1
|
Poggini S, Matte Bon G, Ciano Albanese N, Karpova N, Castrén E, D'Andrea I, Branchi I. Subjective experience of the environment determines serotoninergic antidepressant treatment outcome in male mice. J Affect Disord 2024; 350:900-908. [PMID: 38246279 DOI: 10.1016/j.jad.2024.01.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND The effects of the selective serotonin reuptake inhibitors (SSRIs), the first-line antidepressant treatment, have been proposed to be affected, at least in part, by the living environment. Since the quality of the environment depends not only on its objective features, but also on the subjective experience, we hypothesized that the latter plays a key role in determining SSRI treatment outcome. METHODS We chronically administered the SSRI fluoxetine to two groups of adult CD-1 male mice that reportedly show distinct subjective experiences of the environment measured as consistent and significantly different responses to the same emotional and social stimuli. These distinct socioemotional profiles were generated by rearing mice either in standard laboratory conditions (SN) or in a communal nest (CN) where three dams breed together their offspring, sharing caregiving behavior. RESULTS At adulthood, CN mice displayed higher levels of agonistic and anxiety-like behaviors than SN mice, indicating that they experience the environment as more socially challenging and potentially dangerous. We then administered fluoxetine, which increased offensive and anxious response in SN, while producing opposite effects in CN mice. BDNF regulation was modified by the treatment accordingly. LIMITATIONS Subjective experience in mice was assessed as behavioral response to the environment. CONCLUSIONS These results show that the subjective experience of the environment determines fluoxetine outcome. In a translational perspective, our findings suggest considering not only the objective quality, but also the subjective appraisal, of the patient's living environment for developing effective personalized therapeutic approaches in psychiatry.
Collapse
Affiliation(s)
- Silvia Poggini
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Gloria Matte Bon
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy; Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany
| | - Naomi Ciano Albanese
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Nina Karpova
- Neuroscience Center, University of Helsinki, P.O. Box 63, 00014 Helsinki, Finland
| | - Eero Castrén
- Neuroscience Center, University of Helsinki, P.O. Box 63, 00014 Helsinki, Finland
| | - Ivana D'Andrea
- Institut national de la santé et de la recherche médicale (INSERM) UMR-S 1270, Sorbonne Université, Sciences and Engineering Faculty, Institut du Fer à Moulin, Paris, France
| | - Igor Branchi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
2
|
Peeters DG, de Boer SF, Terneusen A, Newman-Tancredi A, Varney MA, Verkes RJ, Homberg JR. Enhanced aggressive phenotype of Tph2 knockout rats is associated with diminished 5-HT1A receptor sensitivity. Neuropharmacology 2019; 153:134-141. [DOI: 10.1016/j.neuropharm.2019.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/18/2019] [Accepted: 05/05/2019] [Indexed: 11/28/2022]
|
3
|
Peeters D, Rietdijk J, Gerrits D, Rijpkema M, de Boer SF, Verkes RJ, Homberg JR. Searching for neural and behavioral parameters that predict anti-aggressive effects of chronic SSRI treatment in rats. Neuropharmacology 2018; 143:339-348. [PMID: 30217738 DOI: 10.1016/j.neuropharm.2018.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/06/2018] [Accepted: 09/10/2018] [Indexed: 01/05/2023]
Abstract
RATIONALE Only a subset of impulsive aggressive patients benefits from selective serotonin reuptake inhibitor (SSRI) treatment, confirming contradictory results about the association between serotonin (5-hydroxytryptamine, 5-HT) and aggression. This shows the need to define behavioral characteristics within this subgroup to move towards individualized pharmacological treatment of impulsive aggression. METHODS Here we submitted an outbred strain of Long Evans rats to a crossover design treatment regimen with the SSRI citalopram, to test its anti-aggressive effect. Behavioral characteristics were baseline aggression, anxiety parameters as measured in the elevated plus maze and open field and cue responsivity as indicated by sign vs. goal tracking behavior. 5-HT1A receptor densities as measured by ex vivo [18F]MPPF binding were determined in the dorsal raphe nucleus, dentate gyrus, orbitofrontal cortex, infralimbic cortex and prelimbic cortex, because of the receptors' involvement in the therapeutic delay of SSRIs and aggression. RESULTS We found statistically significant increased variance in aggressive behavior after citalopram treatment. However, none of the selected parameters predicted the citalopram treatment effect. CONCLUSION Since aggression after citalopram treatment decreased in a subgroup of animals and increased in the other, future research should focus on other possible predictors to support treatment strategies in aggressive patients.
Collapse
Affiliation(s)
- Deborah Peeters
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Jonne Rietdijk
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Danny Gerrits
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mark Rijpkema
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sietse F de Boer
- Department of Behavioural Neuroscience, Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - Robbert-Jan Verkes
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
4
|
Haller J. Preclinical models of conduct disorder – principles and pharmacologic perspectives. Neurosci Biobehav Rev 2018; 91:112-120. [DOI: 10.1016/j.neubiorev.2016.05.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 05/09/2016] [Accepted: 05/25/2016] [Indexed: 12/11/2022]
|
5
|
Takahashi A, Flanigan ME, McEwen BS, Russo SJ. Aggression, Social Stress, and the Immune System in Humans and Animal Models. Front Behav Neurosci 2018; 12:56. [PMID: 29623033 PMCID: PMC5874490 DOI: 10.3389/fnbeh.2018.00056] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/06/2018] [Indexed: 01/25/2023] Open
Abstract
Social stress can lead to the development of psychological problems ranging from exaggerated anxiety and depression to antisocial and violence-related behaviors. Increasing evidence suggests that the immune system is involved in responses to social stress in adulthood. For example, human studies show that individuals with high aggression traits display heightened inflammatory cytokine levels and dysregulated immune responses such as slower wound healing. Similar findings have been observed in patients with depression, and comorbidity of depression and aggression was correlated with stronger immune dysregulation. Therefore, dysregulation of the immune system may be one of the mediators of social stress that produces aggression and/or depression. Similar to humans, aggressive animals also show increased levels of several proinflammatory cytokines, however, unlike humans these animals are more protected from infectious organisms and have faster wound healing than animals with low aggression. On the other hand, subordinate animals that receive repeated social defeat stress have been shown to develop escalated and dysregulated immune responses such as glucocorticoid insensitivity in monocytes. In this review we synthesize the current evidence in humans, non-human primates, and rodents to show a role for the immune system in responses to social stress leading to psychiatric problems such as aggression or depression. We argue that while depression and aggression represent two fundamentally different behavioral and physiological responses to social stress, it is possible that some overlapped, as well as distinct, pattern of immune signaling may underlie both of them. We also argue the necessity of studying animal models of maladaptive aggression induced by social stress (i.e., social isolation) for understanding neuro-immune mechanism of aggression, which may be relevant to human aggression.
Collapse
Affiliation(s)
- Aki Takahashi
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba, Japan.,Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, United States
| | - Meghan E Flanigan
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Bruce S McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, United States
| | - Scott J Russo
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
6
|
Kellner M, Porseryd T, Porsch-Hällström I, Borg B, Roufidou C, Olsén KH. Developmental exposure to the SSRI citalopram causes long-lasting behavioural effects in the three-spined stickleback (Gasterosteus aculeatus). ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:12-22. [PMID: 29058178 PMCID: PMC5758650 DOI: 10.1007/s10646-017-1866-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/04/2017] [Indexed: 05/10/2023]
Abstract
Selective Serotonin re-uptake inhibitors (SSRIs) are a class of psychotropic drugs used to treat depression in both adolescents and pregnant or breast-feeding mothers as well as in the general population. Recent research on rodents points to long-lasting behavioural effects of pre- and perinatal exposure to SSRIs which last into adulthood. In fish however, studies on effects of developmental exposure to SSRIs appears to be non-existent. In order to study effects of developmental SSRI exposure in fish, three-spine sticklebacks were exposed to 1.5 µg/l of the SSRI citalopram in the ambient water for 30 days, starting two days post-fertilisation. After approximately 100 days of remediation in clean water the fish were put through an extensive battery of behavioural tests. Feeding behaviour was tested as the number of bites against a piece of food and found to be increased in the exposed fish. Aggression levels were measured as the number of bites against a mirror image during 10 min and was also found to be significantly increased in the exposed fish. Novel tank behaviour and locomotor activity was tested in an aquarium that had a horizontal line drawn half-way between the bottom and the surface. Neither the latency to the first transition to the upper half, nor the number of transitions or the total time spent in the upper half was affected by treatment. Locomotor activity was significantly reduced in the exposed fish. The light/dark preference was tested in an aquarium where the bottom and walls were black on one side and white on the other. The number of transitions to the white side was significantly reduced in the exposed fish but there was no effect on the latency to the first transition or the total time spent in the white half. The results in the current study indicate that developmental SSRI exposure causes long-lasting behavioural effects in fish and contribute to the existing knowledge about SSRIs as environmental pollutants.
Collapse
Affiliation(s)
- M Kellner
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Alfred Nobels allé 7, SE-141 89, Huddinge, Sweden.
| | - T Porseryd
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Alfred Nobels allé 7, SE-141 89, Huddinge, Sweden
| | - I Porsch-Hällström
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Alfred Nobels allé 7, SE-141 89, Huddinge, Sweden
| | - B Borg
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18 B, SE-106 91, Stockholm, Sweden
| | - C Roufidou
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18 B, SE-106 91, Stockholm, Sweden
| | - K H Olsén
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Alfred Nobels allé 7, SE-141 89, Huddinge, Sweden
| |
Collapse
|
7
|
El-Terras A, Soliman MM, Alkhedaide A, Attia HF, Alharthy A, Banaja AE. Carbonated soft drinks induce oxidative stress and alter the expression of certain genes in the brains of Wistar rats. Mol Med Rep 2016; 13:3147-54. [PMID: 26936207 DOI: 10.3892/mmr.2016.4903] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 01/07/2016] [Indexed: 11/06/2022] Open
Abstract
In Saudi Arabia, the consumption of carbonated soft drinks is common and often occurs with each meal. Carbonated soft drink consumption has been shown to exhibit effects on the liver, kidney and bone. However, the effects of these soft drinks on brain activity have not been widely examined, particularly at the gene level. Therefore, the current study was conducted with the aim of evaluating the effects of chronic carbonated soft drink consumption on oxidative stress, brain gene biomarkers associated with aggression and brain histology. In total, 40 male Wistar rats were divided into four groups: Group 1 served as a control and was provided access to food and water ad libitum; and groups 2‑4 were given free access to food and carbonated soft drinks only (Cola for group 2, Pepsi for group 3 and 7‑UP for group 4). Animals were maintained on these diets for 3 consecutive months. Upon completion of the experimental period, animals were sacrificed and serological and histopathological analyses were performed on blood and tissues samples. Reverse transcription‑polymerase chain reaction was used to analyze alterations in gene expression levels. Results revealed that carbonated soft drinks increased the serum levels of malondialdehyde (MDA). Carbonated soft drinks were also observed to downregulate the expression of antioxidants glutathione reductase (GR), catalase and glutathione peroxidase (GPx) in the brain when compared with that in the control rats. Rats administered carbonated soft drinks also exhibited decreased monoamine oxidase A (MAO‑A) and acetylcholine esterase (AChE) serum and mRNA levels in the brain. In addition, soft drink consumption upregulated mRNA expression of dopamine D2 receptor (DD2R), while 5-hydroxytryptamine transporter (5‑HTT) expression was decreased. However, following histological examination, all rats had a normal brain structure. The results of this study demonstrated that that carbonated soft drinks induced oxidative stress and altered the expression of certain genes that are associated with the brain activity and thus should be consumed with caution.
Collapse
Affiliation(s)
- Adel El-Terras
- Al‑Saedan Research Chair for Genetic Behavioral Disorders, Taif University, Taif, Mecca 21421, Kingdom of Saudi Arabia
| | - Mohamed Mohamed Soliman
- Al‑Saedan Research Chair for Genetic Behavioral Disorders, Taif University, Taif, Mecca 21421, Kingdom of Saudi Arabia
| | - Adel Alkhedaide
- Medical Laboratory Department, Faculty of Applied Medical Sciences, Taif University, Turabah, Mecca 21411, Kingdom of Saudi Arabia
| | - Hossam Fouad Attia
- Al‑Saedan Research Chair for Genetic Behavioral Disorders, Taif University, Taif, Mecca 21421, Kingdom of Saudi Arabia
| | - Abdullah Alharthy
- Al‑Saedan Research Chair for Genetic Behavioral Disorders, Taif University, Taif, Mecca 21421, Kingdom of Saudi Arabia
| | - Abdel Elah Banaja
- Department of Biology, Faculty of Science, Taif University, Taif, Mecca 11111, Kingdom of Saudi Arabia
| |
Collapse
|
8
|
Attwood AS, Munafò MR. Effects of acute alcohol consumption and processing of emotion in faces: Implications for understanding alcohol-related aggression. J Psychopharmacol 2014; 28:719-32. [PMID: 24920135 PMCID: PMC4962899 DOI: 10.1177/0269881114536476] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The negative consequences of chronic alcohol abuse are well known, but heavy episodic consumption ("binge drinking") is also associated with significant personal and societal harms. Aggressive tendencies are increased after alcohol but the mechanisms underlying these changes are not fully understood. While effects on behavioural control are likely to be important, other effects may be involved given the widespread action of alcohol. Altered processing of social signals is associated with changes in social behaviours, including aggression, but until recently there has been little research investigating the effects of acute alcohol consumption on these outcomes. Recent work investigating the effects of acute alcohol on emotional face processing has suggested reduced sensitivity to submissive signals (sad faces) and increased perceptual bias towards provocative signals (angry faces) after alcohol consumption, which may play a role in alcohol-related aggression. Here we discuss a putative mechanism that may explain how alcohol consumption influences emotional processing and subsequent aggressive responding, via disruption of orbitofrontal cortex (OFC)-amygdala connectivity. While the importance of emotional processing on social behaviours is well established, research into acute alcohol consumption and emotional processing is still in its infancy. Further research is needed and we outline a research agenda to address gaps in the literature.
Collapse
Affiliation(s)
- Angela S Attwood
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK UK Centre for Tobacco and Alcohol Studies, Bristol, UK School of Experimental Psychology, University of Bristol, Bristol, UK
| | - Marcus R Munafò
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK UK Centre for Tobacco and Alcohol Studies, Bristol, UK School of Experimental Psychology, University of Bristol, Bristol, UK
| |
Collapse
|
9
|
Vermeire S, Audenaert K, De Meester R, Vandermeulen E, Waelbers T, De Spiegeleer B, Eersels J, Dobbeleir A, Peremans K. Neuro-imaging the serotonin 2A receptor as a valid biomarker for canine behavioural disorders. Res Vet Sci 2011; 91:465-72. [DOI: 10.1016/j.rvsc.2010.09.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 09/07/2010] [Accepted: 09/28/2010] [Indexed: 12/28/2022]
|
10
|
Ethanol affects striatal interneurons directly and projection neurons through a reduction in cholinergic tone. Neuropsychopharmacology 2011; 36:1033-46. [PMID: 21289603 PMCID: PMC3077272 DOI: 10.1038/npp.2010.241] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The acute effects of ethanol on the neurons of the striatum, a basal ganglia nucleus crucially involved in motor control and action selection, were investigated using whole-cell recordings. An intoxicating concentration of ethanol (50 mM) produced inhibitory effects on striatal large aspiny cholinergic interneurons (LAIs) and low-threshold spike interneurons (LTSIs). These effects persisted in the presence of tetrodotoxin and were because of an increase in potassium currents, including those responsible for medium and slow afterhyperpolarizations. In contrast, fast-spiking interneurons (FSIs) were directly excited by ethanol, which depolarized these neurons through the suppression of potassium currents. Medium spiny neurons (MSNs) became hyperpolarized in the presence of ethanol, but this effect did not persist in the presence of tetrodotoxin and was mimicked and occluded by application of the M1 muscarinic receptor antagonist telenzepine. Ethanol effects on MSNs were also abolished by 100 μM barium. This showed that the hyperpolarizations observed in MSNs were because of decreased tonic activation of M1 muscarinic receptors, resulting in an increase in Kir2 conductances. Evoked GABAergic responses of MSNs were reversibly decreased by ethanol with no change in paired-pulse ratio. Furthermore, ethanol impaired the ability of thalamostriatal inputs to inhibit a subsequent corticostriatal glutamatergic response in MSNs. These results offer the first comprehensive description of the highly cell type-specific effects of ethanol on striatal neurons and provide a cellular basis for the interpretation of ethanol influence on a brain area crucially involved in the motor and decisional impairment caused by this drug.
Collapse
|
11
|
Brain serotonin receptors and transporters: initiation vs. termination of escalated aggression. Psychopharmacology (Berl) 2011; 213:183-212. [PMID: 20938650 PMCID: PMC3684010 DOI: 10.1007/s00213-010-2000-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 08/09/2010] [Indexed: 12/24/2022]
Abstract
RATIONALE Recent findings have shown a complexly regulated 5-HT system as it is linked to different kinds of aggression. OBJECTIVE We focus on (1) phasic and tonic changes of 5-HT and (2) state and trait of aggression, and emphasize the different receptor subtypes, their role in specific brain regions, feed-back regulation and modulation by other amines, acids and peptides. RESULTS New pharmacological tools differentiate the first three 5-HT receptor families and their modulation by GABA, glutamate and CRF. Activation of 5-HT(1A), 5-HT(1B) and 5-HT(2A/2C) receptors in mesocorticolimbic areas, reduce species-typical and other aggressive behaviors. In contrast, agonists at 5-HT(1A) and 5-HT(1B) receptors in the medial prefrontal cortex or septal area can increase aggressive behavior under specific conditions. Activation of serotonin transporters reduce mainly pathological aggression. Genetic analyses of aggressive individuals have identified several molecules that affect the 5-HT system directly (e.g., Tph2, 5-HT(1B), 5-HT transporter, Pet1, MAOA) or indirectly (e.g., Neuropeptide Y, αCaMKII, NOS, BDNF). Dysfunction in genes for MAOA escalates pathological aggression in rodents and humans, particularly in interaction with specific experiences. CONCLUSIONS Feedback to autoreceptors of the 5-HT(1) family and modulation via heteroreceptors are important in the expression of aggressive behavior. Tonic increase of the 5-HT(2) family expression may cause escalated aggression, whereas the phasic increase of 5-HT(2) receptors inhibits aggressive behaviors. Polymorphisms in the genes of 5-HT transporters or rate-limiting synthetic and metabolic enzymes of 5-HT modulate aggression, often requiring interaction with the rearing environment.
Collapse
|
12
|
Takahashi A, Quadros IM, de Almeida RMM, Miczek KA. Behavioral and pharmacogenetics of aggressive behavior. Curr Top Behav Neurosci 2011; 12:73-138. [PMID: 22297576 DOI: 10.1007/7854_2011_191] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Serotonin (5-HT) has long been considered as a key transmitter in the neurocircuitry controlling aggression. Impaired regulation of each subtype of 5-HT receptor, 5-HT transporter, synthetic and metabolic enzymes has been linked particularly to impulsive aggression. The current summary focuses mostly on recent findings from pharmacological and genetic studies. The pharmacological treatments and genetic manipulations or polymorphisms of aspecific target (e.g., 5-HT1A receptor) can often result in inconsistent results on aggression, due to "phasic" effects of pharmacological agents versus "trait"-like effects of genetic manipulations. Also, the local administration of a drug using the intracranial microinjection technique has shown that activation of specific subtypes of 5-HT receptors (5-HT1A and 5-HT1B) in mesocorticolimbic areas can reduce species-typical and other aggressive behaviors, but the same receptors in the medial prefrontal cortex or septal area promote escalated forms of aggression. Thus, there are receptor populations in specific brain regions that preferentially modulate specific types of aggression. Genetic studies have shown important gene-environment interactions; it is likely that the polymorphisms in the genes of 5-HT transporters or rate-limiting synthetic and metabolic enzymes of 5-HT (e.g., MAOA) determine the vulnerability to adverse environmental factors that escalate aggression. We also discuss the interaction between the 5-HT system and other systems. Modulation of 5-HT neurons in the dorsalraphe nucleus by GABA, glutamate and CRF profoundly regulate aggressive behaviors. Also, interactions of the 5-HT system with other neuropeptides(arginine vasopressin, oxytocin, neuropeptide Y, opioid) have emerged as important neurobiological determinants of aggression. Studies of aggression in genetically modified mice identified several molecules that affect the 5-HT system directly (e.g., Tph2, 5-HT1B, 5-HT transporter, Pet1, MAOA) or indirectly[e.g., BDNF, neuronal nitric oxide (nNOS), aCaMKII, Neuropeptide Y].The future agenda delineates specific receptor subpopulations for GABA, glutamate and neuropeptides as they modulate the canonical aminergic neurotransmitters in brainstem, limbic and cortical regions with the ultimate outcome of attenuating or escalating aggressive behavior.
Collapse
|
13
|
Takahashi A, Kwa C, DeBold JF, Miczek KA. GABA(A) receptors in the dorsal raphé nucleus of mice: escalation of aggression after alcohol consumption. Psychopharmacology (Berl) 2010; 211:467-77. [PMID: 20589493 PMCID: PMC2992972 DOI: 10.1007/s00213-010-1920-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 06/11/2010] [Indexed: 11/28/2022]
Abstract
RATIONALE The dorsal raphé nucleus (DRN), the origin for serotonin (5-HT) in forebrain areas, has been implicated in the neural control of escalated aggression. Gamma aminobutyric acid type-A (GABA(A)) and type-B (GABA(B)) receptors are expressed in the DRN and modulate 5-HT neuronal activity, and both play a role in the behavioral effect of alcohol. OBJECTIVE The purpose of this study is to examine the interaction between drugs acting on GABA receptors in the DRN and alcohol in their effects on aggressive behaviors. METHOD Male CFW mice, housed with a female, were trained to self-administer ethanol (1.0 g/kg) or water via an operant conditioning panel in their home cage. Immediately after they drank either ethanol or water, the animals were microinfused with a GABAergic drug into the DRN, and their aggressive behaviors were assessed 10 min later. Muscimol (0.006 nmol), a GABA(A) receptor agonist, escalated alcohol-heightened aggression but had no effect in the absence of ethanol. This effect of muscimol was prominent in the animals that showed alcohol-heightened aggression, but not the animals that reduced or did not change aggressive behavior after ethanol infusion compared to water. On the other hand, the GABA(B) agonist baclofen (0.06 nmol) increased aggressive behavior similarly in both water and ethanol conditions. Antagonists of the GABA(A) and GABA(B) receptors, bicuculline (0.006 nmol) and phaclofen (0.3 nmol) respectively, did not suppress heightened-aggressive behavior induced by ethanol self-administration. CONCLUSION GABA(A) receptors in the DRN are one of the neurobiological targets of alcohol-heightened aggression. Activation of the GABA(B) receptors in the DRN also produced escalated aggression, but that is independent of the effect of alcohol.
Collapse
Affiliation(s)
- Aki Takahashi
- Department of Psychology, Tufts University, Bacon Hall, 530 Boston Ave, Medford, MA 02155, USA,
| | - Carolyn Kwa
- Department of Psychology, Tufts University, Bacon Hall, 530 Boston Ave, Medford, MA 02155, USA,
| | - Joseph F. DeBold
- Department of Psychology, Tufts University, Bacon Hall, 530 Boston Ave, Medford, MA 02155, USA,
| | - Klaus A. Miczek
- Department of Psychology, Tufts University, Bacon Hall, 530 Boston Ave, Medford, MA 02155, USA,
| |
Collapse
|
14
|
|
15
|
Chiavegatto S, Quadros IMH, Ambar G, Miczek KA. Individual vulnerability to escalated aggressive behavior by a low dose of alcohol: decreased serotonin receptor mRNA in the prefrontal cortex of male mice. GENES BRAIN AND BEHAVIOR 2009; 9:110-9. [PMID: 20002201 DOI: 10.1111/j.1601-183x.2009.00544.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Low to moderate doses of alcohol consumption induce heightened aggressive behavior in some, but not all individuals. Individual vulnerability for this nonadaptive behavior may be determined by an interaction of genetic and environmental factors with the sensitivity of alcohol's effects on brain and behavior. We used a previously established protocol for alcohol oral self-administration and characterized alcohol-heightened aggressive (AHA) mice as compared with alcohol non-heightened (ANA) counterparts. A week later, we quantified mRNA steady state levels of several candidate genes in the serotonin [5-hydroxytryptamine (5-HT)] system in different brain areas. We report a regionally selective and significant reduction of all 5-HT receptor subtype transcripts, except for 5-HT(3), in the prefrontal cortex of AHA mice. Comparable gene expression profile was previously observed in aggressive mice induced by social isolation or by an anabolic androgenic steroid. Additional change in the 5-HT(1B) receptor transcripts was seen in the amygdala and hypothalamus of AHA mice. In both these areas, 5-HT(1B) mRNA was elevated when compared with ANA mice. In the hypothalamus, AHA mice also showed increased transcripts for 5-HT(2A) receptor. In the midbrain, 5-HT synthetic enzyme, 5-HT transporter and 5-HT receptors mRNA levels were similar between groups. Our results emphasize a role for postsynaptic over presynaptic 5-HT receptors in mice which showed escalated aggression after the consumption of a moderate dose of alcohol. This gene expression profile of 5-HT neurotransmission components in the brain of mice may suggest a vulnerability trait for alcohol-heightened aggression.
Collapse
Affiliation(s)
- S Chiavegatto
- Department of Pharmacology, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, Brazil.
| | | | | | | |
Collapse
|
16
|
Shock-induced aggression in mice is modified by lithium. Pharmacol Biochem Behav 2009; 94:380-6. [PMID: 19800363 DOI: 10.1016/j.pbb.2009.09.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 09/07/2009] [Accepted: 09/24/2009] [Indexed: 12/13/2022]
Abstract
Aggression is associated with numerous psychiatric disorders. Evidence suggests that lithium decreases aggression in humans and rats. The effects of lithium on aggression related behavior, and in particular shock-induced aggression, has not been as thoroughly explored in mice. Male mice were treated with lithium and tested in the shock-induced aggression and dominance tube tests. Mice treated with lithium were also assessed for thermal pain and shock sensitivity in the hot plate and jump-flinch tests. In the shock-induced aggression paradigm chronic lithium significantly decreased both the frequency and duration of attacks, without affecting social interaction or behavior in the dominance tube. Acute lithium significantly decreased the total duration of attacks and social interaction but did not affect behavior in the dominance tube test. Neither treatment regimen had an effect on temperature sensitivity in the hot plate test or on activity levels in the open field. However, chronic lithium modified the response of mice to shock in the jump-flinch test, but not at the shock level used in the aggression test. The results of this study indicate that lithium decreases shock-induced aggression in mice, but effects on baseline response to shock confound interpretation of this behavioral effect of lithium.
Collapse
|
17
|
The effect of increased serotonergic neurotransmission on aggression: a critical meta-analytical review of preclinical studies. Psychopharmacology (Berl) 2009; 205:349-68. [PMID: 19404614 DOI: 10.1007/s00213-009-1543-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 04/08/2009] [Indexed: 12/28/2022]
Abstract
RATIONALE The role of serotonin (5-HT) on aggression has been extensively studied; nonetheless, the role of this neurotransmitter in aggression is still inconclusive. OBJECTIVES The current meta-analytical review investigated the role of increased 5-HT neurotransmission in aggression. METHODS Preclinical studies using serotonin reuptake inhibitors, 5-hydroxytryptophan, L-tryptophan, or serotonin (5-HT) to increase 5-HT levels were included in this meta-analysis. An overall effect of serotonin on aggression was calculated, and the role of several moderator variables was analyzed. RESULTS A total of 218 effect sizes revealed that increased 5-HT had an overall significant inhibitory effect on aggression (r = 0.3). The results showed that increased 5-HT had the strongest inhibitory effect on aggression when (1) a specific strain or species (e.g., Long Evans) was used; (2) aggression was offensive or predatory and/or induced by administration of 5,7-dihydroxytryptamine or p-chlorophenylalanine; (3) zimelidine, sertraline, L-tryptophan, citalopram, or 5-HT were used to increase 5-HT; (4) treatment was acute; (5) long chronic treatment durations were used; and (6) time between last injection and behavior testing was within 8 h before or after peak plasma concentration of drug. In contrast, the results revealed that increased-5-HT-facilitated aggression could be predicted when (1) Wistar rats, (2) social isolation or stress to induce aggression, and/or (3) animals treated for less than 3 weeks were used. CONCLUSIONS Although 5-HT has an overall inhibitory effect on aggression, the animal's genetic background, drug, treatment time, aggression inducing paradigm, and aggression type are critical variables that influence and modify this effect.
Collapse
|
18
|
Social instigation and aggressive behavior in mice: role of 5-HT1A and 5-HT1B receptors in the prefrontal cortex. Psychopharmacology (Berl) 2008; 201:237-48. [PMID: 18688602 PMCID: PMC4371733 DOI: 10.1007/s00213-008-1269-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 07/18/2008] [Indexed: 12/23/2022]
Abstract
RATIONALE Social instigation is used in rodents to induce high levels of aggression, a pattern of behavior with certain parallels to that of violent individuals. This procedure consists of a brief exposure to a provocative stimulus male, before direct confrontation with an intruder. Studies using 5-HT1A and 5-HT1B receptor agonists show an effective reduction in aggressive behavior. An important site of action for these drugs is the ventral orbitofrontal cortex (VO PFC), an area of the brain which is particularly relevant in the inhibitory control of aggressive and impulsive behavior. OBJECTIVES The objectives of the study are to assess the anti-aggressive effects of 5-HT1A and 5-HT1B agonist receptors [8-hydroxy-2-(di-n-propylamino) tetralin hydrobromide (8-OH-DPAT) and CP-93,129] in the VO PFC of socially provoked male mice. To confirm the specificity of the receptor, 5-HT1A and 5-HT1B antagonist receptors (WAY-100,635 and SB-224,289) were microinjected into the same area, in order to reverse the agonist effects. RESULTS 8-OH-DPAT (0.56 and 1.0 microg) reduced the frequency of attack bites. The lowest dose of CP-93,129 (0.1 microg) also decreased the number of attack bites and lateral threats. 5-HT1A and 5-HT1B receptor agonists differed in their effects on non-aggressive activities, the former decreasing rearing and grooming, and the latter, increasing these acts. Specific participation of the 1A and 1B receptors was verified by reversal of anti-aggressive effects using selective antagonists WAY-100,635 (10.0 microg) and SB-224,289 (1.0 microg). CONCLUSIONS The decrease in aggressiveness observed with microinjections of 5-HT1A and 5-HT1B receptor agonists into the VO PFC of socially provoked mice, supports the hypothesis that activation of these receptors modulates high levels of aggression in a behaviorally specific manner.
Collapse
|