1
|
Ren X, Chen H, Wang H, Wang Y, Huang C, Pan H. Advances in the pharmacological effects and mechanisms of Nelumbo nucifera gaertn. Extract nuciferine. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118262. [PMID: 38670406 DOI: 10.1016/j.jep.2024.118262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/05/2024] [Accepted: 04/24/2024] [Indexed: 04/28/2024]
Abstract
ETHNOPHARMACOLOGIC RELEVANCE The leaves of Nelumbo nucifera Gaertn. Are recorded in the earliest written documentation of traditional Chinese medicinal as "Ben Cao Gang Mu", a medicinal herb for blood clotting, dysentery and dizziness. Nuciferine, one of N. nucifera Gaertn. leaf extracts, has been shown to possess several pharmacological properties, including but not limited to ameliorating hyperlipidemia, stimulating insulin secretion, inducing vasodilation, reducing blood pressure, and demonstrating anti-arrhythmic properties. AIM OF THE STUDY In light of the latest research findings on nuciferine, this article provides a comprehensive overview of its chemical properties, pharmacological activities, and the underlying regulatory mechanisms. It aims to serve as a dependable reference for further investigations into the pharmacological effects and mechanisms of nuciferine. MATERIALS AND METHODS Use Google Scholar, Scifinder, PubMed, Springer, Elsevier, Wiley, Web of Science and other online database search to collect the literature on extraction, separation, structural analysis and pharmacological activity of nuciferine published before November 2023. The key words are "extraction", "isolation", "purification" and "pharmacological action" and "nuciferine". RESULTS Nuciferine has been widely used in the treatment of ameliorating hyperlipidemia and lose weight, Nuciferine is a monomeric aporphine alkaloid extracted from the leaves of the plant Nymphaea caerulea and Nelumbo nucifera Gaertn. Nuciferine has pharmacological activities such as relaxing smooth muscles, improving hyperlipidemia, stimulating insulin secretion, vasodilation, inducing hypotension, antiarrhythmic effects, and antimicrobial and anti-HIV activities. These pharmacological properties lay a foundation for the treatment of tumors, inflammation, hyperglycemia, lipid-lowering and weight-loss, oxidative stress and other diseases with nuciferine. CONCLUSION Nuciferine has been clinically used to treat hyperlipidemia and aid in weight loss due to its effects on lipid levels, insulin secretion, vasodilation, blood pressure reduction, anti-tumor properties, and immune enhancement. However, other potential benefits of nuciferine have not yet been fully explored in clinical practice. Future research should delve deeper into its molecular structure, toxicity, side effects, and clinical pharmacology to uncover its full range of effects and pave the way for its safe and expanded clinical use.
Collapse
Affiliation(s)
- Xinshui Ren
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Hua Chen
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Haibo Wang
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Yue Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China; School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Chuanjun Huang
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China; School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Hongzhi Pan
- The Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China.
| |
Collapse
|
2
|
Yahyazadeh A, Gur FM. Promising the potential of β-caryophyllene on mercury chloride-induced alteration in cerebellum and spinal cord of young Wistar albino rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03268-4. [PMID: 38995373 DOI: 10.1007/s00210-024-03268-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/29/2024] [Indexed: 07/13/2024]
Abstract
Mercury chloride (ME) is a chemical pollutant commonly found in the environment, which can contribute to undesirable health consequence worldwide. The current study investigated the detrimental impact of ME on the cerebellum and spinal cord tissues in 6-8-week-old female rats. We also evaluated the neuroprotective efficacy of β-caryophyllene (BC) against spinal and cerebellar changes caused by ME. Thirty-five young Wistar albino rats were randomly chosen and assigned into five groups: control (CO), olive oil (OI), ME, BC, ME + BC. All samples were analysed by means of unbiased stereological, biochemical, immunohistochemical, and histopathological methods. Our biochemical findings showed that SOD level was significantly increased in the ME group compared to the CO group (p < 0.05). We additionally detected a statistically significant decrease in the number of cerebellar Purkinje cells and granular cells, as well as spinal motor neuron in the ME group compared to the CO group (p < 0.05). In the ME + BC group, the number of Purkinje cells, granular cells, and spinal motor neurons was significantly higher compared to the ME group (p < 0.05). Decreased SOD activity in the ME + BC group was also detected than the ME group (p < 0.05). Immunohistochemical (the tumour necrosis factor-alpha (TNF-α)) and histopathological examinations also exhibited crucial information in each of the group. Taken together, ME exposure was associated with neurotoxicity in the cerebellum and spinal cord tissues. BC treatment also mitigated ME-induced neurological alteration, which may imply its potential therapeutic benefits.
Collapse
Affiliation(s)
- Ahmad Yahyazadeh
- Department of Histology and Embryology, Faculty of Medicine, Karabuk University, Karabuk, Turkey.
| | - Fatih Mehmet Gur
- Department of Histology and Embryology, Faculty of Medicine, Nigde Ömer Halisdemir University, Nigde, Turkey
| |
Collapse
|
3
|
Yovas A, Stanely SP, Issac R, Ponnian SMP. β-caryophyllene blocks reactive oxygen species-mediated hyperlipidemia in isoproterenol-induced myocardial infarcted rats. Eur J Pharmacol 2023; 960:176102. [PMID: 37827479 DOI: 10.1016/j.ejphar.2023.176102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
Myocardial infarction (MI) is a leading cause of death. Lipid-lowering interventions have been shown to decrease coronary events and mortality of MI and heart failure. In this investigation, we assessed the anti-hyperlipidemic effects of β-caryophyllene in isoproterenol-induced myocardial infarcted rats. β-Caryophyllene (20 mg/kg body weight) pre-and co-treatment was given to rats orally, daily, for 3 weeks. Isoproterenol (100 mg/kg body weight) was administered to rats to induce MI. The levels of serum cardiac troponins T and I, serum and heart total cholesterol, triglycerides, free fatty acids, and the levels of serum low-density and very low-density lipoprotein-cholesterols were augmented, and the level of serum high-density lipoprotein-cholesterol was lessened in myocardial infarcted rats. Further, the activity/levels of liver 3-hydroxy-3-methylglutaryl-coenzyme A reductase and plasma thiobarbituric acid reactive substances were amplified and the activity/levels of heart glutathione -S- transferase, vitamin C, and vitamin E were lessened by isoproterenol. A down-regulated expression of liver sterol regulatory element-binding protein-2 and liver low-density lipoprotein-receptor genes was observed by a reverse transcription-polymerase chain reaction study. Moreover, histopathology of Sudan III staining revealed an accumulation of fats in the heart of isoproterenol-induced rats. Nevertheless, β-caryophyllene pre-and co-treatment blocked alterations in all the parameters examined in isoproterenol-induced rats and inhibited the risk of MI. Moreover, the in vitro study revealed the potent free radical scavenging and antioxidant effects of β-caryophyllene. β-Caryophyllene's antioxidant and anti-hyperlipidemic properties are the possible mechanisms for the observed protective effects in this investigation.
Collapse
Affiliation(s)
- Anita Yovas
- Medicinal and Biomolecular Chemistry Laboratory, Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India
| | - Shervin Prince Stanely
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641 114, Tamil Nadu, India
| | - Reya Issac
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641 114, Tamil Nadu, India
| | - Stanely Mainzen Prince Ponnian
- Medicinal and Biomolecular Chemistry Laboratory, Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India.
| |
Collapse
|
4
|
Wilson G, Yang L, Su X, Ding S, Li L, Yang Y, Wang X, Wang W, Sa Y, Zhang Y, Chen J, Ma X. Exploring the therapeutic potential of natural compounds modulating the endocannabinoid system in various diseases and disorders: review. Pharmacol Rep 2023; 75:1410-1444. [PMID: 37906390 DOI: 10.1007/s43440-023-00544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023]
Abstract
Cannabinoid receptors, endogenous cannabinoids (endocannabinoids), and the enzymes involved in the biosynthesis and degradation of the endocannabinoids make up the endocannabinoid system (ECS). The components of the ECS are proven to modulate a vast bulk of various physiological and pathological processes due to their abundance throughout the human body. Such discoveries have attracted the researchers' attention and emerged as a potential therapeutical target for the treatment of various diseases. In the present article, we reviewed the discoveries of natural compounds, herbs, herbs formula, and their therapeutic properties in various diseases and disorders by modulating the ECS. We also summarize the molecular mechanisms through which these compounds elicit their properties by interacting with the ECS based on the existing findings. Our study provides the insight into the use of natural compounds that modulate ECS in various diseases and disorders, which in turn may facilitate future studies exploiting natural lead compounds as novel frameworks for designing more effective and safer therapeutics.
Collapse
Affiliation(s)
- Gidion Wilson
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Lingling Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Xiaojuan Su
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Shuqin Ding
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Liuyan Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Youyue Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Xiaoying Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Weibiao Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Yuping Sa
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Yue Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China
| | - Jianyu Chen
- Fujian University of Traditional Chinese Medicine, No. 1, Huatuo Road, Minhoushangjie, Fuzhou, 350122, China.
| | - Xueqin Ma
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China.
| |
Collapse
|
5
|
Mamdouh Hashiesh H, Sheikh A, Meeran MFN, Saraswathiamma D, Jha NK, Sadek B, Adeghate E, Tariq S, Al Marzooqi S, Ojha S. β-Caryophyllene, a Dietary Phytocannabinoid, Alleviates Diabetic Cardiomyopathy in Mice by Inhibiting Oxidative Stress and Inflammation Activating Cannabinoid Type-2 Receptors. ACS Pharmacol Transl Sci 2023; 6:1129-1142. [PMID: 37588762 PMCID: PMC10425997 DOI: 10.1021/acsptsci.3c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Indexed: 08/18/2023]
Abstract
Diabetes mellitus (DM) and its associated complications are considered one of the major health risks globally. Among numerous complications, diabetic cardiomyopathy (DCM) is characterized by increased accumulation of lipids and reduced glucose utilization following abnormal lipid metabolism in the myocardium along with oxidative stress, myocardial fibrosis, and inflammation that eventually result in cardiac dysfunction. The abnormal metabolism of lipids plays a fundamental role in cardiac lipotoxicity following the occurrence and development of DCM. Recently, it has been revealed that cannabinoid type-2 (CB2) receptors, an essential component of the endocannabinoid system, play a crucial role in the pathogenesis of obesity, hyperlipidemia, and DM. Provided the role of CB2R in regulating the glucolipid metabolic dysfunction and its antioxidant as well as anti-inflammatory activities, we carried out the current study to investigate the protective effects of a selective CB2R agonist, β-caryophyllene (BCP), a natural dietary cannabinoid in the murine model of DCM and elucidated the underlying pharmacological and molecular mechanisms. Mice were fed a high-fat diet for 4 weeks followed by a single intraperitoneal injection of streptozotocin (100 mg/kg) to induce the model of DCM. BCP (50 mg/kg body weight) was given orally for 12 weeks. AM630, a CB2R antagonist, was given 30 min before BCP treatment to demonstrate the CB2R-dependent mechanism of BCP. DCM mice exhibited hyperglycemia, increased serum lactate dehydrogenase, impaired cardiac function, and hypertrophy. In addition, DCM mice showed alternations in serum lipids and increased oxidative stress concomitant to reduced antioxidant defenses and enhanced cardiac lipid accumulation in the diabetic heart. DCM mice also exhibited activation of TLR4/NF-κB/MAPK signaling and triggered the production of inflammatory cytokines and inflammatory enzyme mediators. However, treatment with BCP exerted remarkable protective effects by favorable modulation of the biochemical and molecular parameters, which were altered in DCM mice. Interestingly, pretreatment with AM630 abrogated the protective effects of BCP in DCM mice. Taken together, the findings of the present study demonstrate that BCP possesses the capability to mitigate the progression of DCM by inhibition of lipotoxicity-mediated cardiac oxidative stress and inflammation and favorable modulation of TLR4/NF-κB/MAPK signaling pathways mediating the CB2R-dependent mechanism.
Collapse
Affiliation(s)
- Hebaallah Mamdouh Hashiesh
- Department
of Pharmacology and Therapeutics, College
of Medicine and Health Sciences, United Arab Emirates University, PO Box: 15551, Al Ain, United Arab Emirates
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| | - Azimullah Sheikh
- Department
of Pharmacology and Therapeutics, College
of Medicine and Health Sciences, United Arab Emirates University, PO Box: 15551, Al Ain, United Arab Emirates
| | - Mohamed Fizur Nagoor Meeran
- Department
of Pharmacology and Therapeutics, College
of Medicine and Health Sciences, United Arab Emirates University, PO Box: 15551, Al Ain, United Arab Emirates
| | - Dhanya Saraswathiamma
- Department
of Pathology, College of Medicine and Health
Sciences, United Arab Emirates University, PO Box: 15551, Al Ain, United
Arab Emirates
| | - Niraj Kumar Jha
- Department
of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Bassem Sadek
- Department
of Pharmacology and Therapeutics, College
of Medicine and Health Sciences, United Arab Emirates University, PO Box: 15551, Al Ain, United Arab Emirates
| | - Ernest Adeghate
- Department
of Anatomy, College of Medicine and Health
Sciences, United Arab Emirates University, PO Box: 15551, Al Ain, United
Arab Emirates
| | - Saeed Tariq
- Department
of Anatomy, College of Medicine and Health
Sciences, United Arab Emirates University, PO Box: 15551, Al Ain, United
Arab Emirates
| | - Saeeda Al Marzooqi
- Department
of Pathology, College of Medicine and Health
Sciences, United Arab Emirates University, PO Box: 15551, Al Ain, United
Arab Emirates
| | - Shreesh Ojha
- Department
of Pharmacology and Therapeutics, College
of Medicine and Health Sciences, United Arab Emirates University, PO Box: 15551, Al Ain, United Arab Emirates
- Zayed Bin
Sultan Center for Health Sciences, College
of Medicine and Health Sciences, United Arab Emirates University, PO Box: 15551, Al Ain, United Arab Emirates
| |
Collapse
|
6
|
Cuervo L, Álvarez-García S, Salas JA, Méndez C, Olano C, Malmierca MG. The Volatile Organic Compounds of Streptomyces spp.: An In-Depth Analysis of Their Antifungal Properties. Microorganisms 2023; 11:1820. [PMID: 37512992 PMCID: PMC10384482 DOI: 10.3390/microorganisms11071820] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The study of volatile organic compounds (VOCs) has expanded because of the growing need to search for new bioactive compounds that could be used as therapeutic alternatives. These small molecules serve as signals to establish interactions with other nearby organisms in the environment. In this work, we evaluated the antifungal effect of VOCs produced by different Streptomyces spp. This study was performed using VOC chamber devices that allow for the free exchange of VOCs without physical contact between microorganisms or the diffusible compounds they produce. Antifungal activity was tested against Escovopsis weberi, a fungal pathogen that affects ant nest stability, and the results showed that Streptomyces spp. CS014, CS057, CS131, CS147, CS159, CS207, and CS227 inhibit or reduce the fungal growth with their emitted VOCs. A GS-MS analysis of volatiles produced and captured by activated charcoal suggested that these Streptomyces strains synthesize several antifungal VOCs, many of them produced because of the presence of E. weberi, with the accumulation of various VOCs determining the growth inhibition effect.
Collapse
Affiliation(s)
- Lorena Cuervo
- Functional Biology Department, University of Oviedo, 33006 Oviedo, Spain
- University Institute of Oncology of Asturias (I.U.O.P.A), University of Oviedo, 33006 Oviedo, Spain
- Health Research Institute of Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain
| | - Samuel Álvarez-García
- Plant Physiology Area, Engineering and Agricultural Sciences Department, Universidad de León, 24009 León, Spain
| | - José A Salas
- Functional Biology Department, University of Oviedo, 33006 Oviedo, Spain
- University Institute of Oncology of Asturias (I.U.O.P.A), University of Oviedo, 33006 Oviedo, Spain
- Health Research Institute of Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain
| | - Carmen Méndez
- Functional Biology Department, University of Oviedo, 33006 Oviedo, Spain
- University Institute of Oncology of Asturias (I.U.O.P.A), University of Oviedo, 33006 Oviedo, Spain
- Health Research Institute of Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain
| | - Carlos Olano
- Functional Biology Department, University of Oviedo, 33006 Oviedo, Spain
- University Institute of Oncology of Asturias (I.U.O.P.A), University of Oviedo, 33006 Oviedo, Spain
- Health Research Institute of Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain
| | - Mónica G Malmierca
- Functional Biology Department, University of Oviedo, 33006 Oviedo, Spain
- University Institute of Oncology of Asturias (I.U.O.P.A), University of Oviedo, 33006 Oviedo, Spain
- Health Research Institute of Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain
| |
Collapse
|
7
|
Swiderski J, Sakkal S, Apostolopoulos V, Zulli A, Gadanec LK. Combination of Taurine and Black Pepper Extract as a Treatment for Cardiovascular and Coronary Artery Diseases. Nutrients 2023; 15:nu15112562. [PMID: 37299525 DOI: 10.3390/nu15112562] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The shift in modern dietary regimens to "Western style" and sedentary lifestyles are believed to be partly responsible for the increase in the global burden of cardiovascular diseases. Natural products have been used throughout human history as treatments for a plethora of pathological conditions. Taurine and, more recently, black pepper have gained attention for their beneficial health effects while remaining non-toxic even when ingested in excess. Taurine, black pepper, and the major terpene constituents found in black pepper (i.e., β-caryophyllene; α-pinene; β-pinene; α-humulene; limonene; and sabinene) that are present in PhytoCann BP® have been shown to have cardioprotective effects based on anti-inflammatory, antioxidative, anti-hypertensive and anti-atherosclerotic mechanisms. This comprehensive review of the literature focuses on determining whether the combination of taurine and black pepper extract is an effective natural treatment for reducing cardiovascular diseases risk factors (i.e., hypertension and hyperhomocysteinemia) and for driving anti-inflammatory, antioxidative and anti-atherosclerotic mechanisms to combat coronary artery disease, heart failure, myocardial infarction, and atherosclerotic disease.
Collapse
Affiliation(s)
- Jordan Swiderski
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Samy Sakkal
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Laura Kate Gadanec
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| |
Collapse
|
8
|
Passos CCO, Bezerra LL, da Rocha MN, Alves DR, Marinho MM, Marinho ES, de Morais SM. Studies of the Croton nepetaefolius Bail. essential oil and constituents as anticholinesterase agents against Alzheimer’s disease. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02611-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
9
|
Saetang J, Tedasen A, Sangkhathat S, Sangkaew N, Dokduang S, Prompat N, Taraporn S, Graidist P. The attenuation effect of low piperine Piper nigrum extract on doxorubicin-induced toxicity of blood chemical and immunological properties in mammary tumour rats. PHARMACEUTICAL BIOLOGY 2022; 60:96-107. [PMID: 34962450 PMCID: PMC8735876 DOI: 10.1080/13880209.2021.2018470] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/26/2021] [Accepted: 12/10/2021] [Indexed: 06/01/2023]
Abstract
CONTEXT Many natural extracts have been shown to minimize the toxicity of doxorubicin (Dox). Low piperine Piper nigrum L. (Piperaceae) extract (PFPE) is a natural extract containing many types of antioxidants that may reduce Dox toxicities. OBJECTIVE To evaluate the effect of PFPE in attenuating the side effects of Dox. MATERIALS AND METHODS Tumour-bearing Sprague Dawley rats were divided into five groups including normal, vehicle, 100 mg/kg BW of PFPE plus 2 mg/kg BW of Dox (P100 + Dox), 100 mg/kg BW of PFPE plus 2 mg/kg BW of Dox (P200 + Dox) and Dox. Rats were treated with Dox and/or PFPE three times/week for 4 weeks. Tumour burden, blood parameters, weight of internal organs and immunological data were investigated. RESULTS The addition of 200 mg/kg PFPE significantly restored the levels of AST from 174.60 ± 45.67 U/L in the Dox group near to normal levels at 109.80 ± 4.99 U/L. The combination of PFPE and Dox also decreased the levels of CXCL7, TIMP-1, sICAM-1 and l-selectin about 1.4-1.6-fold compared to Dox group. Feeding rats with 200 mg/kg BW of PFPE combination with Dox slightly increased Th1 from 161.67 ± 14.28 cells in Dox group to 200.75 ± 5.8 cells meanwhile suppressed Treg from 3088 ± 78 cells in Dox to 2561 ± 71 cells. DISCUSSION AND CONCLUSIONS This study showed that PFPE ameliorated Dox toxicity in many aspects indicating the role of antioxidant and other substances in the extract on toxicity attenuation. This suggested the using of PFPE may be valuable for Dox treated patients.
Collapse
Affiliation(s)
- Jirakrit Saetang
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
- Department of Surgery, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
- EZ-Mol-Design Laboratory, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Aman Tedasen
- Department of Medical Technology, School of Allied Health Sciences and Public Health, Walailak University, Thai Buri, Thailand
| | - Surasak Sangkhathat
- Department of Surgery, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Natnaree Sangkaew
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Sirinapa Dokduang
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Napat Prompat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Siriporn Taraporn
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Potchanapond Graidist
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
10
|
Silva DL, Silva NCRDA, Aguilar EC, Silva ME, Oliveira DRDE. Kinkan orange protects hypercholesterolemic rats against dyslipidemia and oxidative stress. AN ACAD BRAS CIENC 2022; 94:e20201066. [PMID: 36074424 DOI: 10.1590/0001-3765202220201066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/06/2020] [Indexed: 11/21/2022] Open
Abstract
We investigated the effect of dietary supplementation with kinkan orange on growth, adiposity, metabolic parameters, and oxidative stress in rats with diet-induced hypercholesterolemia. Female Wistar rats (6-8 weeks) were fed a AIN-93M diet (Control); AIN-93M diet containing 5% kinkan orange (CTkinkan); Hypercholesterolemic diet, containing 1% cholesterol and 25% fat (Hyper); or Hypercholesterolemic diet containing 5% kinkan orange (Hyperkinkan). Hypercholesterolemic diet increased body weight, adiposity, serum alanine transaminase (ALT), creatinine, cholesterol and triglycerides, hepatic total lipids, cholesterol, and triglycerides, and hepatic oxidative stress. Supplementation with kinkan reduced the serum and hepatic lipid content, decreased serum ALT, besides improving the antioxidant status in liver tissue of hypercholesterolemic animals. Moreover, HDL-cholesterol increased in both groups supplemented with kinkan orange (CTkinkan and Hyperkinkan). Our data suggest that diet supplementation with kinkan orange may consist of a valid strategy to prevent or reduce dyslipidemia and oxidative stress in hypercholesterolemic rats.
Collapse
Affiliation(s)
- Dayse Lúcia Silva
- Secretaria de Vigilância Sanitária de Mateus Leme, Rua Guaraciaba Passos, 1443, Centro, 35670-000 Mateus Leme, MG, Brazil
| | - Nicolle Camilla R DA Silva
- GSM Mineração Ltda, Rodovia MG 030, 8625, Torre 3, 8º andar, B. Vale do Sereno, 34012-970 Nova Lima, MG, Brazil
| | - Edenil C Aguilar
- Federal University of Minas Gerais, Department of Biochemistry and Immunology, Institute of Biological Sciences, Avenida Presidente Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Marcelo Eustáquio Silva
- Federal University of Ouro Preto, Department of Food, School of Nutrition, Rua Dois, Campus Morro do Cruzeiro, 35400-000 Ouro Preto, MG, Brazil
| | - Dirce R DE Oliveira
- Federal University of Juiz de Fora, Department of Basic Life Sciences, Campus Governador Valadares. Av. Moacir Paleta, 1167, São Pedro, 35020-360 Governador Valadares, MG, Brazil
| |
Collapse
|
11
|
Mahmoud MF, Elmaghraby AM, Ali N, Mostafa I, El-Shazly AM, Abdelfattah MA, Sobeh M. Black pepper oil (Piper nigrum L.) mitigates dexamethasone induced pancreatic damage via modulation of oxidative and nitrosative stress. Biomed Pharmacother 2022; 153:113456. [PMID: 36076569 PMCID: PMC9350854 DOI: 10.1016/j.biopha.2022.113456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/06/2022] Open
Abstract
Dexamethasone acts as an immunosuppressive drug and has been used recently in the management of specific coronavirus disease 2019 (COVID-19) cases; however, various adverse effects could limit its use. In this work, we studied the mitigation effects of black pepper oil (BP oil) on glycemic parameters, dyslipidemia, oxidative and nitrosative stress and pancreatic fibrosis in dexamethasone-treated rats. Animals were divided into five groups that were treated with vehicle, dexamethasone (10 mg/kg, SC) or black pepper oil (BP oil, 0.5 mL, or 1 mL/kg) or metformin (50 mg/kg) plus dexamethasone for 4 consecutive days. Serum insulin, blood glucose, total cholesterol, triglycerides, and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) were higher in the dexamethasone group vs the control group and decreased in BP oil and metformin groups relative to the dexamethasone group. Pancreatic nitric oxide, inducible nitric oxide synthase and malondialdehyde levels were increased in the dexamethasone group vs the control group and decreased in BP oil and metformin groups relative to the dexamethasone group. Pancreatic endothelial nitric oxide synthase and reduced glutathione were declined in the dexamethasone group vs the control group. They were increased in BP oil and metformin groups relative to the dexamethasone group. Moreover, the pancreatic islets diameter and collagen deposition were assessed and found to be higher in the dexamethasone group vs the control group. BP oil and metformin groups showed to regress this effect. In conclusion, BP oil may alleviate hyperglycemia, hyperinsulinemia, insulin resistance, dyslipidemia and pancreatic structural derangements and fibrosis by suppressing oxidative stress, increasing endogenous antioxidant levels, modulating nitric oxide signaling, preventing pancreatic stellate cells transition and collagen deposition.
Collapse
|
12
|
Baradaran Rahimi V, Askari VR. A mechanistic review on immunomodulatory effects of selective type two cannabinoid receptor β-caryophyllene. Biofactors 2022; 48:857-882. [PMID: 35648433 DOI: 10.1002/biof.1869] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/13/2022] [Indexed: 12/16/2022]
Abstract
β-Caryophyllene (BCP) is a plant-derived compound and occurs naturally in various foods and spices, including cinnamon, citrus, fruits, clove, curry, and pepper. BCP showed different pharmacological effects, such as antioxidant and antimicrobial properties. This article tried to gather updated knowledge of the anti-inflammatory, antioxidant, and immunomodulatory effects of BCP and searched using various databases and appropriate keywords until April 2022. Several studies showed that the anti-inflammatory effects of BCP are mainly provided through cannabinoid receptor 2 (CB2 ) receptor activation and the peroxisome proliferator-activated receptor (PPAR) γ pathway. It has also been demonstrated that BCP suppresses both protein and mRNA expression levels of interleukin (IL)-6 and reduces relevant proinflammatory cytokines but increases the anti-inflammatory cytokine IL-13. Previous results indicated that the antioxidant effects of β-caryophyllene were suggested through different pathways, including activation of nuclear factor erythroid 2-related factor-2 (Nrf2)/heme oxygenase-1 (HO-1)/antioxidant axis and inhibition of the HMG-CoA reductase activity, and oxidative stress biomarkers levels. Furthermore, various results showed immunomodulatory effects of BCP through inhibiting microglial cells, CD4+ and CD8+ T lymphocytes, modulated Th1 /Treg immune balance through the activation of the CB2 receptor, and reducing mitogen-activated protein kinases (p38MAPK) and NF-kB activation and increased ionized calcium-binding adaptor molecule-1 (Iba-1) and IL-1β.
Collapse
Affiliation(s)
- Vafa Baradaran Rahimi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Multi-Target Effects of ß-Caryophyllene and Carnosic Acid at the Crossroads of Mitochondrial Dysfunction and Neurodegeneration: From Oxidative Stress to Microglia-Mediated Neuroinflammation. Antioxidants (Basel) 2022; 11:antiox11061199. [PMID: 35740096 PMCID: PMC9220155 DOI: 10.3390/antiox11061199] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
Inflammation and oxidative stress are interlinked and interdependent processes involved in many chronic diseases, including neurodegeneration, diabetes, cardiovascular diseases, and cancer. Therefore, targeting inflammatory pathways may represent a potential therapeutic strategy. Emerging evidence indicates that many phytochemicals extracted from edible plants have the potential to ameliorate the disease phenotypes. In this scenario, ß-caryophyllene (BCP), a bicyclic sesquiterpene, and carnosic acid (CA), an ortho-diphenolic diterpene, were demonstrated to exhibit anti-inflammatory, and antioxidant activities, as well as neuroprotective and mitoprotective effects in different in vitro and in vivo models. BCP essentially promotes its effects by acting as a selective agonist and allosteric modulator of cannabinoid type-2 receptor (CB2R). CA is a pro-electrophilic compound that, in response to oxidation, is converted to its electrophilic form. This can interact and activate the Keap1/Nrf2/ARE transcription pathway, triggering the synthesis of endogenous antioxidant “phase 2” enzymes. However, given the nature of its chemical structure, CA also exhibits direct antioxidant effects. BCP and CA can readily cross the BBB and accumulate in brain regions, giving rise to neuroprotective effects by preventing mitochondrial dysfunction and inhibiting activated microglia, substantially through the activation of pro-survival signalling pathways, including regulation of apoptosis and autophagy, and molecular mechanisms related to mitochondrial quality control. Findings from different in vitro/in vivo experimental models of Parkinson’s disease and Alzheimer’s disease reported the beneficial effects of both compounds, suggesting that their use in treatments may be a promising strategy in the management of neurodegenerative diseases aimed at maintaining mitochondrial homeostasis and ameliorating glia-mediated neuroinflammation.
Collapse
|
14
|
Younis NS. β-Caryophyllene Ameliorates Cyclophosphamide Induced Cardiac Injury: The Association of TLR4/NFκB and Nrf2/HO1/NQO1 Pathways. J Cardiovasc Dev Dis 2022; 9:jcdd9050133. [PMID: 35621844 PMCID: PMC9145742 DOI: 10.3390/jcdd9050133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Background: β-caryophyllene (BCP), a natural sesquiterpene, is extensively present in the essential oils of several plants. Cyclophosphamide (CYC) is an anticancer drug. However, its clinical usage is inadequate due to its cardiotoxicity. The aim of this study was to study the effects of BCP on cardiac injury induced by CYC exposure, and to identify the underlying mechanism of action. Methods: Five groups of Wistar rats were allocated. Group I (Normal), II (BCP), and III (CYC) acted as controls. Group IV, V (CYC + BCP) received BCP in two doses (100 and 200 mg/kg, orally, respectively) for 14 days after CYC challenge. CYC groups received 200 mg/kg, i.p. of the drug once on the first day of experiments. Results: CYC group displayed numerous ECG and histological irregularities and cardiac markers elevation. CYC induced lipid peroxidation and oxidative stress intensification, as well as inflammatory and apoptotic markers escalation. Treatment with BCP resulted in modified ECG traces and histological sections. BCP mitigated cardiac markers and lipid peroxidation whereas intensified antioxidant capacity. BCP activated Nrf2, with subsequent HO1 and NQO1 amplification. BCP diminished TLR4/NFκB pathway, which consequently lessened the inflammatory and apoptosis responses. Conclusion: BCP administration was associated with activated Nrf2/HO1/NQO1 and inhibited TLR4/NFκB pathways with subsequent enhanced anti-oxidative capacity and diminished inflammatory and apoptosis responses.
Collapse
Affiliation(s)
- Nancy S Younis
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
15
|
Regginato A, Cunico L, Bertoncello K, Schindler MSZ, Chitolina R, Marins K, Zanatta AP, Calisto JF, Oliveira JV, Magro JD, Zanatta L. Antidiabetic and hypolipidemic potential of Campomanesia xanthocarpa seed extract obtained by supercritical CO2. BRAZ J BIOL 2021; 81:621-631. [DOI: 10.1590/1519-6984.227388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 02/18/2020] [Indexed: 12/18/2022] Open
Abstract
Abstract Campomanesia xanthocarpa, a plant belonging to the Myrtaceae family, is popularly known as gabiroba. Leaves of gabiroba has been popularly used to treat various diseases, including inflammatory, renal, and digestive, among others. Additionally, studies have shown an effect to reduce blood cholesterol levels. The aim of this study was to evaluate the antihyperglycemic and hypolipidemic effects of Campomanesia xanthocarpa seed extract in hyperglycemic rats. The results showed that 400 mg/kg of seed extract was able to decrease blood glucose levels and to increase the muscular and hepatic glycogen content as well as to inhibit the sucrase and maltase activity. At doses of 200 mg/kg and 800 mg/kg, the activity of these enzymes was also reduced. In the lipid profile 400 mg/kg produced a decrease in total and LDL cholesterol serum levels; and with 200 mg/kg there was an increase in HDL cholesterol levels. The extract did not present hepatic and renal toxic effects at the different doses tested. The results suggest that the treatment with Campomanesia xanthocarpa seeds extract is useful in reducing glycemia, total cholesterol and LDL levels with potential adjuvant therapeutic in the treatment of diabetes and hypercholesterolemia, however, additional pharmacological and toxicological studies are still required.
Collapse
Affiliation(s)
- A. Regginato
- Universidade Comunitária da Região de Chapecó, Brasil
| | - L. Cunico
- Universidade Comunitária da Região de Chapecó, Brasil
| | | | | | - R. Chitolina
- Universidade Comunitária da Região de Chapecó, Brasil
| | - K. Marins
- Universidade Comunitária da Região de Chapecó, Brasil
| | - A. P. Zanatta
- Universidade Comunitária da Região de Chapecó, Brasil
| | - J. F. Calisto
- Universidade Comunitária da Região de Chapecó, Brasil
| | - J. V. Oliveira
- Universidade Comunitária da Região de Chapecó, Brasil; Universidade Federal de Santa Catarina, Brasil
| | - J. D. Magro
- Universidade Comunitária da Região de Chapecó, Brasil
| | - L. Zanatta
- Universidade Comunitária da Região de Chapecó, Brasil; Universidade Comunitária da Região de Chapecó, Brasil; Universidade do Estado de Santa Catarina, Brasil
| |
Collapse
|
16
|
Jha NK, Sharma C, Hashiesh HM, Arunachalam S, Meeran MN, Javed H, Patil CR, Goyal SN, Ojha S. β-Caryophyllene, A Natural Dietary CB2 Receptor Selective Cannabinoid can be a Candidate to Target the Trinity of Infection, Immunity, and Inflammation in COVID-19. Front Pharmacol 2021; 12:590201. [PMID: 34054510 PMCID: PMC8163236 DOI: 10.3389/fphar.2021.590201] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 02/04/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease (COVID-19), caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an ongoing pandemic and presents a public health emergency. It has affected millions of people and continues to affect more, despite tremendous social preventive measures. Identifying candidate drugs for the prevention and treatment of COVID-19 is crucial. The pathogenesis and the complications with advanced infection mainly involve an immune-inflammatory cascade. Therefore, therapeutic strategy relies on suppressing infectivity and inflammation, along with immune modulation. One of the most promising therapeutic targets for the modulation of immune-inflammatory responses is the endocannabinoid system, particularly the activation of cannabinoid type 2 receptors (CB2R), a G-protein coupled receptor which mediates the anti-inflammatory properties by modulating numerous signaling pathways. To pharmacologically activate the CB2 receptors, a naturally occurring cannabinoid ligand, beta-caryophyllene (BCP), received attention due to its potent anti-inflammatory, antiviral, and immunomodulatory properties. BCP is recognized as a full selective functional agonist on CB2 receptors and produces therapeutic effects by activating CB2 and the nuclear receptors, peroxisome proliferator-activated receptors (PPARs). BCP is regarded as the first dietary cannabinoid with abundant presence across cannabis and non-cannabis plants, including spices and other edible plants. BCP showed tissue protective properties and favorably modulates numerous signaling pathways and inhibits inflammatory mediators, including cytokines, chemokines, adhesion molecules, prostanoids, and eicosanoids. Based on its pharmacological properties, molecular mechanisms, and the therapeutic potential of BCP as an immunomodulator, anti-inflammatory, organ-protective, and antiviral, we hypothesize that BCP could be a promising therapeutic and/or preventive candidate to target the triad of infection, immunity, and inflammation in COVID-19. In line with numerous studies that proposed the potential of cannabinoids in COVID-19, BCP may be a novel candidate compound for pharmaceutical and nutraceutical development due to its unique functional receptor selectivity, wide availability and accessibility, dietary bioavailability, nonpsychoactivity, and negligible toxicity along with druggable properties, including favorable pharmacokinetic and physicochemical properties. Based on reasonable pharmacological mechanisms and therapeutic properties, we speculate that BCP has potential to be investigated against COVID-19 and will inspire further preclinical and clinical studies.
Collapse
Affiliation(s)
- Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, India
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hebaallah Mamdouh Hashiesh
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Seenipandi Arunachalam
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mf Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hayate Javed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Chandragouda R Patil
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Sameer N Goyal
- Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
17
|
Bahr T, Butler G, Rock C, Welburn K, Allred K, Rodriguez D. Cholesterol-lowering activity of natural mono- and sesquiterpenoid compounds in essential oils: A review and investigation of mechanisms using in silico protein-ligand docking. Phytother Res 2021; 35:4215-4245. [PMID: 33754393 DOI: 10.1002/ptr.7083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 02/07/2021] [Accepted: 02/23/2021] [Indexed: 01/03/2023]
Abstract
Mono- and sesquiterpenoids are the main chemical constituents of essential oils. Essential oils and their constituents have received increasing attention for lipid-lowering properties in both cell and animal models. Despite the chemical diversity of essential oil compounds, the effects of many of these compounds on cholesterol metabolism are highly similar. In this report, we review the literature regarding the effects of essential oils and their terpenoid constituents on cholesterol homeostasis, and explore likely mechanisms using protein-ligand docking. We identified 98 experimental and seven clinical studies on essential oils, isolated compounds, and blends; 100 of these described improvements either in blood cholesterol levels or in sterol metabolic pathways. Our review and docking analysis confirmed two likely mechanisms common to many essential oil compounds: (1) direct agonism of peroxisome-proliferator-activated receptors, and (2) direct interaction with sterol-sensing domains, motifs found in key sterol regulatory proteins including sterol regulatory element binding protein cleavage activating protein and HMG-CoA reductase. Notably, these direct interactions lead to decreased transcription and accelerated degradation of HMG-CoA reductase. Our work suggests that terpene derivatives in essential oils have cholesterol-lowering activity and could potentially work synergistically with statins, however, further high quality studies are needed to establish their clinical efficacy.
Collapse
Affiliation(s)
- Tyler Bahr
- School of Medicine, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas, 78229, USA
| | - Gavin Butler
- School of Medicine, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas, 78229, USA
| | - Christian Rock
- School of Medicine, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas, 78229, USA
| | - Kyle Welburn
- School of Osteopathic Medicine, University of the Incarnate Word, 7615 Kennedy Hill, San Antonio, Texas, 78235, USA
| | - Kathryn Allred
- Science & Education, doTERRA International LLC, 389 1300 W, Pleasant Grove, Utah, 84062, USA
| | - Damian Rodriguez
- Science & Education, doTERRA International LLC, 389 1300 W, Pleasant Grove, Utah, 84062, USA
| |
Collapse
|
18
|
Matacchione G, Gurău F, Silvestrini A, Tiboni M, Mancini L, Valli D, Rippo MR, Recchioni R, Marcheselli F, Carnevali O, Procopio AD, Casettari L, Olivieri F. Anti-SASP and anti-inflammatory activity of resveratrol, curcumin and β-caryophyllene association on human endothelial and monocytic cells. Biogerontology 2021; 22:297-313. [PMID: 33704623 PMCID: PMC8084815 DOI: 10.1007/s10522-021-09915-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/26/2021] [Indexed: 01/18/2023]
Abstract
A challenging and promising new branch of aging-related research fields is the identification of natural compounds able to modulate the senescence-associated secretory phenotype (SASP), which characterizes senescent cells and can contribute to fuel the inflammaging. We investigated both the anti-SASP and anti-inflammatory activities of a nutritional supplement, namely Fenoxidol™, composed of turmeric extract bioCurcumin (bCUR), Polydatin (the natural glycosylated precursor of Resveratrol-RSV), and liposomal β-caryophyllene (BCP), in two human cellular models, such as the primary endothelial cell line, HUVECs and the monocytic cell line, THP-1. Replicative and Doxorubicin-induced senescent HUVECs, both chosen as cellular models of SASP, and lipopolysaccharides (LPS)-stimulated THP-1, selected as a model of the inflammatory response, were treated with the three single natural compounds or with a combination of them (MIX). In both senescent HUVEC models, MIX treatment significantly reduced IL-1β and IL-6 expression levels and p16ink4a protein, and also increased SIRT1 protein level, as well as downregulated miR-146a and miR-21 expression, two of the so-called inflamma-miRNAs, more effectively than the single compounds. In THP-1 cells stimulated with LPS, the MIX showed a significant effect in decreasing IL-1β, IL-6, TNF-α, and miR-146a expression levels and Caspase-1 activation, in association with an up-regulation of SIRT1 protein, compared to the single compounds. Overall, our results suggest that the three analysed compounds can have a combined effect in restraining SASP in senescent HUVECs as well as the inflammatory response in LPS-stimulated THP-1 cells.
Collapse
Affiliation(s)
- Giulia Matacchione
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Felicia Gurău
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Andrea Silvestrini
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy.
| | - Mattia Tiboni
- Department of Biomolecular Sciences, Università di Urbino "Carlo Bo", Urbino, Italy.
| | - Luca Mancini
- Department of Biomolecular Sciences, Università di Urbino "Carlo Bo", Urbino, Italy
| | - Debora Valli
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Rina Recchioni
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | | | - Oliana Carnevali
- Department of Life and Environmental Sciences, DiSVA, Università Politecnica delle Marche, 60131, Ancona, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - Luca Casettari
- Department of Biomolecular Sciences, Università di Urbino "Carlo Bo", Urbino, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| |
Collapse
|
19
|
Distribution of inhaled volatile β-caryophyllene and dynamic changes of liver metabolites in mice. Sci Rep 2021; 11:1728. [PMID: 33462287 PMCID: PMC7813867 DOI: 10.1038/s41598-021-81181-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022] Open
Abstract
β-caryophyllene (BCP), an essential oil component of many herbs and spices, has various biological activities as a functional food factor. A distinct feature of BCP is its volatile double-ring sesquiterpene structure. Orally administered BCP is reportedly detected in its intact form in mice serum; however, the distribution of inhaled volatile BCP throughout the body remains unknown. This study aimed to estimate the distribution properties of inhaled volatile BCP and to investigate its effects on metabolism. After mice were exposed to volatile BCP, it was detected in the lung, olfactory bulb, brain, serum, heart, liver, kidney, epididymal fat, and brown adipose tissue. BCP was further detected in the brain, liver, and brown adipose tissue 24 h after exposure. Metabolites related to glutathione metabolism were significantly altered in the liver. These results suggest that inhaled volatile BCP is widely distributed in murine tissues and affects the dynamics of metabolites in the liver.
Collapse
|
20
|
Giuliani C, Bottoni M, Ascrizzi R, Santagostini L, Papini A, Flamini G, Fico G. A novel study approach on Scutellaria altissima L. cultivated at the Ghirardi Botanic Garden (Lombardy, Italy). PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:1013-1021. [PMID: 32772473 DOI: 10.1111/plb.13166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 05/08/2023]
Abstract
Within an Open Science project, research was carried out to describe to the public of the Ghirardi Botanic Garden (BS, Lombardy, Italy) the invisible features of plants. This work is dedicated to Scutellaria altissima L. (Lamiaceae). Micromorphological, histochemical and phytochemical investigations were conducted on the vegetative and reproductive organs to correlate the structures involved in the emission of substances and their unique productivity. This work reports volatile organic compound (VOC) profiles of leaves and flowers and the composition of essential oil (EO) obtained from aerial parts of plants cultivated in Italy that have never been described before. Three morphotypes of glandular trichomes were observed: peltate, short-stalked capitate and long-stalked capitate. Peltate trichomes were the main producers of terpenes, short-stalked capitates of polysaccharides and long-stalked capitates of terpenes and polyphenols. The leaf VOC profile showed heterogeneous composition, with non-terpene derivatives as the major chemical class (71.04%), while monoterpene hydrocarbons represented almost the totality of the flower (99.73%). The leaf presented a higher number of total (37 versus 11) and exclusive (33 versus 7) compounds. (Z)-3-Hexenol acetate was most abundant in the leaf and (E)-β-ocimene in the flower. Four common compounds were detected: β-pinene, β-caryophyllene, γ-muurolene and germacrene-D. The EO contaied 21 compounds, dominated by β-caryophyllene, linalool and hexahydrofarnesyl acetone. This research allowed us to correlate morphotypes of the secretory structures with the production of secondary metabolites, with the aim of providing the public of the Ghirardi Botanic Garden with a dedicated iconographic approach, which accounts for olfactory perception linked to S. altissima.
Collapse
Affiliation(s)
- C Giuliani
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
- Department of Pharmaceutical Sciences, Ghirardi Botanic Garden, University of Milan, Brescia, Italy
| | - M Bottoni
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
- Department of Pharmaceutical Sciences, Ghirardi Botanic Garden, University of Milan, Brescia, Italy
| | - R Ascrizzi
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - L Santagostini
- Department of Chemistry, University of Milan, Milan, Italy
| | - A Papini
- Department of Biology, University of Florence, Florence, Italy
| | - G Flamini
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - G Fico
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
- Department of Pharmaceutical Sciences, Ghirardi Botanic Garden, University of Milan, Brescia, Italy
| |
Collapse
|
21
|
Scandiffio R, Geddo F, Cottone E, Querio G, Antoniotti S, Gallo MP, Maffei ME, Bovolin P. Protective Effects of ( E)-β-Caryophyllene (BCP) in Chronic Inflammation. Nutrients 2020; 12:nu12113273. [PMID: 33114564 PMCID: PMC7692661 DOI: 10.3390/nu12113273] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
(E)-β-caryophyllene (BCP) is a bicyclic sesquiterpene widely distributed in the plant kingdom, where it contributes a unique aroma to essential oils and has a pivotal role in the survival and evolution of higher plants. Recent studies provided evidence for protective roles of BCP in animal cells, highlighting its possible use as a novel therapeutic tool. Experimental results show the ability of BCP to reduce pro-inflammatory mediators such as tumor necrosis factor-alfa (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), thus ameliorating chronic pathologies characterized by inflammation and oxidative stress, in particular metabolic and neurological diseases. Through the binding to CB2 cannabinoid receptors and the interaction with members of the family of peroxisome proliferator-activated receptors (PPARs), BCP shows beneficial effects on obesity, non-alcoholic fatty liver disease/nonalcoholic steatohepatitis (NAFLD/NASH) liver diseases, diabetes, cardiovascular diseases, pain and other nervous system disorders. This review describes the current knowledge on the biosynthesis and natural sources of BCP, and reviews its role and mechanisms of action in different inflammation-related metabolic and neurologic disorders.
Collapse
Affiliation(s)
- Rosaria Scandiffio
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (R.S.); (F.G.); (E.C.); (G.Q.); (S.A.); (M.P.G.)
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy;
| | - Federica Geddo
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (R.S.); (F.G.); (E.C.); (G.Q.); (S.A.); (M.P.G.)
| | - Erika Cottone
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (R.S.); (F.G.); (E.C.); (G.Q.); (S.A.); (M.P.G.)
| | - Giulia Querio
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (R.S.); (F.G.); (E.C.); (G.Q.); (S.A.); (M.P.G.)
| | - Susanna Antoniotti
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (R.S.); (F.G.); (E.C.); (G.Q.); (S.A.); (M.P.G.)
| | - Maria Pia Gallo
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (R.S.); (F.G.); (E.C.); (G.Q.); (S.A.); (M.P.G.)
| | - Massimo E. Maffei
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy;
| | - Patrizia Bovolin
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (R.S.); (F.G.); (E.C.); (G.Q.); (S.A.); (M.P.G.)
- Correspondence:
| |
Collapse
|
22
|
Di Sotto A, Mancinelli R, Gullì M, Eufemi M, Mammola CL, Mazzanti G, Di Giacomo S. Chemopreventive Potential of Caryophyllane Sesquiterpenes: An Overview of Preliminary Evidence. Cancers (Basel) 2020; 12:E3034. [PMID: 33081075 PMCID: PMC7603190 DOI: 10.3390/cancers12103034] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/29/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Chemoprevention is referred to as a strategy to inhibit, suppress, or reverse tumor development and progression in healthy people along with high-risk subjects and oncologic patients through using pharmacological or natural substances. Numerous phytochemicals have been widely described in the literature to possess chemopreventive properties, although their clinical usefulness remains to be defined. Among them, caryophyllane sesquiterpenes are natural compounds widely occurring in nature kingdoms, especially in plants, fungi, and marine environments. Several structures, characterized by a common caryophyllane skeleton with further rearrangements, have been identified, but those isolated from plant essential oils, including β-caryophyllene, β-caryophyllene oxide, α-humulene, and isocaryophyllene, have attracted the greatest pharmacological attention. Emerging evidence has outlined a complex polypharmacological profile of caryophyllane sesquiterpenes characterized by blocking, suppressing, chemosensitizing, and cytoprotective properties, which suggests a possible usefulness of these natural substances in cancer chemoprevention for both preventive and adjuvant purposes. In the present review, the scientific knowledge about the chemopreventive properties of caryophyllane sesquiterpenes and the mechanisms involved have been collected and discussed; moreover, possible structure-activity relationships have been highlighted. Although further high-quality studies are required, the promising preclinical findings and the safe pharmacological profile encourage further studies to define a clinical usefulness of caryophyllane sesquiterpenes in primary, secondary, or tertiary chemoprevention.
Collapse
Affiliation(s)
- Antonella Di Sotto
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (M.G.); (S.D.G.)
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (R.M.); (C.L.M.)
| | - Marco Gullì
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (M.G.); (S.D.G.)
| | - Margherita Eufemi
- Department of Biochemical Science “A. Rossi Fanelli”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy;
| | - Caterina Loredana Mammola
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (R.M.); (C.L.M.)
| | - Gabriela Mazzanti
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (M.G.); (S.D.G.)
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (M.G.); (S.D.G.)
| |
Collapse
|
23
|
Hashiesh HM, Meeran MN, Sharma C, Sadek B, Kaabi JA, Ojha SK. Therapeutic Potential of β-Caryophyllene: A Dietary Cannabinoid in Diabetes and Associated Complications. Nutrients 2020; 12:nu12102963. [PMID: 32998300 PMCID: PMC7599522 DOI: 10.3390/nu12102963] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/14/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus (DM), a metabolic disorder is one of the most prevalent chronic diseases worldwide across developed as well as developing nations. Hyperglycemia is the core feature of the type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM), following insulin deficiency and impaired insulin secretion or sensitivity leads insulin resistance (IR), respectively. Genetic and environmental factors attributed to the pathogenesis of DM and various therapeutic strategies are available for the prevention and treatment of T2DM. Among the numerous therapeutic approaches, the health effects of dietary/nutraceutical approach due to the presence of bioactive constituents, popularly termed phytochemicals are receiving special interest for pharmacological effects and therapeutic benefits. The phytochemicals classes, in particular sesquiterpenes received attention because of potent antioxidant, anti-inflammatory, and antihyperglycemic effects and health benefits mediating modulation of enzymes, receptors, and signaling pathways deranged in DM and its complications. One of the terpene compounds, β-caryophyllene (BCP), received enormous attention because of its abundant occurrence, non-psychoactive nature, and dietary availability through consumption of edible plants including spices. BCP exhibit selective full agonism on cannabinoid receptor type 2 (CB2R), an important component of endocannabinoid system, and plays a role in glucose and lipid metabolism and represents the newest drug target for chronic inflammatory diseases. BCP also showed agonist action on peroxisome proliferated activated receptor subtypes, PPAR-α and PPAR-γ, the main target of currently used fibrates and imidazolidinones for dyslipidemia and IR, respectively. Many studies demonstrated its antioxidant, anti-inflammatory, organoprotective, and antihyperglycemic properties. In the present review, the plausible therapeutic potential of BCP in diabetes and associated complications has been comprehensively elaborated based on experimental and a few clinical studies available. Further, the pharmacological and molecular mechanisms of BCP in diabetes and its complications have been represented using synoptic tables and schemes. Given the safe status, abundant natural occurrence, oral bioavailability, dietary use and pleiotropic properties modulating receptors and enzymes, BCP appears as a promising molecule for diabetes and its complications.
Collapse
Affiliation(s)
- Hebaallah Mamdouh Hashiesh
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE; (H.M.H.); (M.F.N.M.); (B.S.)
| | - M.F. Nagoor Meeran
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE; (H.M.H.); (M.F.N.M.); (B.S.)
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE; (C.S.); (J.A.K.)
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE; (H.M.H.); (M.F.N.M.); (B.S.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE
| | - Juma Al Kaabi
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE; (C.S.); (J.A.K.)
| | - Shreesh K. Ojha
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE; (H.M.H.); (M.F.N.M.); (B.S.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE
- Correspondence: ; Tel.: +971-3-713-7524; Fax: +971-3-767-2033
| |
Collapse
|
24
|
Karimian Azari E, Kerrigan A, O’Connor A. Naturally Occurring Cannabinoids and their Role in Modulation of Cardiovascular Health. J Diet Suppl 2020; 17:625-650. [DOI: 10.1080/19390211.2020.1790708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Aileen Kerrigan
- Research and Development department, University College Dublin, Dublin, Ireland
| | | |
Collapse
|
25
|
Ramos VP, da Silva PG, Oliveira PS, Bona NP, Soares MSP, Cardoso JDS, Hoffmann JF, Chaves FC, Schneider A, Spanevello RM, Lencina CL, Stefanello FM, Tavares RG. Hypolipidemic and anti-inflammatory properties of phenolic rich Butia odoratafruit extract: potential involvement of paraoxonase activity. Biomarkers 2020; 25:417-424. [DOI: 10.1080/1354750x.2020.1781261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Vanessa Plasse Ramos
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Pamela Gonçalves da Silva
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Pathise Souto Oliveira
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Natália Pontes Bona
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Mayara Sandrielly Pereira Soares
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Juliane de Souza Cardoso
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Jessica Fernanda Hoffmann
- Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos, Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Fábio Clasen Chaves
- Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos, Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Roselia Maria Spanevello
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Claiton Leoneti Lencina
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Francieli Moro Stefanello
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Rejane Giacomelli Tavares
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| |
Collapse
|
26
|
A Systematic Review of Essential Oils and the Endocannabinoid System: A Connection Worthy of Further Exploration. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8035301. [PMID: 32508955 PMCID: PMC7246407 DOI: 10.1155/2020/8035301] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/21/2020] [Accepted: 05/04/2020] [Indexed: 12/22/2022]
Abstract
Aromatic compounds have a long history of use as medicines in most recorded cultures. An increasing interest in these therapeutic volatile molecules in both scientific and lay communities has led to the advancement of essential oils as phytomedicines. Recent discoveries suggest essential oils augment the endocannabinoid system in a positive manner to mitigate various pathologies. However, the exact mechanisms whereby essential oils influence endocannabinoid system activity are not fully known, these studies provide a glimpse into their involvement and warrant further evaluation. Additional study of the interaction between essential oils and the endocannabinoid system may lead to promising phytomedicines for the treatment of diseases and conditions involving dysregulation or activation of the endocannabinoid system.
Collapse
|
27
|
De Sousa JA, De Sousa JT, Boaretto FBM, Salvi JDO, Fachini J, Da Silva JB, Unfer JP, Allgayer MC, Lemes MLB, Marroni NP, Ferraz ADBF, Picada JN. Anti-hyperlipidemic effects of Campomanesia xanthocarpa aqueous extract and its modulation on oxidative stress and genomic instability in Wistar rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:1009-1018. [PMID: 31658881 DOI: 10.1080/15287394.2019.1683925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The use of natural products from herbs may be a therapeutic option in dyslipidemia treatment. Campomanesia xanthocarpa (Mart.) O. Berg (Myrtaceae) leaves have been used to decrease cholesterol levels. However, studies to determine activities of this plant on triglycerides metabolism have received little attention. The aim of this study was to examine anti-hyperlipidemic effects of a C. xanthocarpa aqueous leaf extract (CxAE) and assess protective actions against oxidative stress and DNA damage. The tyloxapol-induced hyperlipidemia model was used in Wistar rats. Rats were treated orally with CxAE either 250 or 500 mg/kg/day for 7 days prior to tyloxapol administration. Biochemical parameters, oxidative stress levels, and genomic instability were assessed in several tissues. CxAE decreased cholesterol and triglyceride levels in serum and hepatic and renal DNA damage in tyloxapol-treated rats. There was no marked effect on the micronucleus frequency in bone marrow. The extract increased catalase activity and decreased glutathione S-transferase activity in kidney tissue. CxAE showed anti-hyperlipidemic effects, improved oxidative parameters, and protected DNA against damage induced by tyloxapol-induced hyperlipidemia, suggesting C. xanthocarpa leaves may be useful in preventing dyslipidemias.Abbreviations: ALP: Alkaline phosphatase; ALT: Aspartate aminotransferase; ANOVA: Analysis of variance; AST: Aspartate aminotransferase; Ator: Atorvastatin; CAT: Catalase; Chol: Cholesterol; CxAE: Campomanesia xanthocarpa aqueous extract; GST: Glutathione S-transferase; HDL: High density cholesterol; i.p.: Intraperitoneal; NCE: Normochromatic erythrocyte; PBS: Phosphate buffer solution; PCE: Polychromatic erythrocyte; ROS: Reactive oxygen species; SD: Standard deviation; SOD: Superoxide dismutase; T: Tyloxapol; TBARS: Thiobarbituric acid reacting substances; TG: Triglyceride.
Collapse
Affiliation(s)
- Joubert Aires De Sousa
- Laboratory of Toxicological Genetics, Lutheran University of Brazil (ULBRA), Canoas, Brazil
- Post Graduate Program in Cell and Molecular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | - Jayne Torres De Sousa
- Laboratory of Toxicological Genetics, Lutheran University of Brazil (ULBRA), Canoas, Brazil
- Post Graduate Program in Cell and Molecular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | - Fernanda Brião Menezes Boaretto
- Laboratory of Toxicological Genetics, Lutheran University of Brazil (ULBRA), Canoas, Brazil
- Post Graduate Program in Cell and Molecular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | - Jeferson De Oliveira Salvi
- Laboratory of Toxicological Genetics, Lutheran University of Brazil (ULBRA), Canoas, Brazil
- Post Graduate Program in Cell and Molecular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | - Jean Fachini
- Laboratory of Toxicological Genetics, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | | | - Julia Pereira Unfer
- Laboratory of Toxicological Genetics, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | - Mariangela C Allgayer
- Laboratory of Clinical Pathology, Veterinary Hospital, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | - Maria Luísa Brodt Lemes
- Laboratory of Pharmacognosy and Phytochemistry, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | - Norma Possa Marroni
- Center of Experimental Research, Clinic Hospital of Porto Alegre, Porto Alegre, Brazil
- Department of Biological Sciences: Physiology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Alexandre De Barros Falcão Ferraz
- Post Graduate Program in Cell and Molecular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, Brazil
- Laboratory of Pharmacognosy and Phytochemistry, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| | - Jaqueline Nascimento Picada
- Laboratory of Toxicological Genetics, Lutheran University of Brazil (ULBRA), Canoas, Brazil
- Post Graduate Program in Cell and Molecular Biology Applied to Health, Lutheran University of Brazil (ULBRA), Canoas, Brazil
| |
Collapse
|
28
|
Heck SO, Zborowski VA, Chagas PM, da Luz SCA, Bortolatto CF. p-Chloro-diphenyl diselenide attenuates plasma lipid profile changes and hepatotoxicity induced by nonionic surfactant tyloxapol in rats. Toxicol Mech Methods 2019; 30:73-80. [DOI: 10.1080/15376516.2019.1669240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Suélen Osório Heck
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria – RS, Brazil
| | - Vanessa Angonesi Zborowski
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria – RS, Brazil
| | - Pietro Maria Chagas
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria – RS, Brazil
| | | | - Cristiani Folharini Bortolatto
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Post-Graduation Program in Biochemistry and Bioprospecting (PPGBBio), Center of Chemical, Pharmaceutical and Food Sciences (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas – RS, Brazil
| |
Collapse
|
29
|
Younis NS, Mohamed ME. β-Caryophyllene as a Potential Protective Agent Against Myocardial Injury: The Role of Toll-Like Receptors. Molecules 2019; 24:molecules24101929. [PMID: 31109132 PMCID: PMC6572120 DOI: 10.3390/molecules24101929] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/10/2019] [Accepted: 05/16/2019] [Indexed: 12/22/2022] Open
Abstract
Myocardial infarction (MI) remains one of the major causes of mortality around the world. A possible mechanism involved in myocardial infarction is the engagement of Toll-like receptors (TLRs). This study was intended to discover the prospective cardioprotective actions of β-caryophyllene, a natural sesquiterpene, to ameliorate isoproterenol (ISO)-induced myocardial infarction through HSP-60/TLR/MyD88/NFκB pathway. β-Caryophyllene (100 or 200 mg/kg/day orally) was administered for 21 days then MI was induced via ISO (85 mg/kg, subcutaneous) on 20th and 21st days. The results indicated that ISO induced a significant infarcted area associated with several alterations in the electrocardiogram (ECG) and blood pressure (BP) indices and caused an increase in numerous cardiac indicators such as creatine phosphokinase (CPK), creatine kinase-myocardial bound (CK-MB), lactate dehydrogenase (LDH), and cardiac tropinine T (cTnT). In addition, ISO significantly amplified heat shock protein 60 (HSP-60) and other inflammatory markers, such as TNF-α, IL-Iβ, and NFκB, and affected TLR2 and TLR4 expression and their adaptor proteins; Myeloid differentiation primary response 88 (MYD88), and TIR-domain-containing adapter-inducing interferon-β (TRIF). On the other hand, consumption of β-caryophyllene significantly reversed the infarcted size, ECG and BP alterations, ameliorated the ISO elevation in cardiac indicators; it also notably diminished HSP-60, and subsequently TLR2, TLR4, MYD88, and TRIF expression, with a substantial reduction in inflammatory mediator levels. This study revealed the cardioprotective effect of β-caryophyllene against MI through inhibiting HSP-60/TLR/MyD88/NFκB signaling pathways.
Collapse
Affiliation(s)
- Nancy S Younis
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, 31982 Al-Ahsa, Saudi Arabia.
- Department of Pharmacology, Zagazig University, Zagazig 44519, Egypt.
| | - Maged E Mohamed
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, 31982 Al-Ahsa, Saudi Arabia.
- Department of Pharmacognosy, College of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
30
|
Hamadneh LA, Sabbah DA, Hikmat SJ, Al-Samad LA, Hasan M, Al-Qirim TM, Hamadneh IM, Al-Dujaili AH. Hypolipidemic effect of novel 2,5-bis(4-hydroxybenzylidenamino)-1,3,4-thiadiazole as potential peroxisome proliferation-activated receptor-α agonist in acute hyperlipidemic rat model. Mol Cell Biochem 2019; 458:39-47. [PMID: 30905023 DOI: 10.1007/s11010-019-03528-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 03/16/2019] [Indexed: 12/15/2022]
Abstract
The development of new antihyperlipidemic agents with higher potency and lower side effects is of high priority. In this study, 1,3,4 thiadiazole Schiff base derivatives were synthesized as potential peroxisome proliferation-activated receptor-α (PPARα) agonists and characterized using elemental analysis, FTIR, 1H-NMR, 13C-NMR and mass spectroscopy and then tested for their hypolipidemic activity in Triton WR-1339-induced acute hyperlipidemic rat model in comparison with bezafibrate. The compounds showed significant hypolipidemic activity. Induced fit docking showed that the compounds are potential activators of PPARα with binding scores - 8.00 Kcal/mol for 2,5-bis(4-hydroxybenzylidenamino)-1,3,4-thiadiazole. PCR array analysis showed an increase in the expression of several genes involved in lipid metabolism through mitochondrial fatty acid β oxidation and are part of PPARα signaling pathway including Acsm3, Fabp4 and Hmgcs1. Gene expression of Lrp12 and Lrp1b involved in LDL uptake by liver cells and Cyp7a1 involved in cholesterol catabolism were also found to be upregulated.
Collapse
Affiliation(s)
- Lama A Hamadneh
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan.
| | - Dima A Sabbah
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Suhair J Hikmat
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Luma A Al-Samad
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Mariam Hasan
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Tariq M Al-Qirim
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Imad M Hamadneh
- Department of Chemistry, Faculty of Science, University of Jordan, Amman, Jordan.,Hamdi Mango Center for Scientific Research, University of Jordan, Amman, Jordan
| | - Ammar H Al-Dujaili
- Hamdi Mango Center for Scientific Research, University of Jordan, Amman, Jordan
| |
Collapse
|
31
|
Beta-caryophyllene protects against diet-induced dyslipidemia and vascular inflammation in rats: Involvement of CB2 and PPAR-γ receptors. Chem Biol Interact 2019; 297:16-24. [DOI: 10.1016/j.cbi.2018.10.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/23/2018] [Accepted: 10/17/2018] [Indexed: 02/07/2023]
|
32
|
Mboge MY, Ramirez-Mata A, Bullock A, O’Donnell R, Mathias JV, Davila J, Frost CJ, Frost SC. β-caryophyllene enhances the transcriptional upregulation of cholesterol biosynthesis in breast cancer cells. CURRENT TOPICS IN BIOCHEMICAL RESEARCH 2019; 20:1-16. [PMID: 34733015 PMCID: PMC8561761 DOI: 10.31300/ctbr.20.2019.1-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
β-caryophyllene (BCP) exhibits anti-proliferative properties in cancer cells. Here, we examine the hypothesis that BCP induces membrane remodeling. Our data show that high concentrations of BCP increase membrane permeability of human breast cells (hBrC) causing detachment and cell death. At a sub-lethal concentration of BCP, we show that BCP induces a striking upregulation of genes involved in cholesterol biosynthesis, including the gene that encodes for HMGCoA reductase (HMGCR), the rate-determining step in cholesterol biosynthesis. In addition, stearoyl-CoA desaturase (SCD) is also upregulated which would lead to the enhanced formation of monounsaturated fatty acids, specifically oleate and palmitoleate from stearoyl CoA and palmitoyl CoA, respectively. These fatty acids are major components of membrane phospholipids and cholesterol esters. Together, these data suggest that cells respond to BCP by increasing the synthesis of components found in membranes. These responses could be viewed as a repair mechanism and/or as a mechanism to mount resistance to the cytotoxic effect of BCP. Blocking HMGCR activity enhances the cytotoxicity of BCP, suggesting that BCP may provide an additional therapeutic tool in controlling breast cancer cell growth.
Collapse
Affiliation(s)
- Mam Y. Mboge
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Andrea Ramirez-Mata
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Adam Bullock
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Riley O’Donnell
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - John V. Mathias
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Julie Davila
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | | | - Susan C. Frost
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
33
|
Harb AA, Bustanji YK, Abdalla SS. Hypocholesterolemic effect of β-caryophyllene in rats fed cholesterol and fat enriched diet. J Clin Biochem Nutr 2018; 62:230-237. [PMID: 29892161 PMCID: PMC5990408 DOI: 10.3164/jcbn.17-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 11/06/2017] [Indexed: 12/21/2022] Open
Abstract
Hypercholesterolemia is a major risk factor for cardiovascular diseases. This study investigated the cholesterol-lowering potential of β-caryophyllene in a rat model. Hypercholesterolemia was induced by feeding male Wistar rats a high cholesterol and fat diet for 2 weeks. This was followed by oral administration of β-caryophyllene to hypercholesterolemic rats at 30, 100 and 300 mg/kg b.w. for 4 weeks. A dose of 30 mg/kg of β-caryophyllene significantly lowered serum total cholesterol, low density lipoprotein and the atherogenic index and significantly increased high density lipoprotein level. Moreover, it ameliorated liver injury as evidenced by decreasing hepatomegaly, macrovesicular steatosis and the activity of hepatic marker enzymes alanine aminotransferase and aspartate aminotransferase. Furthermore, it increased the activity of the antioxidant enzyme superoxide dismutase. This dose of β-caryophyllene significantly inhibited the activity of hepatic hydroxy-methylglutaryl coenzyme A reductase. Higher doses (100 and 300 mg/kg) of β-caryophyllene, however, did not induce significant beneficial effects on the studied parameters. These observations demonstrate that β-caryophyllene has a cholesterol-lowering effect on hypercholesterolemic rats, thus offering protection against hypercholesterolemia-induced diseases such as atherosclerosis and fatty liver.
Collapse
Affiliation(s)
- Amani A. Harb
- Department of Biological Sciences, Faculty of Science, The University of Jordan, Amman 11942, Jordan
| | | | - Shtaywy S. Abdalla
- Department of Biological Sciences, Faculty of Science, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
34
|
Su Y, Foppen E, Mansur Machado FS, Fliers E, Kalsbeek A. The role of the daily feeding rhythm in the regulation of the day/night rhythm in triglyceride secretion in rats. Chronobiol Int 2018; 35:885-895. [PMID: 29446660 DOI: 10.1080/07420528.2018.1438456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Plasma triglyceride (TG) levels show a clear daily rhythm, however, thus far it is still unknown whether this rhythm results from a daily rhythm in TG production, TG uptake or both. Previous studies have shown that feeding activity affects plasma TG concentrations, but it is not clear how the daily rhythm in feeding activity affects plasma TG concentrations. In the present study, we measured plasma TG concentrations and TG secretion rates in rats at 6 Zeitgeber times to investigate whether plasma TG concentrations and TG secretion show a daily rhythm. We found that plasma TG concentrations and TG secretion show a significant day/night rhythm. Next, we removed the daily rhythm in feeding behavior by introducing a 6-meals-a-day (6M) feeding schedule to investigate whether the daily rhythm in feeding behavior is necessary to maintain the daily rhythm in TG secretion. We found that the day/night rhythm in TG secretion was abolished under 6M feeding conditions. Hepatic apolipoprotein B (ApoB) and microsomal TG transfer protein (Mttp), which are both involved in TG secretion, also lost their daily rhythmicity under 6M feeding conditions. Together, these results indicate that: (1) the daily rhythm in TG secretion contributes to the formation of a day/night rhythm in plasma TG levels and (2) a daily feeding rhythm is essential for maintaining the daily rhythm in TG secretion.
Collapse
Affiliation(s)
- Yan Su
- a Hypothalamic Integration Mechanisms , Netherlands Institute for Neuroscience , Amsterdam , The Netherlands
| | - Ewout Foppen
- b Department of Endocrinology and Metabolism , Academic Medical Center (AMC), University of Amsterdam , Amsterdam , The Netherlands
| | | | - Eric Fliers
- b Department of Endocrinology and Metabolism , Academic Medical Center (AMC), University of Amsterdam , Amsterdam , The Netherlands
| | - Andries Kalsbeek
- a Hypothalamic Integration Mechanisms , Netherlands Institute for Neuroscience , Amsterdam , The Netherlands.,b Department of Endocrinology and Metabolism , Academic Medical Center (AMC), University of Amsterdam , Amsterdam , The Netherlands
| |
Collapse
|
35
|
Oliveira GLDS, Machado KC, Machado KC, da Silva APDSC, Feitosa CM, de Castro Almeida FR. Non-clinical toxicity of β -caryophyllene, a dietary cannabinoid: Absence of adverse effects in female Swiss mice. Regul Toxicol Pharmacol 2018; 92:338-346. [DOI: 10.1016/j.yrtph.2017.12.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 01/30/2023]
|
36
|
de Sousa JA, Pereira P, Allgayer MDC, Marroni NP, de Barros Falcão Ferraz A, Picada JN. Evaluation of DNA damage in Wistar rat tissues with hyperlipidemia induced by tyloxapol. Exp Mol Pathol 2017; 103:51-55. [DOI: 10.1016/j.yexmp.2017.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/26/2017] [Accepted: 06/30/2017] [Indexed: 12/19/2022]
|
37
|
Baldissera MD, Souza CF, Grando TH, Stefani LM, Monteiro SG. β-caryophyllene reduces atherogenic index and coronary risk index in hypercholesterolemic rats: The involvement of cardiac oxidative damage. Chem Biol Interact 2017; 270:9-14. [DOI: 10.1016/j.cbi.2017.04.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/05/2017] [Accepted: 04/10/2017] [Indexed: 11/17/2022]
|
38
|
Baldissera MD, Souza CF, Doleski PH, Leal DBR, Stefani LM, Boligon AA, Monteiro SG. Enzymes that hydrolyze adenine nucleotides in a model of hypercholesterolemia induced by Triton WR-1339: protective effects of β-caryophyllene. Mol Cell Biochem 2017; 434:127-134. [PMID: 28432556 DOI: 10.1007/s11010-017-3042-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/17/2017] [Indexed: 12/20/2022]
Abstract
Purinergic system has been proven to play a critical role in the inflammatory process and to represent an important therapeutic target to improve the immune response during hypercholesterolemia. β-caryophyllene, a phytocannabinoid compound, has a powerful hypolipidemic and anti-inflammatory actions. However, the effects of β-caryophyllene on seric enzymes of purinergic system have not been evaluated. The purpose of this study was to investigate whether β-caryophyllene is able to ameliorate the seric activities of NTPDase and adenosine deaminase (ADA) in a model of hypercholesterolemia induced by Triton WR-1339. The activities of NTPDase and ADA were evaluated enzymatically, and the seric levels of β-caryophyllene were evaluated by high-performance liquid chromatography. We found that treatment with β-caryophyllene ameliorates the enzymatic activities of NTPDase and ADA in serum of hypercholesterolemic rats, in a concentration-dependent manner. These results indicated that β-caryophyllene treatment could improve the immune response during hypercholesterolemia through purinergic pathway.
Collapse
Affiliation(s)
- Matheus D Baldissera
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil.
| | - Carine F Souza
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - Pedro H Doleski
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - Daniela B R Leal
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - Lenita M Stefani
- Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Santa Maria, Santa Catarina, Brazil
| | - Aline A Boligon
- Laboratory of Phytochemistry, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - Silvia G Monteiro
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil.
| |
Collapse
|