1
|
Iwashita H, Sano M, Chiba A. Effects of endogenous and exogenous N-acetyl-5-methoxy kynuramine on object recognition memory in male C3H mice. Horm Behav 2023; 150:105329. [PMID: 36841054 DOI: 10.1016/j.yhbeh.2023.105329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/26/2023]
Abstract
Prevention of dementia is important, because it is a leading cause of disability in elderly people. We previously reported that acute intraperitoneal treatment with N-acetyl-5-methoxy kynuramine (AMK), a melatonin (MEL) metabolite, enhanced long-term object recognition memory in ICR mice, a MEL deficient strain. Despite the presumable availability of AMK for dementia, its effects on cognitive performance have not been elucidated. It is unclear whether endogenous AMK is responsible for modulating long-term memory performance. To address this question, we assessed the effects of endogenous AMK on learning and memory using an object recognition test. C3H mice, a MEL-proficient strain, showed peak MEL levels at zeitgeber times (ZT) 19 and 22. Object recognition memory at ZT20 was superior to that at ZT8. Norharmane (NHM, 100 mg/kg), an indoleamine-2,3-dioxygenase (IDO) inhibitor, prevented the transformation of MEL to AMK, thereby suppressing AMK synthesis at ZT20. NHM (100 mg/kg) and another IDO inhibitor, 1-methyl-L-tryptophan (1-MT, 100 mg/kg), disrupted elevated cognitive performance at ZT20. These data imply that endogenous AMK may play a physiological role in the modulation of cognitive function. We also investigated the effects of pharmacological doses of MEL and AMK on object recognition memory in young C3H mice. MEL administration of 0.1 mg/kg, but not 0.01 mg/kg, enhanced object recognition memory, whereas 0.01 and 1 mg/kg AMK enhanced object recognition memory. Administration of 0.1 and 1 mg/kg AMK also enhanced object recognition memory in old C3H mice. These findings in MEL-proficient mice should be confirmed in other learning and memory tests before encouraging the clinical use of AMK.
Collapse
Affiliation(s)
- Hikaru Iwashita
- Department of Anatomy, Faculty of Medicine, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan; Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan.
| | - Masahiro Sano
- Department of Anatomy, Faculty of Medicine, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan; Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Atsuhiko Chiba
- Department of Anatomy, Faculty of Medicine, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan; Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan.
| |
Collapse
|
2
|
N-acetyl-5-methoxykynuramine enhance object location and working memory performances via modulating CaMKII, ERK and CREB phosphorylation. Neuroreport 2023; 34:299-307. [PMID: 36881754 DOI: 10.1097/wnr.0000000000001893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
OBJECTIVES Melatonin (MEL) has been reported to enhance cognitive performance. Recently, we have demonstrated that a MEL metabolite N-acetyl-5-methoxykynuramine (AMK) promoted the formation of long-term object recognition memory more potently than MEL. Here, we examined the effects of 1 mg/kg MEL and AMK on both object location memory and spatial working memory. We also investigated the effects of the same dose of these drugs on relative phosphorylation/activation levels of memory-related proteins in the hippocampus (HP), the perirhinal cortex (PRC) and the medial prefrontal cortex (mPFC). METHODS Object location memory and spatial working memory were assessed using the object location task and the Y-maze spontaneous alternation task, respectively. Relative phosphorylation/activation levels of memory-related proteins were assessed using western blot analysis. RESULTS AMK, as well as MEL, enhanced object location memory and spatial working memory. AMK increased the phosphorylation of cAMP-response element-binding protein (CREB) in both the HP and the mPFC 2 h after the treatment. AMK also increased the phosphorylation of extracellular signal-regulated kinases (ERKs) but decreased that of Ca2+/calmodulin-dependent protein kinases II (CaMKIIs) in the PRC and the mPFC 30 min after the treatment. MEL increased CREB phosphorylation in the HP 2 h after the treatment, whereas no detectable changes in the other proteins examined were observed. CONCLUSION These results suggested the possibility that AMK exerts stronger memory-enhancing effects than MEL by more remarkably altering the activation of memory-related proteins such as ERKs, CaMKIIs and CREB in broader brain regions, including the HP, mPFC and PRC, compared to MEL.
Collapse
|
3
|
Stenger S, Grasshoff H, Hundt JE, Lange T. Potential effects of shift work on skin autoimmune diseases. Front Immunol 2023; 13:1000951. [PMID: 36865523 PMCID: PMC9972893 DOI: 10.3389/fimmu.2022.1000951] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/29/2022] [Indexed: 02/16/2023] Open
Abstract
Shift work is associated with systemic chronic inflammation, impaired host and tumor defense and dysregulated immune responses to harmless antigens such as allergens or auto-antigens. Thus, shift workers are at higher risk to develop a systemic autoimmune disease and circadian disruption with sleep impairment seem to be the key underlying mechanisms. Presumably, disturbances of the sleep-wake cycle also drive skin-specific autoimmune diseases, but epidemiological and experimental evidence so far is scarce. This review summarizes the effects of shift work, circadian misalignment, poor sleep, and the effect of potential hormonal mediators such as stress mediators or melatonin on skin barrier functions and on innate and adaptive skin immunity. Human studies as well as animal models were considered. We will also address advantages and potential pitfalls in animal models of shift work, and possible confounders that could drive skin autoimmune diseases in shift workers such as adverse lifestyle habits and psychosocial influences. Finally, we will outline feasible countermeasures that may reduce the risk of systemic and skin autoimmunity in shift workers, as well as treatment options and highlight outstanding questions that should be addressed in future studies.
Collapse
Affiliation(s)
- Sarah Stenger
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Hanna Grasshoff
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Jennifer Elisabeth Hundt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Tanja Lange
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| |
Collapse
|
4
|
Onaolapo OJ, Odeniyi AO, Onaolapo AY. Parkinson's Disease: Is there a Role for Dietary and Herbal Supplements? CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 20:343-365. [PMID: 33602107 DOI: 10.2174/1871527320666210218082954] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/19/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
Abstract
Parkinson's Disease (PD) is characterised by degeneration of the neurons of the nigrostriatal dopaminergic pathway of the brain. The pharmacological cornerstone of PD management is mainly the use of dopamine precursors, dopamine receptor agonists, and agents that inhibit the biochemical degradation of dopamine. While these drugs initially provide relief to the symptoms and improve the quality of life of the patients, progression of the underlying pathological processes, such as oxidative stress and neuroinflammation (which have been strongly associated with PD and other neurodegenerative disorders), eventually reduce their benefits, making further benefits achievable, only at high doses due to which the magnitude and frequency of side-effects are amplified. Also, while it is becoming obvious that mainstream pharmacological agents may not always provide the much-needed answer, the question remains what succour can nature provide through dietary supplements, nutraceuticals and herbal remedies? This narrative review examines current literature for evidence of the possible roles (if any) of nutraceuticals, dietary supplements and herbal remedies in the prevention or management of PD by examining how these compounds could modulate key factors and pathways that are crucial to the pathogenesis and/or progression of PD. The likely limitations of this approach and its possible future roles in PD prevention and management are also considered.
Collapse
Affiliation(s)
- Olakunle J Onaolapo
- Behavioural Neuroscience Unit, Neuropharmacology Subdivision, Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| | - Ademola O Odeniyi
- Behavioural Neuroscience Unit, Neuropharmacology Subdivision, Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| | - Adejoke Y Onaolapo
- Behavioural Neuroscience Unit, Neurobiology Subdivision, Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| |
Collapse
|
5
|
Onaolapo OJ, Onaolapo AY, Olowe OA, Udoh MO, Udoh DO, Nathaniel TI. Melatonin and Melatonergic Influence on Neuronal Transcription Factors: Implications for the Development of Novel Therapies for Neurodegenerative Disorders. Curr Neuropharmacol 2021; 18:563-577. [PMID: 31885352 PMCID: PMC7457420 DOI: 10.2174/1570159x18666191230114339] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/16/2019] [Accepted: 12/28/2019] [Indexed: 01/04/2023] Open
Abstract
Melatonin is a multifunctional signalling molecule that is secreted by the mammalian pineal gland, and also found in a number of organisms including plants and bacteria. Research has continued to uncover an ever-increasing number of processes in which melatonin is known to play crucial roles in mammals. Amongst these functions is its contribution to cell multiplication, differentiation and survival in the brain. Experimental studies show that melatonin can achieve these functions by influencing transcription factors which control neuronal and glial gene expression. Since neuronal survival and differentiation are processes that are important determinants of the pathogenesis, course and outcome of neurodegenerative disorders; the known and potential influences of melatonin on neuronal and glial transcription factors are worthy of constant examination. In this review, relevant scientific literature on the role of melatonin in preventing or altering the course and outcome of neurodegenerative disorders, by focusing on melatonin's influence on transcription factors is examined. A number of transcription factors whose functions can be influenced by melatonin in neurodegenerative disease models have also been highlighted. Finally, the therapeutic implications of melatonin's influences have also been discussed and the potential limitations to its applications have been highlighted.
Collapse
Affiliation(s)
- Olakunle J. Onaolapo
- Behavioural Neuroscience/Neuropharmacology Unit, Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| | - Adejoke Y. Onaolapo
- Behavioural Neuroscience/Neurobiology Unit, Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Olugbenga A. Olowe
- Molecular Bacteriology and Immunology Unit, Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| | - Mojisola O. Udoh
- Department of Pathology, University of Benin Teaching Hospital, Benin City, Nigeria
| | - David O. Udoh
- Division of Neurological Surgery, Department of Surgery, University of Benin Teaching Hospital, Benin City, Edo State, Nigeria
| | - Thomas I. Nathaniel
- University of South Carolina School of Medicine-Greenville, Greenville, South Carolina, 29605, United States
| |
Collapse
|
6
|
Onaolapo AY, Adebisi EO, Adeleye AE, Olofinnade AT, Onaolapo OJ. Dietary Melatonin Protects Against Behavioural, Metabolic, Oxidative, and Organ Morphological Changes in Mice that are Fed High-Fat, High- Sugar Diet. Endocr Metab Immune Disord Drug Targets 2020; 20:570-583. [PMID: 32138638 DOI: 10.2174/1871530319666191009161228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Metabolic syndrome is a complex pattern of disorders that occur jointly and is associated with an increased risk of cardiovascular and cerebrovascular disease. Therefore the need for more-efficient options of treatment has become imperative. OBJECTIVE This study examined the effect of dietary-melatonin in the management of behavioural, metabolic, antioxidant, and organ changes due to high-fat/high-sugar (HFHS) diet-induced metabolic syndrome in mice. METHODS Mice were randomly assigned into five groups of ten animals each. Groups were normal control [fed standard diet (SD)], HFHS control, and 3 groups of melatonin incorporated into HFHS at 2.5, 5, and 10 mg/kg of feed. Mice were fed for seven weeks, and body weight was assessed weekly. Open-field behaviours, radial-arm, and Y-maze spatial memory were scored at the end of the experimental period. Twenty-four hours after the last behavioural test, blood was taken for estimation of blood glucose levels after an overnight fast. Animals were then euthanised, and blood was taken for estimation of plasma insulin, leptin, and adiponectin levels, and serum lipid profile. The liver, kidneys, and brain were excised and processed for general histology, while homogenates of the liver and whole brain were used to assess oxidative stress parameters. RESULTS Results showed that dietary melatonin (compared to HFHS diet) was associated with a decrease in body weight, food intake, and novelty-induced behaviours; and an increase in spatial-working memory scores. A decrease in glucose, insulin, leptin, and malondialdehyde levels; and an increase in adiponectin levels and superoxide dismutase activity were also observed. Histomorphological/ histomorphometric examination revealed evidence of organ injury with HFHS diet, and varying degrees of amelioration with melatonin-supplemented diet. CONCLUSION In conclusion, dietary melatonin supplementation may have beneficial effects in the management of the metabolic syndrome.
Collapse
Affiliation(s)
- Adejoke Yetunde Onaolapo
- Behavioural Neuroscience and Neurobiology Unit, Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria.,Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | | | | | - Anthony Tope Olofinnade
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Clinical Sciences, College of Medicine, Lagos State University, Ikeja, Lagos State, Nigeria
| | - Olakunle James Onaolapo
- Behavioural Neuroscience and Neuropharmacology Unit, Pharmacology and Therapeutics, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| |
Collapse
|
7
|
Gagnon K, Godbout R. Melatonin and Comorbidities in Children with Autism Spectrum Disorder. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2018; 5:197-206. [PMID: 30148039 PMCID: PMC6096870 DOI: 10.1007/s40474-018-0147-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Melatonin is used to treat sleep difficulties associated with autism spectrum disorder (ASD). There are growing evidence that melatonin could have an effect on other symptoms than sleep, such as anxiety, depression, pain, and gastrointestinal dysfunctions. Interestingly, these symptoms frequently are found as comorbid conditions in individuals with ASD. We aimed to highlight the potential effect of melatonin on these symptoms. RECENT FINDINGS Animal and human studies show that melatonin reduces anxiety. Regarding the effect of melatonin on pain, animal studies are promising, but results remain heterogeneous in humans. Both animal and human studies have found that melatonin can have a positive effect on gastrointestinal dysfunction. SUMMARY Melatonin has the potential to act on a wide variety of symptoms associated with ASD. However, other than sleep difficulties, no studies exist on melatonin as a treatment for ASD comorbid conditions. Such investigations should be on the research agenda because melatonin could improve a multitude of ASD comorbidities and, consequently, improve well-being.
Collapse
Affiliation(s)
- Katia Gagnon
- Sleep Laboratory & Clinic, Hôpital Rivière-des-Prairies, CIUSSS du Nord-de-l’Île-de-Montréal, 7070 Boul. Perras, Montréal, Québec H1E 1A4 Canada
- Department of Psychiatry, Université de Montréal, Montréal, Québec Canada
| | - Roger Godbout
- Sleep Laboratory & Clinic, Hôpital Rivière-des-Prairies, CIUSSS du Nord-de-l’Île-de-Montréal, 7070 Boul. Perras, Montréal, Québec H1E 1A4 Canada
- Department of Psychiatry, Université de Montréal, Montréal, Québec Canada
| |
Collapse
|
8
|
Onaolapo AY, Onaolapo OJ. Circadian dysrhythmia-linked diabetes mellitus: Examining melatonin’s roles in prophylaxis and management. World J Diabetes 2018; 9:99-114. [PMID: 30079146 PMCID: PMC6068738 DOI: 10.4239/wjd.v9.i7.99] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/01/2018] [Accepted: 06/08/2018] [Indexed: 02/05/2023] Open
Abstract
Diabetes mellitus is a chronic, life-threatening metabolic disorder that occurs worldwide. Despite an increase in the knowledge of the risk factors that are associated with diabetes mellitus, its worldwide prevalence has continued to rise; thus, necessitating more research into its aetiology. Recent researches are beginning to link a dysregulation of the circadian rhythm to impairment of intermediary metabolism; with evidences that circadian rhythm dysfunction might play an important role in the aetiology, course or prognosis of some cases of diabetes mellitus. These evidences thereby suggest possible relationships between the circadian rhythm regulator melatonin, and diabetes mellitus. In this review, we discuss the roles of the circadian rhythm in the regulation of the metabolism of carbohydrates and other macronutrients; with emphasis on the importance of melatonin and the impacts of its deficiency on carbohydrate homeostasis. Also, the possibility of using melatonin and its analogs for the “prophylaxis” or management of diabetes mellitus is also considered.
Collapse
Affiliation(s)
- Adejoke Y Onaolapo
- Behavioural Neuroscience/Neurobiology Unit, Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho 210211, Oyo State, Nigeria
| | - Olakunle J Onaolapo
- Behavioural Neuroscience/Neuropharmacology Unit, Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo 230263, Osun State, Nigeria
| |
Collapse
|
9
|
Zhao M, Garland T, Chappell MA, Andrew JR, Harris BN, Saltzman W. Effects of a physical and energetic challenge on male California mice ( Peromyscus californicus): modulation by reproductive condition. J Exp Biol 2018; 221:jeb168559. [PMID: 29170256 PMCID: PMC5818025 DOI: 10.1242/jeb.168559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/14/2017] [Indexed: 12/13/2022]
Abstract
Reproduction strongly influences metabolism, morphology and behavior in female mammals. In species in which males provide parental care, reproduction might have similar effects on fathers. We examined effects of an environmental challenge on metabolically important physiological, morphological and behavioral measures, and determined whether these effects differed between reproductive and non-reproductive males in the biparental California mouse (Peromyscus californicus). Males were paired with an ovary-intact female, an ovariectomized female treated with estrogen and progesterone to induce estrus, or an untreated ovariectomized female. Within each group, half of the animals were housed under standard laboratory conditions and half in cages requiring them to climb wire towers to obtain food and water; these latter animals were also fasted for 24 h every third day. We predicted that few differences would be observed between fathers and non-reproductive males under standard conditions, but that fathers would be in poorer condition than non-reproductive males under challenging conditions. Body and fat mass showed a housing condition×reproductive group interaction: the challenge condition increased body and fat mass in both groups of non-reproductive males, but breeding males were unaffected. Males housed under the physical and energetic challenge had higher blood lipid content, lower maximal aerobic capacity and related traits (hematocrit and relative triceps surae mass), increased pain sensitivity and increased number of fecal boli excreted during tail-suspension tests (a measure of anxiety), compared with controls. Thus, our physical and energetic challenge paradigm altered metabolism, morphology and behavior, but these effects were largely unaffected by reproductive condition.
Collapse
Affiliation(s)
- Meng Zhao
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Mark A Chappell
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Jacob R Andrew
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Breanna N Harris
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Wendy Saltzman
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
10
|
Onaolapo OJ, Paul TB, Onaolapo AY. Comparative effects of sertraline, haloperidol or olanzapine treatments on ketamine-induced changes in mouse behaviours. Metab Brain Dis 2017; 32:1475-1489. [PMID: 28508340 DOI: 10.1007/s11011-017-0031-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/05/2017] [Indexed: 12/19/2022]
Abstract
Effects of sertraline, haloperidol or olanzapine administration on ketamine-induced behaviours in mice were examined. The aim was to ascertain the degree of reversal of such behaviours by sertraline, and compare its effectiveness to haloperidol and olanzapine. Ten-week old mice (N = 120) were equally divided into main groups; 1 (open-field, radial-arm maze and elevated plus maze {EPM} tests), and 2 (social interaction test). Mice in each main group were assigned into six groups of ten (n = 10) each. Group 1 received intraperitoneal (i.p) injection of vehicle, while groups 2-6 received i.p ketamine at 15 mg/kg daily for 10 days. From day 11 to 24, mice in group 1 (vehicle) were given distilled water (i.p at 2 ml/kg and oral at 10 ml/kg), group 2 (ketamine control) received daily i.p ketamine and oral distilled water; while animals in groups 3-6 received daily i.p. ketamine and oral haloperidol (4 mg/kg), olanzapine (2 mg/kg), or one of two doses of sertraline (SERT) (2.5 or 5 mg/kg), respectively. Treatments were administered daily, and behaviours assessed on days 11 and 24. Results showed that repeated ketamine administration caused hyperlocomotion, increased self-grooming, memory loss and social withdrawal. Administration of sertraline (both doses), haloperidol, and olanzapine reversed ketamine-induced behavioural changes. However, in the EPM, sertraline and olanzapine were anxiolytic, while haloperidol was anxiogenic. Sertraline's effect on behaviours tested was comparable to olanzapine and better than haloperidol. In conclusion, this study shows that sertraline's ability to counteract ketamine-induced behavioural changes in mice is comparable to known antipsychotics.
Collapse
Affiliation(s)
- O J Onaolapo
- Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria.
| | - T B Paul
- Department of Anatomy, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - A Y Onaolapo
- Department of Anatomy, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
| |
Collapse
|
11
|
Onaolapo OJ, Ademakinwa OQ, Olalekan TO, Onaolapo AY. Ketamine-induced behavioural and brain oxidative changes in mice: an assessment of possible beneficial effects of zinc as mono- or adjunct therapy. Psychopharmacology (Berl) 2017; 234:2707-2725. [PMID: 28612134 DOI: 10.1007/s00213-017-4666-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/29/2017] [Indexed: 12/14/2022]
Abstract
RATIONALE We studied the influence of zinc, haloperidol or olanzapine on neurobehaviour (open-field, radial arm maze and elevated plus maze) and brain antioxidant status in vehicle- or ketamine-treated mice, with the aim of ascertaining the potentials of zinc in counteracting ketamine's effects. OBJECTIVES Experiment 1 assessed the effects of zinc in healthy animals and the relative degrees of modulation of ketamine's effects by zinc, haloperidol or olanzapine, respectively. Experiment 2 assessed the modulation of ketamine's effects following co-administration of zinc with haloperidol or olanzapine. METHODS Male mice weighing 18-20 g each were used. Animals were pretreated with ketamine (except vehicle, zinc, haloperidol and olanzapine controls) for 10 days before commencement of 14-day treatment (day 11-24) with vehicle, zinc, haloperidol or olanzapine (alone or in combination). Ketamine injection also continued alongside zinc and/or standard drugs in the ketamine-treated groups. Zinc, haloperidol and olanzapine were administered by gavage. Treatments were given daily and behaviours assessed on days 11 and 24. On day 24, animals were sacrificed and whole brain homogenates used for estimation of glutathione, nitric oxide and malondialdehyde (MDA) levels. RESULTS Ketamine increased open-field behaviours, nitric oxide and MDA levels, while it decreased working memory, social interaction and glutathione. Administration of zinc alone or in combination with haloperidol or olanzapine was associated with variable degrees of reversal of these effects. CONCLUSION Zinc may have the potential of a possible therapeutic agent and/or adjunct in the reversal of schizophrenia-like changes in behaviour and brain oxidative status.
Collapse
Affiliation(s)
- Olakunle James Onaolapo
- Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria.
| | | | | | | |
Collapse
|
12
|
Onaolapo AY, Aina OA, Onaolapo OJ. Melatonin attenuates behavioural deficits and reduces brain oxidative stress in a rodent model of schizophrenia. Biomed Pharmacother 2017; 92:373-383. [PMID: 28554133 DOI: 10.1016/j.biopha.2017.05.094] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/12/2017] [Accepted: 05/22/2017] [Indexed: 01/03/2023] Open
Abstract
Melatonin is a neurohormone that is linked to the aetiopathogenesis of schizophrenia. The aim of this study was to assess the potentials of oral melatonin supplement in the management of induced schizophrenia-like behavioural and brain oxidative status changes, using an animal model. The relative degrees of modulation of ketamine-induced behaviours by haloperidol, olanzapine or melatonin were assessed in the open-field, Y-maze, elevated plus maze and the social interaction tests. 12-week old, male mice were assigned to six groups of ten each (n=10). They were pretreated with daily intraperitoneal ketamine at 15mg/kg (except vehicle) for 10days, before commencement of 14day treatment with standard drug (haloperidol or olanzapine) or melatonin. Ketamine injection also continued alongside melatonin or standard drugs administration for the duration of treatment. Melatonin, haloperidol and olanzapine were administered by gavage. Treatments were given daily, and behaviours assessed on days 11 and 24. On day 24, animals were sacrificed and whole brain homogenates used for the estimation of glutathione, nitric oxide and malondialdehyde levels. Ketamine injection increased open-field behaviours; while it decreased working-memory, social-interaction and glutathione activity. Nitric oxide and malondialdehyde levels also increased after ketamine injection. Administration of melatonin was associated with variable degrees of reversal of these effects. In conclusion, melatonin may have the potential of a possible therapeutic agent and/or adjunct in the management of schizophrenia.
Collapse
Affiliation(s)
- Adejoke Y Onaolapo
- Department of Anatomy, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
| | - Olufemi A Aina
- Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| | - Olakunle James Onaolapo
- Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria.
| |
Collapse
|