, Alfadda AA, AlYahya SA, Alghamdi WM, Aljohi HA, Almalik A, Masood A. Proteomic Analysis of the Protein Expression Profile in the Mature Nigella sativa (Black Seed). Appl Biochem Biotechnol 2016; 179:1184-201. [DOI: 10.1007/s12010-016-2058-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/16/2016] [Indexed: 12/20/2022]
|
20
|
Razavi BM, Hosseinzadeh H. A review of the effects of Nigella sativa L. and its constituent, thymoquinone, in metabolic syndrome. J Endocrinol Invest 2014; 37:1031-40. [PMID: 25125023 DOI: 10.1007/s40618-014-0150-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 07/29/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND Metabolic syndrome is an important risk factor for cardiovascular disease (CVD) occurrence and mortality. CVDs are leading cause of death worldwide. Recently, there has been an increasing interest in the use of herbal medicines with more efficiency and minimal undesirable effects than chemical drugs for a variety of disorders including CVD. Nigella sativa and its active constituent, thymoquinone, have been documented to exhibit antidiabetic, antiobesity, hypotensive and hypolipidemic properties. AIM In this review, we discussed the most relevant articles to find out the role of N. sativa in different components of metabolic syndrome and CVD risk factors including high blood pressure, obesity, dyslipidemia and high blood glucose. CONCLUSIONS This review suggests a potential role of N. sativa and TQ in the management of metabolic syndrome, however more studies should be conducted to evaluate their effectiveness.
Collapse
Affiliation(s)
- B M Razavi
- Department of Pharmacodynamy and Toxicology, Targeted Drug Delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
21
|
Moghbelinejad S, Nassiri-Asl M, Naserpour Farivar T, Abbasi E, Sheikhi M, Taghiloo M, Farsad F, Samimi A, Hajiali F. Rutin activates the MAPK pathway and BDNF gene expression on beta-amyloid induced neurotoxicity in rats. Toxicol Lett 2014; 224:108-13. [DOI: 10.1016/j.toxlet.2013.10.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/11/2013] [Accepted: 10/14/2013] [Indexed: 12/26/2022]
|
22
|
El-Mas MM, El-Gowelli HM, Michel MC. Publication trends in Naunyn-Schmiedeberg's Archives of Pharmacology: focus on pharmacology in Egypt. Naunyn Schmiedebergs Arch Pharmacol 2013; 386:929-33. [PMID: 24037453 DOI: 10.1007/s00210-013-0915-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 09/04/2013] [Indexed: 12/11/2022]
Abstract
In a previous analysis of the country of origin of papers published in Naunyn-Schmiedeberg's Archives of Pharmacology, a major shift toward contributions from emerging market countries, was noticed in comparison of 2010 to 2001 publications. Repeating such analysis for 2012 publications in the journal confirmed this trend. An interesting new trend was the emerging presence of papers from a variety of Islamic countries including Egypt. Based on this trend, we shortly review the history and current structure of pharmacology in Egypt. It appears that the presence of Egyptian pharmacology in international journals including pharmacology journals has sharply been increasing over the last two decades. Challenges for a continuation of this encouraging trend are being discussed.
Collapse
Affiliation(s)
- Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | | | | |
Collapse
|
23
|
Nassiri-Asl M, Naserpour Farivar T, Abbasi E, Sadeghnia HR, Sheikhi M, Lotfizadeh M, Bazahang P. Effects of rutin on oxidative stress in mice with kainic acid-induced seizure. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2013; 11:337-42. [DOI: 10.3736/jintegrmed2013042] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
24
|
Nassiri-Asl M, Moghbelinejad S, Abbasi E, Yonesi F, Haghighi MR, Lotfizadeh M, Bazahang P. Effects of quercetin on oxidative stress and memory retrieval in kindled rats. Epilepsy Behav 2013; 28:151-5. [PMID: 23747498 DOI: 10.1016/j.yebeh.2013.04.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/26/2013] [Accepted: 04/28/2013] [Indexed: 12/28/2022]
Abstract
Flavonoids are a class of polyphenolic compounds present in fruits and vegetables. Several studies have demonstrated a relationship between the consumption of flavonoid-rich diets and the prevention of human diseases including neurodegenerative disorders. Thus, we assessed the effect of quercetin (3,3',4',5,7-pentahydroxyflavone) on oxidative stress and memory retrieval using a step-through passive avoidance task in kindled rats. Quercetin (25, 50, and 100 mg/kg) was administered intraperitoneally (i.p.) before pentylenetetrazole (PTZ) every other day prior to the training. Retention tests were performed to assess memory in rats. Compared to control, pretreatment with 50 mg/kg of quercetin could attenuate seizure severity from the beginning of the kindling experiment by lowering the mean seizure stages. Moreover, quercetin 50 mg/kg significantly increased the step-through latency of the passive avoidance response compared to the control in the retention test. Malondialdehyde (MDA) levels were significantly increased in the quercetin groups compared to the PTZ group in the hippocampus and cerebral cortex following PTZ kindling. In the quercetin groups, higher sulfhydryl (SH) contents were not observed compared to the PTZ group. These results indicate that quercetin at a specific dose results in decreased seizure severity during kindling and performance improvement in a passive avoidance task in kindled rats. All doses of quercetin led to increased oxidative stress in the hippocampi and cerebral cortices of kindled rats.
Collapse
Affiliation(s)
- Marjan Nassiri-Asl
- Cellular and Molecular Research Centre, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | | | | | | | | | | |
Collapse
|
25
|
Seif AA. Nigella sativa attenuates myocardial ischemic reperfusion injury in rats. J Physiol Biochem 2013; 69:937-44. [PMID: 23846789 DOI: 10.1007/s13105-013-0272-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 07/01/2013] [Indexed: 11/30/2022]
Abstract
Myocardial ischemia-reperfusion (I/R) represents a clinically relevant problem associated with thrombolysis, angioplasty, and coronary bypass surgery. Radical oxygen species generated during early reperfusion are the primary activator of mitochondrial permeability transition pore (MPTP) opening which finally results in cardiomyocyte death. Nigella sativa (NS) has been shown to have antioxidant properties. The present study aimed to determine whether supplementation with NS can provide sufficient protection for the myocardium against I/R insult and any possible role on mitochondrial MPTP. Adult male Wistar rats were allocated into two groups: control group and NS-treated group receiving NS (800 mg/kg) orally for 12 weeks. Rats' isolated hearts were perfused in Langendorff preparation to determine the baseline heart beating rate, developed peak tension, time to peak tension, rate of tension development, half relaxation time, and myocardial flow rate. Ischemia was then induced by stopping the perfusion fluid for 30 min, followed by 30 min of reperfusion and recording post I/R cardiac functions. Hearts were then used for assessment of malondialdehyde (MDA) and nicotinamide adenine dinucleotide (NAD(+)), since the hydrolysis of mitochondrial NAD(+) directly reflects MPTP opening in situ, and for histological examination. The NS-treated group showed enhanced post I/R contractile and vascular recovery, which was accompanied by elevated NAD(+) and decreased MDA compared to the control group. Histological examination showed marked improvement of cardiac musculature compared to the control group. In conclusion, N. sativa afforded substantial recovery of post I/R cardiac functions probably via inhibition of MPTP opening.
Collapse
Affiliation(s)
- Ansam Aly Seif
- Physiology Department, Faculty of Medicine, Ain Shams University, 12 Abdullah Abu Elseoud Street, Triumph, Heliopolis, Cairo, Egypt,
| |
Collapse
|
26
|
Hosseinzadeh H, Tafaghodi M, Mosavi MJ, Taghiabadi E. Effect of aqueous and ethanolic extracts of Nigella sativa seeds on milk production in rats. J Acupunct Meridian Stud 2012; 6:18-23. [PMID: 23433051 DOI: 10.1016/j.jams.2012.07.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 05/11/2012] [Indexed: 10/28/2022] Open
Abstract
Nigella sativa L. is used as a galactagogue in traditional medicine. Hence, the effects of aqueous and ethanolic extracts of N. sativa seeds on milk production in rats were evaluated. The measurement of milk production was by measuring pup weight during suckling period. The intraperitoneal LD(50) values of aqueous and ethanolic extracts of N. sativa were 4.23 and 4.9 g/kg, respectively. The aqueous (0.5 g/kg) and ethanolic extracts (1 g/kg) increased milk production significantly (p < 0.001), producing about 31.3% and 37.6% more milk than control, respectively. During the study period, the pups gained weight with the aqueous (0.5 g/kg, p < 0.01) and ethanolic extracts (1 g/kg, p < 0.05). It is concluded that aqueous and ethanolic extracts of N. sativa can stimulate milk production in rats.
Collapse
Affiliation(s)
- Hossein Hosseinzadeh
- Pharmacodynamics and Toxicology Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran.
| | | | | | | |
Collapse
|