1
|
Sex differences in serotonergic control of rat social behaviour. Pharmacol Biochem Behav 2023; 223:173533. [PMID: 36858181 DOI: 10.1016/j.pbb.2023.173533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023]
Abstract
RATIONALE There is increasing evidence that enhancement of the salience of social stimuli can have a beneficial effect in managing many psychiatric conditions. There are, however, clear sex-related differences in social behaviour, including the neural mechanisms responsible for different aspects of social functions. OBJECTIVES We explored the role of the serotonergic system on rat social behaviour under baseline and under stressful conditions in female and male rats. METHODS Rats were treated with the selective serotonin transporter (SERT) inhibitor escitalopram postnatally; a procedure known to cause a long-lasting reduction of serotonergic activity. In adulthood, social behaviour was tested in a social interaction test and in ultrasonic vocalisation (USVs) recording sessions before and after yohimbine-induced stress-like state. RESULTS Our data demonstrated that both female and, to a lesser extent, male escitalopram treated rats, exposed to a novel social situation, had fewer social exploration events and emitted fewer frequency-modulated calls with trills, trills and step calls, suggesting that an impaired function of the serotonergic system reduced the positive valence of social interaction. In a stress-like state, 50 kHz flat calls were increased only in female rats, indicating an increased seeking of social contact. However, the number of flat calls in escitalopram treated female rats was significantly lower compared with control rats. CONCLUSIONS These data suggest that females may respond differently to serotonergic pharmacotherapy with respect to enhancement of beneficial effects of social support, especially in stress-related situations.
Collapse
|
2
|
Fox HC, Milivojevic V, Sinha R. Therapeutics for Substance-Using Women: The Need to Elucidate Sex-Specific Targets for Better-Tailored Treatments. Handb Exp Pharmacol 2023; 282:127-161. [PMID: 37592081 DOI: 10.1007/164_2023_687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
In the last decade, alcohol consumption in the US has risen by 84% in women compared with 35% in men. Furthermore, research has shown that sex- and gender-related differences may disadvantage women in terms of developing a range of psychological, cognitive, and medical problems considerably earlier in their drinking history than men, and despite consuming a similar quantity of substances. While this "telescoping" process has been acknowledged in the literature, a concomitant understanding of the underlying biobehavioral mechanisms, and an increase in the development of specific treatments tailored to women, has not occurred. In the current chapter we focus on understanding why the need for personalized, sex-specific medications is imperative, and highlight some of the potential sex-specific gonadal and stress-related adaptations underpinning the accelerated progress from controlled to compulsive drug and alcohol seeking in women. We additionally discuss the efficacy of these mechanisms as novel targets for medications development, using exogenous progesterone and guanfacine as examples. Finally, we assess some of the challenges faced and progress made in terms of developing innovative medications in women. We suggest that agents such as exogenous progesterone and adrenergic medications, such as guanfacine, may provide some efficacy in terms of attenuating stress-induced craving for several substances, as well as improving the ability to emotionally regulate in the face of stress, preferentially in women. However, to fully leverage the potential of these therapeutics in substance-using women, greater focus needs to the placed on reducing barriers to treatment and research by encouraging women into clinical trials.
Collapse
Affiliation(s)
- Helen C Fox
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.
| | - Verica Milivojevic
- The Yale Stress Center, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Rajita Sinha
- The Yale Stress Center, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
3
|
Hitzemann R, Bergeson SE, Berman AE, Bubier JA, Chesler EJ, Finn DA, Hein M, Hoffman P, Holmes A, Kisby BR, Lockwood D, Lodowski KH, McManus M, Owen JA, Ozburn AR, Panthagani P, Ponomarev I, Saba L, Tabakoff B, Walchale A, Williams RW, Phillips TJ. Sex Differences in the Brain Transcriptome Related to Alcohol Effects and Alcohol Use Disorder. Biol Psychiatry 2022; 91:43-52. [PMID: 34274109 PMCID: PMC8558111 DOI: 10.1016/j.biopsych.2021.04.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/05/2021] [Accepted: 04/26/2021] [Indexed: 01/03/2023]
Abstract
There is compelling evidence that sex and gender have crucial roles in excessive alcohol (ethanol) consumption. Here, we review some of the data from the perspective of brain transcriptional differences between males and females, focusing on rodent animal models. A key emerging transcriptional feature is the role of neuroimmune processes. Microglia are the resident neuroimmune cells in the brain and exhibit substantial functional differences between males and females. Selective breeding for binge ethanol consumption and the impacts of chronic ethanol consumption and withdrawal from chronic ethanol exposure all demonstrate sex-dependent neuroimmune signatures. A focus is on resolving sex-dependent differences in transcriptional responses to ethanol at the neurocircuitry level. Sex-dependent transcriptional differences are found in the extended amygdala and the nucleus accumbens. Telescoping of ethanol consumption is found in some, but not all, studies to be more prevalent in females. Recent transcriptional studies suggest that some sex differences may be due to female-dependent remodeling of the primary cilium. An interesting theme appears to be developing: at least from the animal model perspective, even when males and females are phenotypically similar, they differ significantly at the level of the transcriptome.
Collapse
Affiliation(s)
- Robert Hitzemann
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, Portland, Oregon
| | - Susan E Bergeson
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | | | | | | | - Deborah A Finn
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, Portland, Oregon; Veterans Affairs Portland Health Care System, Portland, Oregon
| | - Matthew Hein
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Paula Hoffman
- Department of Pharmacology, University of Colorado, Aurora, Colorado
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Brent R Kisby
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Denesa Lockwood
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, Portland, Oregon.
| | - Kerrie H Lodowski
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Michelle McManus
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Julie A Owen
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Angela R Ozburn
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, Portland, Oregon; Veterans Affairs Portland Health Care System, Portland, Oregon
| | - Praneetha Panthagani
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Igor Ponomarev
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Laura Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Boris Tabakoff
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Aashlesha Walchale
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Sciences Center, Memphis, Tennessee
| | - Tamara J Phillips
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, Portland, Oregon; Veterans Affairs Portland Health Care System, Portland, Oregon
| |
Collapse
|
4
|
Hammad AM, Sari Y. Effects of Cocaine Exposure on Astrocytic Glutamate Transporters and Relapse-Like Ethanol-Drinking Behavior in Male Alcohol-Preferring Rats. Alcohol Alcohol 2020; 55:254-263. [PMID: 32099993 PMCID: PMC7171926 DOI: 10.1093/alcalc/agaa010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 12/14/2022] Open
Abstract
AIM Glutamate has been considered as neurotransmitter that is critical in triggering relapse to drugs of abuse, including ethanol and cocaine. Extracellular glutamate concentrations are tightly regulated by several mechanisms, including reuptake through glutamate transporters. Glutamate transporter type 1 (GLT-1) is responsible for clearing the majority of extracellular glutamate. The astrocytic cystine/glutamate antiporter (xCT) regulates also glutamate homeostasis. In this study, we investigated the effects of cocaine exposure and ampicillin/sulbactam (AMP/SUL), a β-lactam antibiotic known to upregulate GLT-1 and xCT, on relapse-like ethanol intake and the expression of astrocytic glutamate transporters in mesocorticolimbic brain regions. METHODS Male alcohol-preferring (P) rats had free access to ethanol for 5 weeks. On Week 6, rats were exposed to either cocaine (20 mg/kg, i.p.) or saline for 12 consecutive days. Ethanol bottles were then removed for 7 days; during the last 5 days, either AMP/SUL (100 or 200 mg/kg, i.p.) or saline was administered to the P rats. Ethanol bottles were reintroduced, and ethanol intake was measured for 4 days. RESULTS Cocaine exposure induced an alcohol deprivation effect (ADE), which was associated in part by a decrease in the expression of GLT-1 and xCT in the nucleus accumbens (NAc) core. AMP/SUL (100 mg/kg, i.p.) attenuated the ADE, while AMP/SUL (200 mg/kg, i.p.) reduced ethanol intake during 4 days of ethanol re-exposure and upregulated GLT-1 and xCT expression in the NAc core, NAc shell and dorsomedial prefrontal cortex (dmPFC). CONCLUSION This study suggests that these astrocytic glutamate transporters might be considered as potential targets for the treatment of polysubstance abuse.
Collapse
Affiliation(s)
- Alaa M Hammad
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, 3000 Arlington Ave, Toledo, OH, USA
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130 Amman, 11733, Jordan
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, 3000 Arlington Ave, Toledo, OH, USA
| |
Collapse
|
5
|
Dess NK, Chapman CD. Parametric Characterization of a Taste Phenotype in Rats Selectively Bred for High Versus Low Saccharin Intake. Chem Senses 2019; 45:85-96. [DOI: 10.1093/chemse/bjz072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
Taste signals food quality and reflects energy status and associated processes. Occidental high- and low-saccharin consuming rats (HiS, LoS) have been selectively bred for nearly 60 generations on intake of 0.1% saccharin in a 23-h two-bottle test, as a tool for studying individual differences in taste and its correlates in the domains of feeding, defensive, and social behavior. The saccharin phenotype itself has not been well characterized until now. The present series of parametric studies examined suprathreshold saccharin concentration-intake functions (Experiment 1), saccharin preference threshold (Experiments 2A and 2B), and intra- and inter-sweetener carryforward effects (Experiments 2B, 3A–3D). Results indicate high stability in line differences in behavior toward saccharin and also line-specific mutability of intake of saccharin and certain other sweeteners. Methodological and conceptual implications are discussed.
Collapse
Affiliation(s)
- Nancy K Dess
- Department of Psychology, Occidental College, Los Angeles, CA, USA
| | | |
Collapse
|
6
|
Peltier MR, Verplaetse TL, Mineur YS, Petrakis IL, Cosgrove KP, Picciotto MR, McKee SA. Sex differences in stress-related alcohol use. Neurobiol Stress 2019; 10:100149. [PMID: 30949562 PMCID: PMC6430711 DOI: 10.1016/j.ynstr.2019.100149] [Citation(s) in RCA: 258] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 01/12/2023] Open
Abstract
Rates of alcohol use disorder (AUD) have increased in women by 84% over the past ten years relative to a 35% increase in men. This substantive increase in female drinking is alarming given that women experience greater alcohol-related health consequences compared to men. Stress is strongly associated with all phases of alcohol addiction, including drinking initiation, maintenance, and relapse for both women and men, but plays an especially critical role for women. The purpose of the present narrative review is to highlight what is known about sex differences in the relationship between stress and drinking. The critical role stress reactivity and negative affect play in initiating and maintaining alcohol use in women is addressed, and the available evidence for sex differences in drinking for negative reinforcement as it relates to brain stress systems is presented. This review discusses the critical structures and neurotransmitters that may underlie sex differences in stress-related alcohol use (e.g., prefrontal cortex, amygdala, norepinephrine, corticotropin releasing factor, and dynorphin), the involvement of sex and stress in alcohol-induced neurodegeneration, and the role of ovarian hormones in stress-related drinking. Finally, the potential avenues for the development of sex-appropriate pharmacological and behavioral treatments for AUD are identified. Overall, women are generally more likely to drink to regulate negative affect and stress reactivity. Sex differences in the onset and maintenance of alcohol use begin to develop during adolescence, coinciding with exposure to early life stress. These factors continue to affect alcohol use into adulthood, when reduced responsivity to stress, increased affect-related psychiatric comorbidities and alcohol-induced neurodegeneration contribute to chronic and problematic alcohol use, particularly for women. However, current research is limited regarding the examination of sex in the initiation and maintenance of alcohol use. Probing brain stress systems and associated brain regions is an important future direction for developing sex-appropriate treatments to address the role of stress in AUD.
Collapse
Affiliation(s)
| | | | - Yann S. Mineur
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Ismene L. Petrakis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06519, USA
- VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Kelly P. Cosgrove
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06519, USA
- Department of Diagnostic Radiology, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Marina R. Picciotto
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Sherry A. McKee
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06519, USA
| |
Collapse
|
7
|
Moorman DE. The role of the orbitofrontal cortex in alcohol use, abuse, and dependence. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:85-107. [PMID: 29355587 PMCID: PMC6072631 DOI: 10.1016/j.pnpbp.2018.01.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/22/2017] [Accepted: 01/13/2018] [Indexed: 12/21/2022]
Abstract
One of the major functions of the orbitofrontal cortex (OFC) is to promote flexible motivated behavior. It is no surprise, therefore, that recent work has demonstrated a prominent impact of chronic drug use on the OFC and a potential role for OFC disruption in drug abuse and addiction. Among drugs of abuse, the use of alcohol is particularly salient with respect to OFC function. Although a number of studies in humans have implicated OFC dysregulation in alcohol use disorders, animal models investigating the association between OFC and alcohol use are only beginning to be developed, and there is still a great deal to be revealed. The goal of this review is to consider what is currently known regarding the role of the OFC in alcohol use and dependence. I will first provide a brief, general overview of current views of OFC function and its contributions to drug seeking and addiction. I will then discuss research to date related to the OFC and alcohol use, both in human clinical populations and in non-human models. Finally I will consider issues and strategies to guide future study that may identify this brain region as a key player in the transition from moderated to problematic alcohol use and dependence.
Collapse
Affiliation(s)
- David E. Moorman
- Department of Psychological and Brain Sciences, Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst MA 01003 USA
| |
Collapse
|
8
|
Plawecki MH, White K, Kosobud A, Grahame N, Zimmermann US, Crabb D, O’Connor S. Sex Differences in Motivation to Self-Administer Alcohol After 2 Weeks of Abstinence in Young-Adult Heavy Drinkers. Alcohol Clin Exp Res 2018; 42:1897-1908. [PMID: 30080254 PMCID: PMC6167142 DOI: 10.1111/acer.13860] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/31/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Studies in animal models document that forced abstinence from usual consumption of alcohol changes subsequent seeking and consumption, with increases or decreases depending on the species, duration of abstinence, number of deprivations, and sex. Human laboratory-based alcohol deprivation studies are rare. METHODS We conducted a 2-session, within-participant, randomized-order comparison of intravenous, progressive ratio, alcohol self-administration during 2.5 hours of progressive work for alcohol and/or vehicle; once while the participants pursued their usual drinking habits and once after 2 weeks of closely monitored, voluntary outpatient abstinence from alcohol. The schedule of work for rewards and the incremental increases in breath alcohol concentration following completion of an alcohol work-set were identical across participants. Fifty young-adult (27 men), heavy-drinking participants completed both sessions. Our primary hypothesis was that motivation to work for alcohol after 2 weeks of abstinence would be greater in participants with a weekly binge pattern of drinking, compared to those who regularly drink heavily, and we intended to explore associations with biological family history of alcoholism and sex. RESULTS We detected no change in work for alcohol associated with recent drinking history. However, females, on average, increased their work for alcohol upon resumption after 2 weeks of abstinence (mean ± SEM = +16.3 ± 9.6%), while males decreased that work (-24.8 ± 13.8%). The sex difference was substantial and significant (p < 0.03), with a medium effect size (Cohen's d = 0.63). CONCLUSIONS We believe a more comprehensive study of mechanisms underlying the sex differences in the human postabstinence response is warranted.
Collapse
Affiliation(s)
- Martin Henry Plawecki
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kurt White
- Indiana University School of Epidemiology, Bloomington, IN, USA
| | - Ann Kosobud
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nicholas Grahame
- Indiana University Purdue University Indianapolis, School of Psychology
| | - Ulrich S. Zimmermann
- Technische Universitat Dresden, Germany, School of Medicine, Department of Psychiatry
| | - David Crabb
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sean O’Connor
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
9
|
Ruiz P, Calliari A, Pautassi RM. Reserpine-induced depression is associated in female, but not in male, adolescent rats with heightened, fluoxetine-sensitive, ethanol consumption. Behav Brain Res 2018; 348:160-170. [DOI: 10.1016/j.bbr.2018.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/16/2018] [Accepted: 04/10/2018] [Indexed: 01/22/2023]
|
10
|
Randall PA, Stewart RT, Besheer J. Sex differences in alcohol self-administration and relapse-like behavior in Long-Evans rats. Pharmacol Biochem Behav 2017; 156:1-9. [PMID: 28347737 DOI: 10.1016/j.pbb.2017.03.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 01/22/2023]
Abstract
Alcohol use disorders are a costly public health dilemma. Complicating this issue is the general lack of basic research assessing sex differences in many aspects of alcohol seeking and taking behaviors. The current experiments sought to decrease this gap in our understanding of sex differences in alcohol use disorders by assessing both male and female Long-Evans rats in parallel on alcohol self-administration, relapse-like behavior following abstinence and extinction, and motivation to respond for the standard alcohol solution and a quinine-adulterated alcohol solution. Here, we show that while males tend to have greater alcohol-reinforced responses throughout self-administration training, females show similar or greater alcohol intake (g/kg). Additionally, when tested for reinstatement of alcohol seeking and self-administration, following abstinence or extinction, males consistently showed greater reinstatement responding than females, which may be related to their training history. However, when assessed using the progressive ratio, there were no sex differences in motivation to respond for alcohol. Further, the consistent patterns of responding across months of self-administration training in both males and females, lend support for the feasibility of conducting these studies in male and female rats in parallel without concerns about daily variability. Our data also suggest that males and females should not be pooled as differences in alcohol lever responses and differences in reinstatement, as observed in the current experiments, could affect the overall outcome and possibly confound data interpretation. These studies demonstrate the importance of assessing males and females in parallel and advance the body of preclinical research on sex differences in alcohol self-administration and relapse.
Collapse
Affiliation(s)
- Patrick A Randall
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7178, USA
| | - Robert T Stewart
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7178, USA
| | - Joyce Besheer
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7178, USA; Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7178, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7178, USA.
| |
Collapse
|
11
|
Jury NJ, DiBerto JF, Kash TL, Holmes A. Sex differences in the behavioral sequelae of chronic ethanol exposure. Alcohol 2017; 58:53-60. [PMID: 27624846 PMCID: PMC5253321 DOI: 10.1016/j.alcohol.2016.07.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/25/2016] [Accepted: 07/25/2016] [Indexed: 12/31/2022]
Abstract
Rates of alcohol use disorders (AUDs) differ between men and women, and there is also marked variation between sexes in the effects of acute and chronic alcohol. In parallel to observations in humans, prior studies in rodents have described male/female differences across a range of ethanol-related behaviors, including ethanol drinking. Nonetheless, there remain gaps in our knowledge of the role of sex in moderating the effects of ethanol, particularly in models of chronic ethanol exposure. The goal of the current study was to assess various behavioral sequelae of exposing female C57BL/6J mice to chronic intermittent ethanol (CIE) via ethanol vapors. Following four weeks of CIE exposure, adult male and female mice were compared for ethanol drinking in a two-bottle paradigm, for sensitivity to acute ethanol intoxication (via loss of righting reflex [LORR]) and for anxiety-like behaviors in the novelty-suppressed feeding and marble burying assays. Next, adult and adolescent females were tested on two different two-bottle drinking preparations (fixed or escalating ethanol concentration) after CIE. Results showed that males and females exhibited significantly blunted ethanol-induced LORR following CIE, whereas only males showed increased anxiety-like behavior after CIE. Increased ethanol drinking after CIE was also specific to males, but high baseline drinking in females may have occluded detection of a CIE-induced effect. The failure to observe elevated drinking in females in response to CIE was also seen in females exposed to CIE during adolescence, regardless of whether a fixed or escalating ethanol-concentration two-bottle procedure was employed. Collectively, these data add to the literature on sex differences in ethanol-related behaviors and provide a foundation for future studies examining how the neural consequences of CIE might differ between males and females.
Collapse
Affiliation(s)
- Nicholas J Jury
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| | - Jeffrey F DiBerto
- Department of Pharmacology and Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thomas L Kash
- Department of Pharmacology and Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Abstract
The purpose of this review is to discuss ways to think about and study sex differences in preclinical animal models. We use the framework of addiction, in which animal models have excellent face and construct validity, to illustrate the importance of considering sex differences. There are four types of sex differences: qualitative, quantitative, population, and mechanistic. A better understanding of the ways males and females can differ will help scientists design experiments to characterize better the presence or absence of sex differences in new phenomena that they are investigating. We have outlined major quantitative, population, and mechanistic sex differences in the addiction domain using a heuristic framework of the three established stages of the addiction cycle: binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation. Female rats, in general, acquire the self-administration of drugs and alcohol more rapidly, escalate their drug taking with extended access more rapidly, show more motivational withdrawal, and (where tested in animal models of "craving") show greater reinstatement. The one exception is that female rats show less motivational withdrawal to alcohol. The bases for these quantitative sex differences appear to be both organizational, in that estradiol-treated neonatal animals show the male phenotype, and activational, in that the female phenotype depends on the effects of gonadal hormones. In animals, differences within the estrous cycle can be observed but are relatively minor. Such hormonal effects seem to be most prevalent during the acquisition of drug taking and less influential once compulsive drug taking is established and are linked largely to progesterone and estradiol. This review emphasizes not only significant differences in the phenotypes of females and males in the domain of addiction but emphasizes the paucity of data to date in our understanding of those differences.
Collapse
Affiliation(s)
- Jill B Becker
- Molecular & Behavioral Neuroscience Institute, Department of Psychiatry, Department of Psychology, University of Michigan, Ann Arbor, Michigan (J.B.B.); and Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland (G.F.K.)
| | - George F Koob
- Molecular & Behavioral Neuroscience Institute, Department of Psychiatry, Department of Psychology, University of Michigan, Ann Arbor, Michigan (J.B.B.); and Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland (G.F.K.)
| |
Collapse
|
13
|
Sex differences in alcohol consumption and alterations in nucleus accumbens endocannabinoid mRNA in alcohol-dependent rats. Neuroscience 2016; 335:195-206. [DOI: 10.1016/j.neuroscience.2016.08.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/18/2016] [Accepted: 08/19/2016] [Indexed: 11/22/2022]
|
14
|
Goulopoulou S, McCarthy CG, Webb RC. Toll-like Receptors in the Vascular System: Sensing the Dangers Within. Pharmacol Rev 2016; 68:142-67. [PMID: 26721702 DOI: 10.1124/pr.114.010090] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Toll-like receptors (TLRs) are components of the innate immune system that respond to exogenous infectious ligands (pathogen-associated molecular patterns, PAMPs) and endogenous molecules that are released during host tissue injury/death (damage-associated molecular patterns, DAMPs). Interaction of TLRs with their ligands leads to activation of downstream signaling pathways that induce an immune response by producing inflammatory cytokines, type I interferons (IFN), and other inflammatory mediators. TLR activation affects vascular function and remodeling, and these molecular events prime antigen-specific adaptive immune responses. Despite the presence of TLRs in vascular cells, the exact mechanisms whereby TLR signaling affects the function of vascular tissues are largely unknown. Cardiovascular diseases are considered chronic inflammatory conditions, and accumulating data show that TLRs and the innate immune system play a determinant role in the initiation and development of cardiovascular diseases. This evidence unfolds a possibility that targeting TLRs and the innate immune system may be a novel therapeutic goal for these conditions. TLR inhibitors and agonists are already in clinical trials for inflammatory conditions such as asthma, cancer, and autoimmune diseases, but their study in the context of cardiovascular diseases is in its infancy. In this article, we review the current knowledge of TLR signaling in the cardiovascular system with an emphasis on atherosclerosis, hypertension, and cerebrovascular injury. Furthermore, we address the therapeutic potential of TLR as pharmacological targets in cardiovascular disease and consider intriguing research questions for future study.
Collapse
Affiliation(s)
- Styliani Goulopoulou
- Institute for Cardiovascular and Metabolic Diseases, Department of Obstetrics and Gynecology, University of North Texas Health Science Center, Fort Worth, Texas; and Department of Physiology, Augusta University, Augusta, Georgia
| | - Cameron G McCarthy
- Institute for Cardiovascular and Metabolic Diseases, Department of Obstetrics and Gynecology, University of North Texas Health Science Center, Fort Worth, Texas; and Department of Physiology, Augusta University, Augusta, Georgia
| | - R Clinton Webb
- Institute for Cardiovascular and Metabolic Diseases, Department of Obstetrics and Gynecology, University of North Texas Health Science Center, Fort Worth, Texas; and Department of Physiology, Augusta University, Augusta, Georgia
| |
Collapse
|
15
|
Llidó A, Bartolomé I, Darbra S, Pallarès M. Effects of neonatal allopregnanolone manipulations and early maternal separation on adult alcohol intake and monoamine levels in ventral striatum of male rats. Horm Behav 2016; 82:11-20. [PMID: 27090561 DOI: 10.1016/j.yhbeh.2016.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/22/2016] [Accepted: 04/14/2016] [Indexed: 01/10/2023]
Abstract
Changes in endogenous neonatal levels of the neurosteroid allopregnanolone (AlloP) as well as a single 24h period of early maternal separation (EMS) on postnatal day (PND) 9 affect the development of the central nervous system (CNS), causing adolescent/adult alterations including systems and behavioural traits that could be related to vulnerability to drug abuse. In rats, some behavioural alterations caused by EMS can be neutralised by previous administration of AlloP. Thus, the aim of the present work is to analyse if manipulations of neonatal AlloP could increase adult alcohol consumption, and if EMS could change these effects. We administered AlloP or finasteride, a 5α-reductase inhibitor, from PND5 to PND9, followed by 24h of EMS at PND9. At PND70 we measured alcohol consumption using a two-bottle free-choice model (ethanol 10% (v/v)+glucose 3% (w/v), and glucose 3% (w/v)) for 15days. Ventral striatum samples were obtained to determine monoamine levels. Results revealed that neonatal finasteride increased both ethanol and glucose consumption, and AlloP increased alcohol intake compared with neonatal vehicle-injected animals. The differences between neonatal groups in alcohol consumption were not found in EMS animals. In accordance, both finasteride and AlloP animals that did not suffer EMS showed lower levels of dopamine and serotonin in ventral striatum. Taken together, these results reveal that neonatal neurosteroids alterations affect alcohol intake; an effect which can be modified by subsequent EMS. Thus, these data corroborate the importance of the relationship between neonatal neurosteroids and neonatal stress for the correct CNS development.
Collapse
Affiliation(s)
- Anna Llidó
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Iris Bartolomé
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Sònia Darbra
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Marc Pallarès
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
16
|
Alterations of reward mechanisms in bulbectomised rats. Behav Brain Res 2015; 286:271-7. [DOI: 10.1016/j.bbr.2015.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/02/2015] [Accepted: 03/06/2015] [Indexed: 01/17/2023]
|
17
|
Garafola CS, Henn FA. A change in hippocampal protocadherin gamma expression in a learned helpless rat. Brain Res 2014; 1593:55-64. [DOI: 10.1016/j.brainres.2014.08.071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 08/09/2014] [Accepted: 08/25/2014] [Indexed: 01/01/2023]
|
18
|
The alcohol deprivation effect model for studying relapse behavior: a comparison between rats and mice. Alcohol 2014; 48:313-20. [PMID: 24811155 DOI: 10.1016/j.alcohol.2014.03.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 03/01/2014] [Accepted: 03/01/2014] [Indexed: 12/22/2022]
Abstract
Understanding the psychological mechanisms and underlying neurobiology of relapse behavior is essential for improving the treatment of addiction. Because the neurobiology of relapse behavior cannot be well studied in patients, we must rely on appropriate animal models. The alcohol deprivation effect (ADE) is a phenomenon in laboratory animals that models a relapse-like drinking situation, providing excellent face and predictive validity. In rodents, relapse-like behavior is largely influenced by the genetic make-up of an animal. It is not clear which other factors are responsible for variability of this behavior, but there seems to be no correlation between levels of baseline alcohol intake and the occurrence, duration, and robustness of the ADE. Rats that undergo long-term alcohol drinking for several months with repeated deprivation phases develop a compulsive drinking behavior during a relapse situation, characterized by insensitivity to taste adulteration with quinine, a loss of circadian drinking patterns during relapse-like drinking, and a shift toward drinking highly concentrated alcohol solutions to rapidly increase blood alcohol concentrations and achieve intoxication. Some mouse strains also exhibit an ADE, but this is usually of shorter duration than in rats. However, compulsive drinking in mice during a relapse situation has yet to be demonstrated. We extend our review section with original data showing that during long-term alcohol consumption, mice show a decline in alcohol intake, and the ADE fades with repeated deprivation phases. Furthermore, anti-relapse compounds that produce reliable effects on the ADE in rats produce paradoxical effects in mice. We conclude that the rat provides a better model system to study alcohol relapse and putative anti-relapse compounds.
Collapse
|
19
|
Lucero López VR, Razzeto GS, Escudero NL, Gimenez MS. Biochemical and molecular study of the influence of Amaranthus hypochondriacus flour on serum and liver lipids in rats treated with ethanol. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2013; 68:396-402. [PMID: 24122546 DOI: 10.1007/s11130-013-0388-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Hyperlipidemia and hepatic steatosis are frequent alterations due to alcohol abuse. Amaranth is a pseudocereal with hypolipidemic potential among other nutraceutical actions. Here we study the effect of Amaranthus hypochondriacus (Ah) seeds on serum and liver lipids, and the expression of genes associated to lipid metabolism and liver histology in male Wistar rats intoxicated with ethanol. The animals were divided into four groups; two groups were fed the American Institute of Nutrition 1993 for maintenance diet (AIN-93M), and the other two with AIN-93M containing Ah as protein source. One of each protein group received 20% ethanol in the drinking water, thus obtaining: CC (control casein), EC (ethanol casein), CAh (control Ah) and EAh (ethanol Ah). When comparing EAh vs . EC, we found a positive effect of Ah on lipids, preventing the increment of serum cholesterol (p <0.001), through the higher expression of the LDL receptor (p <0.001); and it also decreased free (p < 0.05) and esterified cholesterol (p <0.01) in liver, probably via the reduction of the 3-hydroxy-3-methylglutaryl coenzyme A reductase expression (p <0.001). We also observed that amaranth contributed to the decrease of fat deposits in liver, probably through the decrease in acetyl-CoA carboxylase alpha (p <0.01), glycerol-3-phosphate acyltransferase 1 (p <0.01) and diacylglycerol O-acyltransferase 2 (p <0.05) expression. The histological study showed a decrease in the fat deposits in the amaranth group when compared to casein; this is consistent with the biochemical and molecular parameters studied in this work. In conclusion, amaranth could be recommended to avoid the alterations in the lipid metabolism induced by alcohol and other harmful agents.
Collapse
|
20
|
Drug withdrawal-induced depression: Serotonergic and plasticity changes in animal models. Neurosci Biobehav Rev 2012; 36:696-726. [DOI: 10.1016/j.neubiorev.2011.10.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 10/06/2011] [Accepted: 10/15/2011] [Indexed: 12/17/2022]
|
21
|
López VRL, Razzeto GS, Giménez MS, Escudero NL. Antioxidant properties of Amaranthus hypochondriacus seeds and their effect on the liver of alcohol-treated rats. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2011; 66:157-162. [PMID: 21547507 DOI: 10.1007/s11130-011-0218-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Amaranth constitutes a valuable pseudocereal, due to its nutritional quality and its nutraceutical properties, which contribute to improve human health. This work evaluated the effect of a diet based on Amaranthus hypochondriacus (Ah) seed on oxidative stress and antioxidant status in the liver of rats sub-chronically exposed to ethanol. The seed extract was investigated for antioxidant capacity in vitro, showing an adequate content of total phenols and antioxidant activity elevated. For in vivo assays, four groups of six rats each were fed with an AIN-93 M diet for 28 days. In groups III and IV casein was replaced by Ah as the protein source; groups II and IV were received ethanol in the drinking water (20% v/v). When comparing groups IV and II, the following was observed: significant decrease in the activity of aspartate aminotransferase and content of malondialdehyde (p<0.001) in serum; decrease of malondialdehyde and increase in the activity and gene expression of Cu,Zn-superoxide dismutase, also, decrease in the NADPH oxidase transcript levels (p<0.05) in liver. Our data suggest that Ah is a good source of total phenols and exerts a protective effect in serum and in liver of rats intoxicated with ethanol.
Collapse
Affiliation(s)
- Viviana Romina Lucero López
- Department of Biochemistry and Biology Sciences, Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis, IMIBIO-SL, CONICET, Chacabuco and Pedernera, San Luis, 5700, Argentina
| | | | | | | |
Collapse
|
22
|
Zink M, Vollmayr B, Gebicke-Haerter PJ, Henn FA. Reduced expression of glutamate transporters vGluT1, EAAT2 and EAAT4 in learned helpless rats, an animal model of depression. Neuropharmacology 2009; 58:465-73. [PMID: 19747495 DOI: 10.1016/j.neuropharm.2009.09.005] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2009] [Revised: 08/31/2009] [Accepted: 09/02/2009] [Indexed: 12/19/2022]
Abstract
BACKGROUND It has been widely accepted that glial pathology and disturbed synaptic transmission contribute to the neurobiology of depression. Apart from monoaminergic alterations, an influence of glutamatergic signal transduction has been reported. Therefore, gene expression of glutamate transporters that strictly control synaptic glutamate concentrations have to be assessed in animal models of stress and depression. METHODS We performed in situ-hybridizations in learned helplessness rats, a well established animal model of depression, to assess vGluT1 and EAAT1-4. Sprague-Dawley rats of two inbred lines were tested for helpless behavior and grouped into three cohorts according to the number of failures to stop foot shock currents by lever pressing. RESULTS Helpless animals showed a significantly suppressed expression of the glial glutamate transporter EAAT2 (rodent nomenclature GLT1) in hippocampus and cerebral cortex compared to littermates with low failure rate and not helpless animals. This finding was validated on protein level using immunohistochemistry. Additionally, expression levels of EAAT4 and the vesicular transporter vGluT1 were reduced in helpless animals. In contrast, the transcript levels of EAAT1 (GLAST) and EAAT3 (EAAC1) were not significantly altered. CONCLUSIONS These results strongly suggest reduced astroglial glutamate uptake and implicate increased glutamate levels in learned helplessness. The findings are in concert with antidepressant effects of NMDA-receptor antagonists and the hypotheses that impaired astroglial functions contribute to the pathogenesis of affective disorders.
Collapse
Affiliation(s)
- M Zink
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, P.O. Box 12 21 20, D-68072 Mannheim, Germany
| | | | | | | |
Collapse
|
23
|
Spanagel R. Alcoholism: A Systems Approach From Molecular Physiology to Addictive Behavior. Physiol Rev 2009; 89:649-705. [DOI: 10.1152/physrev.00013.2008] [Citation(s) in RCA: 491] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Alcohol consumption is an integral part of daily life in many societies. The benefits associated with the production, sale, and use of alcoholic beverages come at an enormous cost to these societies. The World Health Organization ranks alcohol as one of the primary causes of the global burden of disease in industrialized countries. Alcohol-related diseases, especially alcoholism, are the result of cumulative responses to alcohol exposure, the genetic make-up of an individual, and the environmental perturbations over time. This complex gene × environment interaction, which has to be seen in a life-span perspective, leads to a large heterogeneity among alcohol-dependent patients, in terms of both the symptom dimensions and the severity of this disorder. Therefore, a reductionistic approach is not very practical if a better understanding of the pathological processes leading to an addictive behavior is to be achieved. Instead, a systems-oriented perspective in which the interactions and dynamics of all endogenous and environmental factors involved are centrally integrated, will lead to further progress in alcohol research. This review adheres to a systems biology perspective such that the interaction of alcohol with primary and secondary targets within the brain is described in relation to the behavioral consequences. As a result of the interaction of alcohol with these targets, alterations in gene expression and synaptic plasticity take place that lead to long-lasting alteration in neuronal network activity. As a subsequent consequence, alcohol-seeking responses ensue that can finally lead via complex environmental interactions to an addictive behavior.
Collapse
|
24
|
Boyce-Rustay JM, Janos AL, Holmes A. Effects of chronic swim stress on EtOH-related behaviors in C57BL/6J, DBA/2J and BALB/cByJ mice. Behav Brain Res 2007; 186:133-7. [PMID: 17822784 PMCID: PMC2695676 DOI: 10.1016/j.bbr.2007.07.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 06/06/2007] [Accepted: 07/19/2007] [Indexed: 11/26/2022]
Abstract
There is a strong clinical relationship between stress and stress-related disorders and the incidence of alcohol abuse and alcoholism, and this relationship appears to be partly genetic in origin. There are marked strain differences in ethanol (EtOH)-related behaviors and reactivity to stress, but little investigation of the interaction between the two. The present study assessed the effects of chronic exposure to swim stress on EtOH-related behavior in three common inbred strains of mice, C57BL/6J, DBA/2J and BALB/cByJ. After establishing baseline (10%) EtOH self-administration in a two-bottle free choice test, mice were exposed to daily swim stress for 14 consecutive days and EtOH consumption was measured as a percent of baseline both during stress and for 10 days afterwards. A separate experiment examined the effects of 14 days of swim stress on sensitivity to the sedative/hypnotic effects of an acute injection of 4g/kg EtOH. Results showed that stress produced a significant decrease in EtOH consumption, relative to pre-stress baseline, in DBA/2J and BALB/cByJ, but not C57BL/6J mice. By contrast, stress increased sensitivity to the sedative/hypnotic effects of EtOH in all three strains. These findings demonstrate that chronic swim stress produces reductions in EtOH self-administration in a strain-dependent manner, and that these effects may be restricted to strains with a pre-existing aversion to EtOH. Present data also demonstrates a dissociation between effects of this stressor on EtOH self-administration and sensitivity to EtOH's sedative/hypnotic effects. In conclusion, strain differences, that are likely in large part genetic in nature, modify the effects of this stressor on EtOH's effects in a behavior-specific manner.
Collapse
Affiliation(s)
- Janel M Boyce-Rustay
- Section on Behavioral Science and Genetics, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, USA.
| | | | | |
Collapse
|
25
|
Boyce-Rustay JM, Cameron HA, Holmes A. Chronic swim stress alters sensitivity to acute behavioral effects of ethanol in mice. Physiol Behav 2007; 91:77-86. [PMID: 17363014 DOI: 10.1016/j.physbeh.2007.01.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 01/09/2007] [Accepted: 01/31/2007] [Indexed: 11/28/2022]
Abstract
Epidemiological data support a strong link between stress, stress-related disorders and risk for alcoholism. However, precisely how stress might impact sensitivity to the intoxicating effects of ethanol or the willingness to voluntary consume ethanol remains unclear. The present study assessed the effects of daily exposure to forced swim stress on subsequent sensitivity to the sedative/hypnotic, hypothermic, ataxic (measured using accelerating rotarod), and anxiolytic-like (measured using elevated plus-maze) effects of ethanol, and ethanol consumption and preference in a two-bottle choice paradigm, in male C57BL/6J mice. Stress effects on the sedative/hypnotic effects of the barbiturate pentobarbital were also tested. Results showed that chronic (fourteen days) but not acute (one or three days) swim stress significantly potentiated the sedative/hypnotic and hypothermic effects of 4 g/kg, but not 3 g/kg, ethanol. The sedative/hypnotic effects of pentobarbital were attenuated by chronic swim stress. Irrespective of chronicity, swim stress did not alter the ataxic or anxiolytic-like effects of ethanol, or alter ethanol self-administration either during or after stress. These data provide further evidence that stress alters the intoxicating effects of high doses of ethanol in a behaviorally selective manner.
Collapse
Affiliation(s)
- Janel M Boyce-Rustay
- Section on Behavioral Science and Genetics, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, United States.
| | | | | |
Collapse
|
26
|
Willmore CB, Kohler GD, Makriyannis A. Irt>t schedule controlled behavior in ‘learned-helpless’ rats: Effects from a cannabinoid agonist. Neuropharmacology 2006; 51:90-101. [PMID: 16753187 DOI: 10.1016/j.neuropharm.2006.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Revised: 02/23/2006] [Accepted: 03/06/2006] [Indexed: 11/16/2022]
Abstract
Human depression is partly a congenital disorder. Aspects of the behavior accompanying depression can be magnified by genetic manipulation of bred animal species. Learned Helplessness (LH) is a trait-mark behavior that successfully breeds in rodents. Here, 'congenital' LH (cLH) rats were trained to recognize and respond to 12s long interval cues (irt>12s schedule). Rats compliant to an irt>t schedule will space responses evenly and respond rhythmically. Irt>t schedule derived data are plotted in histograms showing irt (interresponse time) frequencies. A pause response peak emerges, for outbred rats, at irt values approximating the minimum interval for reinforcement. cLH rats [n=9] complied poorly to schedule contingencies when diluent (vehicle) was injected before testing. Moderate and high dose injections of a CB 1 receptor selective agonist drug (AM 411), however, increased operant schedule compliance and normalized the cLH rats' irt>t histogram distributions. Performance indicators for cLH rats are presented alongside coordinate measures from a comparison group [n=5] of normally bred Sprague-Dawley (SD) rats. In both cLH and SD rats, treatment session histograms revealed shifts of the pause response peak not accompanied by a change in motor responsiveness. The irt>12s histogram shifts were absent when AM 411 dosages were arranged to follow pre-medication injections of a CB 1 receptor selective antagonist drug (AM 251). In short, AM 411 increased timing acuity in rats prone to behavioral despair but had opposite timing effects in normally bred SD rats.
Collapse
Affiliation(s)
- C B Willmore
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|