1
|
de Freitas Domingues JS, Dos Santos SMD, das Neves Rodrigues Ferreira J, Monti BM, Baggio DF, Hummig W, Araya EI, de Paula E, Chichorro JG, Ferreira LEN. Antinociceptive effects of bupivacaine and its sulfobutylether-β-cyclodextrin inclusion complex in orofacial pain. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:1405-1417. [PMID: 35909169 DOI: 10.1007/s00210-022-02278-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/23/2022] [Indexed: 10/16/2022]
Abstract
Bupivacaine hydrochloride (BVC) represents an option to produce long-lasting analgesia, and complexation in cyclodextrins has shown improvements in biopharmaceutical properties. This study aimed to characterize and test the cytotoxicity and antinociceptive effects of BVC complexed in sulfobutylether-β-cyclodextrin (SBEβCD). The kinetics and stoichiometry of complexation and BVC-SBEβCD association constant were evaluated by phase solubility study and Job's plot. Evidence of the BVC-SBEβCD complex formation was obtained from scanning electron microscopy (SEM), infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). The cytotoxicity was evaluated in keratinocyte (HaCaT) and neuroblastoma (SH-SY5Y). Antinociceptive effects were registered via orofacial pain models: the formalin test, carrageenan-induced hyperalgesia, and postoperative pain (intraoral incision). The complex formation occurred at a 1:1 BVC-SBEβCD molar ratio, with a low association constant (13.2 M-1). SEM, DSC, and FTIR results demonstrated the host-guest interaction. The IC50% values determined in SH-SY5Y were 216 µM and 149 µM for BVC and BVC-SBEβCD, respectively (p < 0.05). There was no difference in HaCaT IC50%. In orofacial pain model, BVC-SBEβCD significantly prolonged antinociceptive effect, in about 2 h, compared to plain BVC. SBEβCD can be used as a drug delivery system for bupivacaine, whereas the complex showed long-lasting analgesic effects.
Collapse
Affiliation(s)
| | | | | | - Bianca Miguel Monti
- Laboratory of Inflammation and Immunology, Guarulhos University, Guarulhos, São Paulo, Brazil
| | - Darciane Favero Baggio
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Parana, Brazil
| | - Wagner Hummig
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Parana, Brazil
| | - Erika Ivanna Araya
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Parana, Brazil
| | - Eneida de Paula
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, Sao Paulo, Brazil
| | - Juliana Geremias Chichorro
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Parana, Brazil
| | | |
Collapse
|
2
|
Araya EI, Baggio DF, Koren LDO, Schwarting RKW, Chichorro JG. Trigeminal neuropathic pain reduces 50-kHz ultrasonic vocalizations in rats, which are restored by analgesic drugs. Eur J Pharmacol 2022; 922:174905. [PMID: 35354072 DOI: 10.1016/j.ejphar.2022.174905] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/17/2022] [Indexed: 11/26/2022]
Abstract
Trigeminal neuralgia (TN) is a severe form of neuropathic pain frequently associated with anxiety. The chronic constriction injury of the infraorbital nerve (CCI-ION) of rodents is a well-established model to study sensory alterations related to TN. However, few studies have addressed the emotional component of pain, which is fundamental to increase its translational capability. Emission of ultrasonic vocalization (USV) is considered a reliable measure of the emotional state of rats. Rats emit 50-kHz USVs in social and appetitive situations, whereas 22-kHz USVs may index a negative state. Studies suggest that persistent pain causes reduction in 50-kHz calls, but this may also indicate anxiety-like behavior. Thus, we hypothesize that CCI-ION would decrease 50-kHz calls and that pharmacological pain relief would restore USVs, without interfering with anxiety-like behavior. On day 15 after surgery, male rats were treated with local lidocaine, midazolam or carbamazepine to determine their effect on facial mechanical hyperalgesia, USV and anxiety-like behavior. The results showed that CCI-ION induced hyperalgesia, which was attenuated by lidocaine or carbamazepine, developed anxiety-like behavior, which was reduced only by midazolam, and displayed a reduced number of 50-kHz calls, compared to sham. Lidocaine and carbamazepine increased 50-kHz calls emitted by CCI-ION rats, but midazolam failed to change them. These data add information on the translational aspects of CCI-ION model and carbamazepine treatment for trigeminal neuropathic pain. Furthermore, they suggest that the reduction of USV in persistent pain conditions is related to spontaneous pain and reinforce the idea that it reflects the emotional component of pain.
Collapse
Affiliation(s)
- Erika Ivanna Araya
- Department of Pharmacology, Biological Sciences Building, Federal University of Parana, Curitiba, Parana, Brazil.
| | - Darciane Favero Baggio
- Department of Pharmacology, Biological Sciences Building, Federal University of Parana, Curitiba, Parana, Brazil
| | - Laura de Oliveira Koren
- Department of Pharmacology, Biological Sciences Building, Federal University of Parana, Curitiba, Parana, Brazil
| | - Rainer K W Schwarting
- Department of Psychology, Behavioral Neuroscience, Experimental and Biological Psychology, and Center for Mind, Brain and Behavior, Philipps-University Marburg, Marburg, Germany
| | - Juliana Geremias Chichorro
- Department of Pharmacology, Biological Sciences Building, Federal University of Parana, Curitiba, Parana, Brazil
| |
Collapse
|
3
|
Quilty F, Freeley M, Gargan S, Gilmer J, Long A. Deoxycholic acid induces proinflammatory cytokine production by model oesophageal cells via lipid rafts. J Steroid Biochem Mol Biol 2021; 214:105987. [PMID: 34438042 DOI: 10.1016/j.jsbmb.2021.105987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 11/28/2022]
Abstract
The bile acid component of gastric refluxate has been implicated in inflammation of the oesophagus including conditions such as gastro-oesophageal reflux disease (GORD) and Barrett's Oesophagus (BO). Here we demonstrate that the hydrophobic bile acid, deoxycholic acid (DCA), stimulated the production of IL-6 and IL-8 mRNA and protein in Het-1A, a model of normal oesophageal cells. DCA-induced production of IL-6 and IL-8 was attenuated by pharmacologic inhibition of the Protein Kinase C (PKC), MAP kinase, tyrosine kinase pathways, by the cholesterol sequestering agent, methyl-beta-cyclodextrin (MCD) and by the hydrophilic bile acid, ursodeoxycholic acid (UDCA). The cholesterol-interacting agent, nystatin, which binds cholesterol without removing it from the membrane, synergized with DCA to induce IL-6 and IL-8. This was inhibited by the tyrosine kinase inhibitor genistein. DCA stimulated the phosphorylation of lipid raft component Src tyrosine kinase (Src). while knockdown of caveolin-1 expression using siRNA resulted in a decreased level of IL-8 production in response to DCA. Taken together, these results demonstrate that DCA stimulates IL-6 and IL-8 production in oesophageal cells via lipid raft-associated signaling. Inhibition of this process using cyclodextrins represents a novel therapeutic approach to the treatment of inflammatory diseases of the oesophagus including GORD and BO.
Collapse
Affiliation(s)
- Francis Quilty
- School of Pharmacy and Pharmaceutical Science, Trinity College Dublin, Dublin 2, Ireland; Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland
| | - Michael Freeley
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Siobhan Gargan
- Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland
| | - John Gilmer
- School of Pharmacy and Pharmaceutical Science, Trinity College Dublin, Dublin 2, Ireland; Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland
| | - Aideen Long
- Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
4
|
Miller YI, Navia-Pelaez JM, Corr M, Yaksh TL. Lipid rafts in glial cells: role in neuroinflammation and pain processing. J Lipid Res 2020; 61:655-666. [PMID: 31862695 PMCID: PMC7193960 DOI: 10.1194/jlr.tr119000468] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/06/2019] [Indexed: 12/27/2022] Open
Abstract
Activation of microglia and astrocytes secondary to inflammatory processes contributes to the development and perpetuation of pain with a neuropathic phenotype. This pain state presents as a chronic debilitating condition and affects a large population of patients with conditions like rheumatoid arthritis and diabetes, or after surgery, trauma, or chemotherapy. Here, we review the regulation of lipid rafts in glial cells and the role they play as a key component of neuroinflammatory sensitization of central pain signaling pathways. In this context, we introduce the concept of an inflammaraft (i-raft), enlarged lipid rafts harboring activated receptors and adaptor molecules and serving as an organizing platform to initiate inflammatory signaling and the cellular response. Characteristics of the inflammaraft include increased relative abundance of lipid rafts in inflammatory cells, increased content of cholesterol per raft, and increased levels of inflammatory receptors, such as toll-like receptor (TLR)4, adaptor molecules, ion channels, and enzymes in lipid rafts. This inflammaraft motif serves an important role in the membrane assembly of protein complexes, for example, TLR4 dimerization. Operating within this framework, we demonstrate the involvement of inflammatory receptors, redox molecules, and ion channels in the inflammaraft formation and the regulation of cholesterol and sphingolipid metabolism in the inflammaraft maintenance and disruption. Strategies for targeting inflammarafts, without affecting the integrity of lipid rafts in noninflammatory cells, may lead to developing novel therapies for neuropathic pain states and other neuroinflammatory conditions.
Collapse
Affiliation(s)
- Yury I Miller
- Departments of MedicineUniversity of California San Diego, La Jolla, CA. mailto:
| | | | - Maripat Corr
- Departments of MedicineUniversity of California San Diego, La Jolla, CA
| | - Tony L Yaksh
- Anesthesiology,University of California San Diego, La Jolla, CA
| |
Collapse
|