1
|
Willmann M, Ermert J, Prante O, Hübner H, Gmeiner P, Neumaier B. Radiosynthesis and evaluation of 18F-labeled dopamine D 4-receptor ligands. Nucl Med Biol 2021; 92:43-52. [PMID: 32718750 DOI: 10.1016/j.nucmedbio.2020.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/09/2020] [Indexed: 11/24/2022]
Abstract
INTRODUCTION The dopamine D4 receptor (D4R) has attracted considerable attention as potential target for the treatment of a broad range of central nervous system disorders. Although many efforts have been made to improve the performance of putative radioligand candidates, there is still a lack of D4R selective tracers suitable for in vivo PET imaging. Thus, the objective of this work was to develop a D4-selective PET ligand for clinical applications. METHODS Four compounds based on previous and new lead structures were prepared and characterized with regard to their D4R subtype selectivity and predicted lipophilicity. From these, 3-((4-(2-fluorophenyl)piperazin-1-yl)methyl)-1H-pyrrolo[2,3-b]pyridine I and (S)-4-(3-fluoro-4-methoxybenzyl)-2-(phenoxymethyl)morpholine II were selected for labeling with fluorine-18 and subsequent evaluation by in vitro autoradiography to assess their suitability as D4 radioligand candidates for in vivo imaging. RESULTS The radiosynthesis of [18F]I and [18F]II was successfully achieved by copper-mediated radiofluorination with radiochemical yields of 7% and 66%, respectively. The radioligand [18F]II showed specific binding in areas where D4 expression is expected, whereas [18F]I did not show any uptake in distinct brain regions and exhibited an unacceptable degree of non-specific binding. CONCLUSIONS The compounds studied exhibited high D4R subtype selectivity and logP values compatible with high brain uptake, but only ligand [18F]II showed low non-specific binding and is therefore a good candidate for further evaluation. ADVANCES IN KNOWLEDGE The discovery of new lead structures for high-affinity D4 ligands opens up new possibilities for the development of suitable PET-radioligands. IMPLICATIONS FOR PATIENT PET-imaging of dopamine D4-receptors could facilitate understanding, diagnosis and treatment of neuropsychiatric and neurodegenerative diseases.
Collapse
Affiliation(s)
- Michael Willmann
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen Straße, 52428 Jülich, Germany
| | - Johannes Ermert
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen Straße, 52428 Jülich, Germany.
| | - Olaf Prante
- Friedrich-Alexander University Erlangen-Nürnberg (FAU), Department of Nuclear Medicine, Molecular Imaging and Radiochemistry, Translational Research Center, 91054 Erlangen, Germany
| | - Harald Hübner
- Friedrich-Alexander University Erlangen-Nürnberg (FAU), Department Chemistry and Pharmacy, Medicinal Chemistry, 91058 Erlangen, Germany
| | - Peter Gmeiner
- Friedrich-Alexander University Erlangen-Nürnberg (FAU), Department Chemistry and Pharmacy, Medicinal Chemistry, 91058 Erlangen, Germany
| | - Bernd Neumaier
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen Straße, 52428 Jülich, Germany; University of Colgne, Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, 50937 Cologne, Germany
| |
Collapse
|
2
|
Zhou Y, Cao C, He L, Wang X, Zhang XC. Crystal structure of dopamine receptor D4 bound to the subtype selective ligand, L745870. eLife 2019; 8:e48822. [PMID: 31750832 PMCID: PMC6872212 DOI: 10.7554/elife.48822] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple subtypes of dopamine receptors within the GPCR superfamily regulate neurological processes through various downstream signaling pathways. A crucial question about the dopamine receptor family is what structural features determine the subtype-selectivity of potential drugs. Here, we report the 3.5-angstrom crystal structure of mouse dopamine receptor D4 (DRD4) complexed with a subtype-selective antagonist, L745870. Our structure reveals a secondary binding pocket extended from the orthosteric ligand-binding pocket to a DRD4-specific crevice located between transmembrane helices 2 and 3. Additional mutagenesis studies suggest that the antagonist L745870 prevents DRD4 activation by blocking the relative movement between transmembrane helices 2 and 3. These results expand our knowledge of the molecular basis for the physiological functions of DRD4 and assist new drug design.
Collapse
Affiliation(s)
- Ye Zhou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in BiomacromoleculesInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Can Cao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in BiomacromoleculesInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
| | - Lingli He
- National Laboratory of Biomacromolecules, CAS Center for Excellence in BiomacromoleculesInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
| | - Xianping Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in BiomacromoleculesInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
| | - Xuejun Cai Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in BiomacromoleculesInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
3
|
Torrisi SA, Salomone S, Geraci F, Caraci F, Bucolo C, Drago F, Leggio GM. Buspirone Counteracts MK-801-Induced Schizophrenia-Like Phenotypes through Dopamine D 3 Receptor Blockade. Front Pharmacol 2017; 8:710. [PMID: 29046641 PMCID: PMC5632784 DOI: 10.3389/fphar.2017.00710] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 09/21/2017] [Indexed: 12/30/2022] Open
Abstract
Background: Several efforts have been made to develop effective antipsychotic drugs. Currently, available antipsychotics are effective on positive symptoms, less on negative symptoms, but not on cognitive impairment, a clinically relevant dimension of schizophrenia. Drug repurposing offers great advantages over the long-lasting, risky and expensive, de novo drug discovery strategy. To our knowledge, the possible antipsychotic properties of buspirone, an azapirone anxiolytic drug marketed in 1986 as serotonin 5-HT1A receptor (5-HT1AR) partial agonist, have not been extensively investigated despite its intriguing pharmacodynamic profile, which includes dopamine D3 (D3R) and D4 receptor (D4R) antagonist activity. Multiple lines of evidence point to D3R as a valid therapeutic target for the treatment of several neuropsychiatric disorders including schizophrenia. In the present study, we tested the hypothesis that buspirone, behaving as dopamine D3R antagonist, may have antipsychotic-like activity. Materials and Methods: Effects of acute administration of buspirone was assessed on a wide-range of schizophrenia-relevant abnormalities induced by a single administration of the non-competitive NMDAR antagonist MK-801, in both wild-type mice (WT) and D3R-null mutant mice (D3R-/-). Results: Buspirone (3 mg⋅kg-1, i.p.) was devoid of cataleptogenic activity in itself, but resulted effective in counteracting disruption of prepulse inhibition (PPI), hyperlocomotion and deficit of temporal order recognition memory (TOR) induced by MK-801 (0.1 mg⋅kg-1, i.p.) in WT mice. Conversely, in D3R-/- mice, buspirone was ineffective in preventing MK-801-induced TOR deficit and it was only partially effective in blocking MK-801-stimulated hyperlocomotion. Conclusion: Taken together, these results indicate, for the first time, that buspirone, might be a potential therapeutic medication for the treatment of schizophrenia. In particular, buspirone, through its D3R antagonist activity, may be a useful tool for improving the treatment of cognitive deficits in schizophrenia that still represents an unmet need of this disease.
Collapse
Affiliation(s)
- Sebastiano Alfio Torrisi
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Federica Geraci
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Filippo Caraci
- Department of Drug Sciences, University of Catania, Catania, Italy.,Oasi Institute for Research on Mental Retardation and Brain Aging (IRCCS), Troina, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| |
Collapse
|
4
|
Neurochemical arguments for the use of dopamine D 4 receptor stimulation to improve cognitive impairment associated with schizophrenia. Pharmacol Biochem Behav 2017; 157:16-23. [DOI: 10.1016/j.pbb.2017.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/23/2017] [Accepted: 04/21/2017] [Indexed: 12/26/2022]
|
5
|
Ravi C, Chandra Mohan D, Naresh Kumar Reddy N, Adimurthy S. Substrate selective synthesis of pyrazolo[1,5-a]pyridines through [3 + 2] cycloaddition of N-aminopyridines and β-nitro styrenes. RSC Adv 2015. [DOI: 10.1039/c5ra06707c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Synthesis of 2 or 3-(hetero)aryl pyrazolo[1,5-a]pyridines through [3 + 2] cycloaddition ofN-aminopyridine with β-nitrostyrenes followed byin situdenitration under metal-free and mild conditions are described.
Collapse
Affiliation(s)
- Chitrakar Ravi
- Academy of Scientific & Innovative Research
- CSIR – Central Salt & Marine Chemicals Research Institute
- Bhavnagar-364 002
- India
| | - Darapaneni Chandra Mohan
- Academy of Scientific & Innovative Research
- CSIR – Central Salt & Marine Chemicals Research Institute
- Bhavnagar-364 002
- India
| | - N. Naresh Kumar Reddy
- Academy of Scientific & Innovative Research
- CSIR – Central Salt & Marine Chemicals Research Institute
- Bhavnagar-364 002
- India
| | - Subbarayappa Adimurthy
- Academy of Scientific & Innovative Research
- CSIR – Central Salt & Marine Chemicals Research Institute
- Bhavnagar-364 002
- India
| |
Collapse
|
6
|
Janhunen SK, la Fleur SE, Adan RAH. Blocking alpha2A adrenoceptors, but not dopamine receptors, augments bupropion-induced hypophagia in rats. Obesity (Silver Spring) 2013; 21:E700-8. [PMID: 23894096 DOI: 10.1002/oby.20581] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 07/02/2013] [Accepted: 07/18/2013] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Anti-obesity drugs have adverse effects which limit their use, creating a need for novel anti-obesity compounds. We studied effects of dopamine (DA) and norepinephrine (NE) reuptake inhibitor bupropion (BUP), alone and after blocking α1- or α2-adrenoceptors (AR), D1/5, D2/3, or D4 receptors, to determine which receptors act downstream of BUP. DESIGN AND METHODS Effects on caloric intake, meal patterning and locomotion were assessed, using an automated weighing system and telemetry in male rats with 18-h access to Western Human style diet. RESULTS BUP (30 mg/kg) induced hypophagia by reducing meal size and postponing meal initiation. WB4101 (α1-AR; 2 mg/kg) and imiloxan (α2B-AR; 5 mg/kg) attenuated BUP's effect on meal size, while WB4101 and BRL 44408 (α2A/D-AR; 2 mg/kg) counteracted effect on meal initiation. Atipamezole (α2-AR; 1 mg/kg) and imiloxan further postponed initiation of meals. SKF 83566 (D1/5; 0.3 mg/kg), raclopride (D2/3; 0.5 mg/kg) and to a lesser extent FAUC 213 (D4; 0.5 mg/kg), attenuated BUP-induced hypophagia. BUP stimulated locomotion, which was blocked by all antagonists, except FAUC 213 or BRL 44408. CONCLUSIONS Alpha1-, α2A/D- and α2B-ARs, and DA receptors underlie BUP's effects on size and initiation of meals, while blocking pre-synaptic α2-ARs enhanced BUP-induced hypophagia. An inverse agonist of (pre-synaptic) α2A-ARs could enhance BUP-induced anorexia and treat eating disorders and obesity.
Collapse
Affiliation(s)
- Sanna K Janhunen
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | |
Collapse
|
7
|
Wu HP, Lu TN, Hsu NY, Chang CC. Absolute Stereochemical Assignment of SCH 71450, a Selective Dopamine D4Receptor Antagonist, Through Enantioselective Epimer Synthesis. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Nitrogen-bridged heterocycles via cycloaddition of non-classical heterocyclic-fused-[c]thiazoles. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Lacivita E, De Giorgio P, Lee IT, Rodeheaver SI, Weiss BA, Fracasso C, Caccia S, Berardi F, Perrone R, Zhang MR, Maeda J, Higuchi M, Suhara T, Schetz JA, Leopoldo M. Design, synthesis, radiolabeling, and in vivo evaluation of carbon-11 labeled N-[2-[4-(3-cyanopyridin-2-yl)piperazin-1-yl]ethyl]-3-methoxybenzamide, a potential positron emission tomography tracer for the dopamine D(4) receptors. J Med Chem 2010; 53:7344-55. [PMID: 20873719 DOI: 10.1021/jm100925m] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here we describe the design, synthesis, and evaluation of physicochemical and pharmacological properties of D(4) dopamine receptor ligands related to N-[2-[4-(4-chlorophenyl)piperazin-1-yl]ethyl]-3-methoxybenzamide (2). Structural features were incorporated to increase affinity for the target receptor, to improve selectivity over D(2) and σ(1) receptors, to enable labeling with carbon-11 or fluorine-18, and to adjust lipophilicity within the range considered optimal for brain penetration and low nonspecific binding. Compounds 7 and 13 showed the overall best characteristics: nanomolar affinity for the D(4) receptor, >100-fold selectivity over D(2) and D(3) dopamine receptors, 5-HT(1A), 5-HT(2A), and 5-HT(2C) serotonin receptors and σ(1) receptors, and log P = 2.37-2.55. Following intraperitoneal administration in mice, both compounds rapidly entered the central nervous system. The methoxy of N-[2-[4-(3-cyanopyridin-2-yl)piperazin-1-yl]ethyl]-3-methoxybenzamide (7) was radiolabeled with carbon-11 and subjected to PET analysis in non-human primate. [(11)C]7 time-dependently accumulated to saturation in the posterior eye in the region of the retina, a tissue containing a high density of D(4) receptors.
Collapse
Affiliation(s)
- Enza Lacivita
- Dipartimento Farmaco-Chimico, Università degli Studi di Bari A Moro, Via Orabona 4, 70125 Bari, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
de Almeida J, Mengod G. D2 and D4 dopamine receptor mRNA distribution in pyramidal neurons and GABAergic subpopulations in monkey prefrontal cortex: implications for schizophrenia treatment. Neuroscience 2010; 170:1133-9. [PMID: 20727949 DOI: 10.1016/j.neuroscience.2010.08.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 08/09/2010] [Accepted: 08/11/2010] [Indexed: 11/25/2022]
Abstract
D2 and D4 dopamine receptors play an important role in cognitive functions in the prefrontal cortex and they are involved in the pathophysiology of neuropsychiatric disorders such as schizophrenia. The eventual effect of dopamine upon pyramidal neurons in the prefrontal cortex depends on which receptors are expressed in the different neuronal populations. Parvalbumin and calbindin mark two subpopulations of cortical GABAergic interneurons that differently innervate pyramidal cells. Recent hypotheses about schizophrenia hold that the root of the illness is a dysfunction of parvalbumin chandelier cells that produces disinhibition of pyramidal cells. In the present work we report double in situ hybridization histochemistry experiments to determine the prevalence of D2 receptor mRNA and D4 receptor mRNA in glutamatergic neurons, GABAergic interneurons and both parvalbumin and calbindin GABAergic subpopulations in monkey prefrontal cortex layer V. We found that around 54% of glutamatergic neurons express D2 mRNA and 75% express D4 mRNA, while GAD-positive interneurons express around 34% and 47% respectively. Parvalbumin cells mainly expressed D4 mRNA (65%) and less D2 mRNA (15-20%). Finally, calbindin cells expressed both receptors in similar proportions (37%). We hypothesized that D4 receptor could be a complementary target in designing new antipsychotics, mainly because of its predominance in parvalbumin interneurons.
Collapse
Affiliation(s)
- J de Almeida
- Departament de Neuroquimica i Neurofarmacologia, Institut d’Investigacions Biomèdiques de Barcelona, CSIC, IDIBAPS, CIBERNED, 08036 Barcelona, Spain
| | | |
Collapse
|
11
|
Olijslagers JE, Werkman TR, McCreary AC, Kruse CG, Wadman WJ. Modulation of midbrain dopamine neurotransmission by serotonin, a versatile interaction between neurotransmitters and significance for antipsychotic drug action. Curr Neuropharmacol 2010; 4:59-68. [PMID: 18615139 DOI: 10.2174/157015906775203020] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 08/23/2005] [Accepted: 09/17/2005] [Indexed: 11/22/2022] Open
Abstract
Schizophrenia has been associated with a dysfunction of brain dopamine (DA). This, so called, DA hypothesis has been refined as new insights into the pathophysiology of schizophrenia have emerged. Currently, dysfunction of prefrontocortical glutamatergic and GABAergic projections and dysfunction of serotonin (5-HT) systems are also thought to play a role in the pathophysiology of schizophrenia. Refinements of the DA hypothesis have lead to the emergence of new pharmacological targets for antipsychotic drug development. It was shown that effective antipsychotic drugs with a low liability for inducing extra-pyramidal side-effects have affinities for a range of neurotransmitter receptors in addition to DA receptors, suggesting that a combination of neurotransmitter receptor affinities may be favorable for treatment outcome.This review focuses on the interaction between DA and 5-HT, as most antipsychotics display affinity for 5-HT receptors. We will discuss DA/5-HT interactions at the level of receptors and G protein-coupled potassium channels and consequences for induction of depolarization blockade with specific attention to DA neurons in the ventral tegmental area (VTA) and the substantia nigra zona compacta (SN), neurons implicated in treatment efficacy and the side-effects of schizophrenia, respectively. Moreover, it has been reported that electrophysiological interactions between DA and 5-HT show subtle, but important, differences between the SN and the VTA which could explain (in part) the effectiveness and lower propensity to induce side-effects of the newer atypical antipsychotic drugs. In that respect the functional implications of DA/5-HT interactions for schizophrenia will be discussed.
Collapse
Affiliation(s)
- J E Olijslagers
- Center for NeuroScience-Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 320, 1098 SM Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
12
|
Lauzon NM, Laviolette SR. Dopamine D4-receptor modulation of cortical neuronal network activity and emotional processing: Implications for neuropsychiatric disorders. Behav Brain Res 2009; 208:12-22. [PMID: 19948192 DOI: 10.1016/j.bbr.2009.11.037] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 11/18/2009] [Accepted: 11/20/2009] [Indexed: 11/18/2022]
Abstract
Dopamine (DA) transmission within cortical and subcortical structures is involved critically in the processing of emotionally relevant sensory information. Three interconnected neural regions, the medial prefrontal cortex (mPFC), basolateral nucleus of the amygdala (BLA) and the ventral tegmental area (VTA) have received considerable experimental attention, both in animal and clinical research models, as essential interconnected processors of emotional information. Neuronal network activity within both the mPFC and BLA are strongly modified by DA inputs from the VTA through both DA D(2)-like and D(1)-like receptors. However, emerging evidence from clinical, genetic, behavioral and electrophysiological investigations demonstrates a critical role for the DA D(4)-receptor subtype as a crucial modulator of emotional memory encoding and expression, both at the level of the single neuron, and at the systems level. In this review, we will examine recent evidence at the neuronal, behavioral and genetic levels of analysis that increasingly demonstrates an important role for DA D(4) transmission within cortical and subcortical emotional processing circuits. We will present evidence and some theoretical frameworks suggesting how disturbances in D(4)-receptor related neural circuitry may be involved in the neuropathological manifestations common in many neuropsychiatric disorders including schizophrenia, attention-deficit hyperactivity disorder (ADHD) and addiction.
Collapse
Affiliation(s)
- Nicole M Lauzon
- Department of Anatomy & Cell Biology, The Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | |
Collapse
|
13
|
Effects of ST2742, a novel antipsychotic, on prepulse inhibition. Eur J Pharmacol 2009; 621:53-60. [DOI: 10.1016/j.ejphar.2009.08.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 07/31/2009] [Accepted: 08/17/2009] [Indexed: 11/22/2022]
|
14
|
Ehrlich K, Götz A, Bollinger S, Tschammer N, Bettinetti L, Härterich S, Hübner H, Lanig H, Gmeiner P. Dopamine D2, D3, and D4 Selective Phenylpiperazines as Molecular Probes To Explore the Origins of Subtype Specific Receptor Binding. J Med Chem 2009; 52:4923-35. [DOI: 10.1021/jm900690y] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Katharina Ehrlich
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, 91052 Erlangen, Germany
| | - Angela Götz
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, 91052 Erlangen, Germany
- Department of Chemistry and Pharmacy, Computer Chemistry Center, Friedrich-Alexander-Universität, Nägelsbachstrasse, 25, 91052 Erlangen, Germany
| | - Stefan Bollinger
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, 91052 Erlangen, Germany
| | - Nuska Tschammer
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, 91052 Erlangen, Germany
| | - Laura Bettinetti
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, 91052 Erlangen, Germany
| | - Steffen Härterich
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, 91052 Erlangen, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, 91052 Erlangen, Germany
| | - Harald Lanig
- Department of Chemistry and Pharmacy, Computer Chemistry Center, Friedrich-Alexander-Universität, Nägelsbachstrasse, 25, 91052 Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, 91052 Erlangen, Germany
| |
Collapse
|
15
|
Birgner C, Kindlundh-Högberg AMS, Alsiö J, Lindblom J, Schiöth HB, Bergström L. The anabolic androgenic steroid nandrolone decanoate affects mRNA expression of dopaminergic but not serotonergic receptors. Brain Res 2008; 1240:221-8. [PMID: 18809391 DOI: 10.1016/j.brainres.2008.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 09/04/2008] [Accepted: 09/06/2008] [Indexed: 01/14/2023]
Abstract
The abuse of anabolic androgenic steroids (AASs) at supratherapeutic doses is a problem not only in the world of sports, but also among non-athletes using AASs to improve physical appearance and to become more bold and courageous. Investigations of the possible neurochemical effects of AAS have focused partially on the monoaminergic systems, which are involved in aggressive behaviours and the development of drug dependence. In the present study, we administered nandrolone decanoate (3 or 15 mg/kg/day for 14 days) and measured mRNA expression of dopaminergic and serotonergic receptors, transporters and enzymes in the male rat brain using quantitative real-time polymerase chain reaction. Expression of the dopamine D1-receptor transcript was elevated in the amygdala and decreased in the hippocampus while the transcript level of the dopamine D4-receptor was increased in the nucleus accumbens. No changes in transcriptional levels were detected among the serotonin-related genes examined in this study. The altered mRNA expression of the dopamine receptors may contribute to some of the behavioural changes often reported in AAS abusers of increased impulsivity, aggression and drug-seeking.
Collapse
Affiliation(s)
- Carolina Birgner
- Department of Pharmaceutical Biosciences, Division of Pharmaceutical Pharmacology, Uppsala University, Box 591 Biomedical Centre, SE-751 24 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
16
|
Roussos P, Giakoumaki SG, Bitsios P. The dopamine D(3) receptor Ser9Gly polymorphism modulates prepulse inhibition of the acoustic startle reflex. Biol Psychiatry 2008; 64:235-40. [PMID: 18325483 DOI: 10.1016/j.biopsych.2008.01.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 01/02/2008] [Accepted: 01/27/2008] [Indexed: 10/22/2022]
Abstract
BACKGROUND The dopamine D(3) receptor (DRD(3)) is suspected to modulate prepulse inhibition (PPI) in animals and humans, but definite conclusions cannot be drawn due to lack of selective DRD(3) ligands. The Ser9Gly polymorphism is a common variant of the DRD(3) gene and determines the gain of function of the D(3) receptor. This is the first study to examine the influence of the DRD(3) Ser9Gly polymorphism on human PPI. METHODS Prepulse inhibition was measured in 101 healthy male subjects presented with 75-dB and 85-dB prepulses at 30-, 60-, and 120-msec prepulse-pulse intervals. Subjects were grouped according to their DRD(3) status into a Gly/Gly, a Ser/Gly, and a Ser/Ser group. RESULTS Analyses of variance showed that at all prepulse and interval conditions, Gly/Gly individuals had the lowest PPI and the greatest onset latency facilitation and Ser/Ser individuals had the highest PPI and the lowest onset latency facilitation, while Ser/Gly individuals were intermediate. CONCLUSIONS These results suggest that PPI is modulated by the D(3) receptor and its levels depend on the Ser9Gly polymorphism.
Collapse
Affiliation(s)
- Panos Roussos
- Department of Psychiatry and Behavioral Sciences, Faculty of Medicine, University of Crete, Heraklion, Greece
| | | | | |
Collapse
|
17
|
Swerdlow NR, Weber M, Qu Y, Light GA, Braff DL. Realistic expectations of prepulse inhibition in translational models for schizophrenia research. Psychopharmacology (Berl) 2008; 199:331-88. [PMID: 18568339 PMCID: PMC2771731 DOI: 10.1007/s00213-008-1072-4] [Citation(s) in RCA: 425] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 01/03/2008] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Under specific conditions, a weak lead stimulus, or "prepulse", can inhibit the startling effects of a subsequent intense abrupt stimulus. This startle-inhibiting effect of the prepulse, termed "prepulse inhibition" (PPI), is widely used in translational models to understand the biology of brainbased inhibitory mechanisms and their deficiency in neuropsychiatric disorders. In 1981, four published reports with "prepulse inhibition" as an index term were listed on Medline; over the past 5 years, new published Medline reports with "prepulse inhibition" as an index term have appeared at a rate exceeding once every 2.7 days (n=678). Most of these reports focus on the use of PPI in translational models of impaired sensorimotor gating in schizophrenia. This rapid expansion and broad application of PPI as a tool for understanding schizophrenia has, at times, outpaced critical thinking and falsifiable hypotheses about the relative strengths vs. limitations of this measure. OBJECTIVES This review enumerates the realistic expectations for PPI in translational models for schizophrenia research, and provides cautionary notes for the future applications of this important research tool. CONCLUSION In humans, PPI is not "diagnostic"; levels of PPI do not predict clinical course, specific symptoms, or individual medication responses. In preclinical studies, PPI is valuable for evaluating models or model organisms relevant to schizophrenia, "mapping" neural substrates of deficient PPI in schizophrenia, and advancing the discovery and development of novel therapeutics. Across species, PPI is a reliable, robust quantitative phenotype that is useful for probing the neurobiology and genetics of gating deficits in schizophrenia.
Collapse
Affiliation(s)
- Neal R Swerdlow
- Department of Psychiatry, UCSD School of Medicine, La Jolla, CA, 92093-0804, USA,
| | | | | | | | | |
Collapse
|
18
|
Prante O, Tietze R, Hocke C, Löber S, Hübner H, Kuwert T, Gmeiner P. Synthesis, Radiofluorination, and In Vitro Evaluation of Pyrazolo[1,5-a]pyridine-Based Dopamine D4 Receptor Ligands: Discovery of an Inverse Agonist Radioligand for PET. J Med Chem 2008; 51:1800-10. [DOI: 10.1021/jm701375u] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Olaf Prante
- Laboratory of Molecular Imaging, Clinic of Nuclear Medicine, Friedrich-Alexander University, 91054 Erlangen, Germany, and Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander University, 91052 Erlangen, Germany
| | - Rainer Tietze
- Laboratory of Molecular Imaging, Clinic of Nuclear Medicine, Friedrich-Alexander University, 91054 Erlangen, Germany, and Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander University, 91052 Erlangen, Germany
| | - Carsten Hocke
- Laboratory of Molecular Imaging, Clinic of Nuclear Medicine, Friedrich-Alexander University, 91054 Erlangen, Germany, and Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander University, 91052 Erlangen, Germany
| | - Stefan Löber
- Laboratory of Molecular Imaging, Clinic of Nuclear Medicine, Friedrich-Alexander University, 91054 Erlangen, Germany, and Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander University, 91052 Erlangen, Germany
| | - Harald Hübner
- Laboratory of Molecular Imaging, Clinic of Nuclear Medicine, Friedrich-Alexander University, 91054 Erlangen, Germany, and Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander University, 91052 Erlangen, Germany
| | - Torsten Kuwert
- Laboratory of Molecular Imaging, Clinic of Nuclear Medicine, Friedrich-Alexander University, 91054 Erlangen, Germany, and Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander University, 91052 Erlangen, Germany
| | - Peter Gmeiner
- Laboratory of Molecular Imaging, Clinic of Nuclear Medicine, Friedrich-Alexander University, 91054 Erlangen, Germany, and Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander University, 91052 Erlangen, Germany
| |
Collapse
|
19
|
Tietze R, Löber S, Hübner H, Gmeiner P, Kuwert T, Prante O. Discovery of a dopamine D4 selective PET ligand candidate taking advantage of a click chemistry based REM linker. Bioorg Med Chem Lett 2008; 18:983-8. [DOI: 10.1016/j.bmcl.2007.12.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 12/06/2007] [Accepted: 12/11/2007] [Indexed: 11/25/2022]
|
20
|
Johnston KA, Allcock RW, Jiang Z, Collier ID, Blakli H, Rosair GM, Bailey PD, Morgan KM, Kohno Y, Adams DR. Concise routes to pyrazolo[1,5-a]pyridin-3-yl pyridazin-3-ones. Org Biomol Chem 2008; 6:175-86. [DOI: 10.1039/b713638b] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Giakoumaki SG, Roussos P, Frangou S, Bitsios P. Disruption of prepulse inhibition of the startle reflex by the preferential D(3) agonist ropinirole in healthy males. Psychopharmacology (Berl) 2007; 194:289-95. [PMID: 17579840 DOI: 10.1007/s00213-007-0843-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2007] [Accepted: 05/30/2007] [Indexed: 10/23/2022]
Abstract
RATIONALE Emerging evidence from agonist-antagonist studies suggests a role for the dopamine D(3) receptor subtype in the regulation of PPI in animals, but such evidence is lacking for human subjects. OBJECTIVES This study examines the effect of the preferential D(3) agonist ropinirole on PPI in humans. METHODS PPI was tested in 12 healthy men in three sessions associated with ropinirole 0.25 mg, ropinirole 0.5 mg, or placebo according to a balanced, crossover, double-blind design. Two prepulses (75- and 85-dB white noise bursts) and two lead intervals (50 and 80 ms) were employed. RESULTS Ropinirole 0.5 mg significantly reduced prepulse inhibition (PPI) with both prepulses at the 80-ms lead intervals. There was no effect of treatment on startle amplitude and habituation. CONCLUSIONS These results suggest a role for the dopamine D(3) receptor in the mediation of human PPI, although a contribution from ropinirole's agonistic activity at the D(2) receptor cannot be entirely excluded. Firm conclusions on the role of the D(3) receptor in the modulation of human PPI can only be drawn with the use of genetic approaches or more selective ligands for this receptor.
Collapse
Affiliation(s)
- Stella G Giakoumaki
- Department of Psychiatry and Behavioral Sciences, Faculty of Medicine, University of Crete, P.O. Box 2208, Heraklion, 71003, Crete, Greece
| | | | | | | |
Collapse
|
22
|
Pae CU, Lee C, Paik IH. Therapeutic possibilities of cysteamine in the treatment of schizophrenia. Med Hypotheses 2007; 69:199-202. [PMID: 17166669 DOI: 10.1016/j.mehy.2006.10.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Accepted: 10/22/2006] [Indexed: 01/06/2023]
Abstract
Schizophrenia has complicated pathogeneses that is not able to be explained by any one supposed hypothesis, although alterations in dopamine neurotransmission have been widely accepted as the most plausible mechanism. A transition from traditional typical antipsychotics to contemporary atypical antipsychotics which have significantly improved tolerability and enhanced specific efficacy has been also made based on this dopamine hypothesis. Cysteamine is a natural product of mammalian cells and found to be useful pharmacological alternative. A number of evidence suggests that cysteamine may control directly or indirectly dopamine neurotransmission in nucleus accumbens and other schizophrenia-related brain regions. Systemic cysteamine injection mitigated the apomorphine-induced stereotypy as well as decreasing motor stimulant effects of amphetamine, which favor cysteamine over animal models of schizophrenia relative to hyperactivity of dopaminergic pathway. In addition, cysteamine showed neuroprotective effects by way of enhancing central and serum brain derived neurotrophic factor (BDNF) that has been proved to be altered in patients with schizophrenia. Antipsychotic drugs exert their effect partly by modifying the synthesis and distribution of BDNF in selected brain region. Cysteamine was effective to reverse a disruption in prepulse inhibition, an endophenotypic marker of schizophrenia. Cysteamine can also stimulate the release of cortical dopamine, which is interesting in that decreased dopaminergic function in the cerebral cortex has been repeatedly demonstrated in patients with schizophrenia and associated with prominent depressive and negative symptoms. Cysteamine can also increase an important antioxidant, glutathione. Finally, cysteamine treatment was found to decrease weight gain, cataleptic behavior, and serum prolactin levels, which are the major beneficial properties of contemporary atypical antipsychotics. Hence, further explorations of therapeutic implication of cysteamine for schizophrenia in preclinical studies should be warranted in future.
Collapse
Affiliation(s)
- Chi-Un Pae
- Department of Psychiatry, Kangnam St. Mary' Hospital, The Catholic University of Korea, College of Medicine, 505 Banpo-Dong, Seocho-Gu, Seoul 137-701, South Korea.
| | | | | |
Collapse
|
23
|
Elsner J, Boeckler F, Davidson K, Sugden D, Gmeiner P. Bicyclic melatonin receptor agonists containing a ring-junction nitrogen: Synthesis, biological evaluation, and molecular modeling of the putative bioactive conformation. Bioorg Med Chem 2006; 14:1949-58. [PMID: 16290939 DOI: 10.1016/j.bmc.2005.10.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 10/19/2005] [Accepted: 10/25/2005] [Indexed: 12/15/2022]
Abstract
Employing 1,3-dipolar cycloaddition for the synthesis of the 7a-azaindole nucleus, analogues of melatonin have been synthesized and tested against human and amphibian melatonin receptors. Introducing a phenyl substituent in position 2 of the heterocyclic moiety significantly increased binding affinity to both the MT1 and MT2 receptors. Shifting the methoxy group from position 5 to 2 of the 7a-azaindole ring led to a substantial reduction of MT1 binding when MT2 recognition was maintained. We theoretically investigated the hypothesis whether the 2-methoxy function of the azamelatonin analogue 27 is able to mimic the 5-methoxy group of the neurohormone by directing its 2-methoxy function toward the methoxy binding site. DFT calculations and experimental binding differences of analogue compounds indicate that the energy gained by forming the methoxy-specific hydrogen-bond interaction should exceed the energy required for adopting an alternative conformation.
Collapse
MESH Headings
- Animals
- Binding, Competitive/drug effects
- Cell Line
- Cells, Cultured
- Drug Evaluation, Preclinical
- Humans
- Melatonin/analogs & derivatives
- Melatonin/chemistry
- Melatonin/pharmacology
- Mice
- Models, Molecular
- Molecular Conformation
- Molecular Structure
- NIH 3T3 Cells
- Nitrogen/chemistry
- Receptor, Melatonin, MT1/agonists
- Receptor, Melatonin, MT1/chemistry
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT2/agonists
- Receptor, Melatonin, MT2/chemistry
- Receptor, Melatonin, MT2/genetics
- Structure-Activity Relationship
- Xenopus
Collapse
Affiliation(s)
- Jan Elsner
- Department of Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, D-91052 Erlangen, Germany
| | | | | | | | | |
Collapse
|
24
|
Schlotter K, Boeckler F, Hübner H, Gmeiner P. Fancy bioisosteres: metallocene-derived G-protein-coupled receptor ligands with subnanomolar binding affinity and novel selectivity profiles. J Med Chem 2005; 48:3696-9. [PMID: 15916420 DOI: 10.1021/jm050170s] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metallocene-derived bioisosteres lead to exceptionally strong binding G-protein-coupled receptor ligands, indicating substantial plasticity of the receptor excluded volume. Novel binding profiles of ferrocenylcarboxamides combining subnanomolar Ki values for the dopamine D4 receptor (1a, 0.52 nM; 1b, 0.63 nM) with superpotent serotonin 5-hydroxytryptamine1A (1a, 0.50 nM) and dopamine D3 receptor binding (1b, 0.64 nM) and selective D4 agonist properties of the ruthenocene 1c may be a starting point for highly beneficial central nervous system active drugs.
Collapse
Affiliation(s)
- Karin Schlotter
- Department of Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, D-91052 Erlangen, Germany
| | | | | | | |
Collapse
|
25
|
Boeckler F, Lanig H, Gmeiner P. Modeling the Similarity and Divergence of Dopamine D2-like Receptors and Identification of Validated Ligand−Receptor Complexes. J Med Chem 2005; 48:694-709. [PMID: 15689154 DOI: 10.1021/jm049612a] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Focusing on the similarity and divergence of GPCR subtypes and their ligand interactions, we generated dopamine D2, D3, and D4 receptor models based on the rhodopsin crystal structure and refined these with an extensive MM/MD protocol. After validation by diagnostic experimental data, subtype-specific relative positions of TM1, 2, 6, and 7 and bending angles of TM7 were found. To sample the conformational space of the complex, we performed simulated-annealing runs of the receptor protein with the sub-nanomolar antagonist spiperone. Docking a representative set of ligands, we were able to identify one superior model for each subtype when excellent correlations between predicted energies of binding and experimental affinities (r2 = 0.72 for D2, 0.91 for D3 and 0.77 for D4) could be observed. Further analysis revealed general ligand interactions with ASP3.32 and aromatic residues in TM6/7 and individual key interactions with TM1 and TM2 residues of the D3 and D4 receptor models, respectively.
Collapse
Affiliation(s)
- Frank Boeckler
- Department of Medicinal Chemistry, Emil Fischer Center, Friedrich-Alexander University, Schuhstrasse 19, D-91052 Erlangen, Germany
| | | | | |
Collapse
|