1
|
Franzago M, Orecchini E, Porreca A, Mondanelli G, Orabona C, Dalla Ragione L, Di Nicola M, Stuppia L, Vitacolonna E, Beccari T, Ceccarini MR. SLC6A4 DNA Methylation Levels and Serum Kynurenine/Tryptophan Ratio in Eating Disorders: A Possible Link with Psychopathological Traits? Nutrients 2023; 15:nu15020406. [PMID: 36678277 PMCID: PMC9866524 DOI: 10.3390/nu15020406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Background: The incidence of eating disorders (EDs), serious mental and physical conditions characterized by a disturbance in eating or eating-related behaviors, has increased steadily. The present study aims to develop insights into the pathophysiology of EDs, spanning over biochemical, epigenetic, psychopathological, and clinical data. In particular, we focused our attention on the relationship between (i) DNA methylation profiles at promoter-associated CpG sites of the SCL6A4 gene, (ii) serum kynurenine/tryptophan levels and ratio (Kyn/Trp), and (iii) psychopathological traits in a cohort of ED patients. Among these, 45 patients were affected by restricting anorexia nervosa (AN0), 21 by purging AN (AN1), 21 by bulimia (BN), 31 by binge eating disorders (BED), 23 by unspecified feeding or eating disorders (UFED), and finally 14 by other specified eating disorders (OSFED) were compared to 34 healthy controls (CTRs). Results: Kyn level was higher in BED, UFED, and OSFED compared to CTRs (p ≤ 0.001). On the other hand, AN0, AN1, and BN patients showed significatively lower Kyn levels compared to the other three ED groups but were closed to CTRs. Trp was significantly higher in AN0, AN1, and BN in comparison to other ED groups. Moreover, AN1 and BN showed more relevant Trp levels than CTRs (p <0.001). BED patients showed a lower Trp as compared with CTRs (p ≤ 0.001). In addition, Kyn/Trp ratio was lower in the AN1 subtype but higher in BED, UFED, and OSFED patients than in CTRs (p ≤ 0.001). SCL6A4 DNA methylation level at CpG5 was lower in AN0 compared to BED (p = 0.021), and the CpG6 methylation was also significantly lower in AN0 in comparison to CTRs (p = 0.025). The mean methylation levels of the six CpGs analyzed were lower only in the AN0 subgroup compared to CTRs (p = 0.008). Relevant psychological trait EDI-3 subscales were correlated with biochemical and epigenetic data. Conclusions: These findings underline the complexity of psychological and pathophysiological components of EDs.
Collapse
Affiliation(s)
- Marica Franzago
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. d’Annunzio” University, 66100 Chieti, Italy
- Center for Advanced Studies and Technology, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Elena Orecchini
- Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy
| | - Annamaria Porreca
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Giada Mondanelli
- Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy
| | - Ciriana Orabona
- Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy
| | - Laura Dalla Ragione
- Food Science and Human Nutrition Unit, University Campus Biomedico of Rome, 00128 Rome, Italy
| | - Marta Di Nicola
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Liborio Stuppia
- Center for Advanced Studies and Technology, “G. d’Annunzio” University, 66100 Chieti, Italy
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Ester Vitacolonna
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. d’Annunzio” University, 66100 Chieti, Italy
- Center for Advanced Studies and Technology, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Maria Rachele Ceccarini
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
- Correspondence: ; Tel.: +39-075-585-7905
| |
Collapse
|
2
|
Zhong X, Gu J, Zhang S, Chen X, Zhang J, Miao J, Ding Z, Xu J, Cheng H. Dynamic transcriptome analysis of the muscles in high-fat diet-induced obese zebrafish (Danio rerio) under 5-HT treatment. Gene 2022; 819:146265. [PMID: 35121026 DOI: 10.1016/j.gene.2022.146265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 11/04/2022]
Abstract
Peripheral 5-hydroxytryptamine (5-HT, also called serotonin) is reportedly a potential therapeutic target in obesity-related metabolic diseases due to its regulatory role in energy homeostasis in mammals. However, information on the detailed effect of peripheral 5-HT on the energy metabolism in fishes, especially the lipid metabolism, and the underlying mechanism remains elusive. In this study, a diet-induced obesity model was developed in the zebrafish (Danio rerio), a prototypical animal model for metabolic disorders. The zebrafish were fed a high-fat diet for 8 weeks and were simultaneously injected with PBS, 0.1 mM and 10 mM 5-HT, intraperitoneally. The body weight was significantly lower in the zebrafish injected with 0.1 mM 5-HT (P < 0.05), however, there was no change in body length (P > 0.05) at the end of the 8-week treatment. The muscle tissues from the zebrafish treated with PBS and 5-HT were collected for transcriptomic analysis and the RNA-seq revealed 1134, 3713, and 2535 genes were screened out compared to the muscular DEGs among three groups. The enrichment analysis revealed DEGs to be significantly associated with multiple metabolic pathways, including ribosome, oxidative phosphorylation, proteasome, PPAR signaling pathway, and ferroptosis. Additionally, the qRT-PCR validated 12 DEGs out of which 10 genes exhibited consistent trends. Taken together, this data provided useful information on the transcriptional characteristics of the muscle tissue in the obese zebrafish exposed to 5-HT, offering important insights into the regulatory effect of peripheral 5-HT in teleosts, as well as novel approaches for preventing and treating obesity-related metabolic dysfunction.
Collapse
Affiliation(s)
- Xiangqi Zhong
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Key Laboratory of Cultivation and High-value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361000, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jiaze Gu
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Siying Zhang
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiangning Chen
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Key Laboratory of Cultivation and High-value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361000, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Jingjing Zhang
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jintao Miao
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhujin Ding
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jianhe Xu
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hanliang Cheng
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
3
|
Kesić M, Baković P, Horvatiček M, Proust BLJ, Štefulj J, Čičin-Šain L. Constitutionally High Serotonin Tone Favors Obesity: Study on Rat Sublines With Altered Serotonin Homeostasis. Front Neurosci 2020; 14:219. [PMID: 32269507 PMCID: PMC7109468 DOI: 10.3389/fnins.2020.00219] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/27/2020] [Indexed: 01/08/2023] Open
Abstract
Central and peripheral pools of biogenic monoamine serotonin (5-hydroxytryptamine [5HT]) exert opposite effects on the body weight regulation: increase in brain 5HT activity is expected to decrease body weight, whereas increase in peripheral 5HT activity will increase body weight and adiposity. In a genetic model of rats with constitutionally high- or low-5HT homeostasis (hyperserotonergic/hyposerotonergic rats), we have studied how individual differences in endogenous 5HT tone modulate net energy balance of the organism. The high-5HT and low-5HT sublines of the model were developed by selective breeding toward extreme platelet activities of 5HT transporter, a key molecule determining 5HT bioavailability/activity. In animals from high-5HT and low-5HT sublines, we assessed physiological characteristics associated with body weight homeostasis and expression profile of a large scale of body weight–regulating genes in hypothalamus, a major brain region controlling energy balance. Results showed that under standard chow diet animals from the high-5HT subline, as compared to low-5HT animals, have lifelong increased body weight (by 12%), higher absolute daily food intake (by 9%), and different pattern of fat distribution (larger amount of white adipose tissue and lower amount of brown adipose tissue). A large number of body weight–regulating hypothalamic genes were analyzed for their mRNA expression: 24 genes by reverse transcription–quantitative polymerase chain reaction (n = 9–10 rats/subline) including neuropeptides and their receptors, growth factors, transcriptional factors, and receptors for peripheral signals, and a total of 84 genes of various classes by polymerase chain reaction array (pools of six rats/subline). Only few genes showed significant differences in mRNA expression levels between 5HT sublines (e.g. neuropeptide Y receptor, fibroblast growth factor 10), but high-5HT animals displayed a clear trend to upregulation of mRNAs for a number of orexigenic signaling peptides, their receptors, and other molecules with orexigenic activity. Receptors for peripheral signals (leptin, insulin) and molecules in their downstream signaling were not altered, indicating no changes in central insulin/leptin resistance. At the protein level, there were no differences in the content of hypothalamic leptin receptor between 5HT sublines, but significant sex and age effects were observed. Results show that higher constitutive/individual 5HT tone favors higher body weight and adiposity probably due to concurrent upregulation of several hypothalamic orexigenic pathways.
Collapse
Affiliation(s)
- Maja Kesić
- Laboratory of Neurochemistry and Molecular Neurobiology, Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Petra Baković
- Laboratory of Neurochemistry and Molecular Neurobiology, Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Marina Horvatiček
- Laboratory of Neurochemistry and Molecular Neurobiology, Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Bastien Lucien Jean Proust
- Laboratory of Neurochemistry and Molecular Neurobiology, Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Jasminka Štefulj
- Laboratory of Neurochemistry and Molecular Neurobiology, Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Lipa Čičin-Šain
- Laboratory of Neurochemistry and Molecular Neurobiology, Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
4
|
Lillycrop KA, Garratt ES, Titcombe P, Melton PE, Murray RJS, Barton SJ, Clarke-Harris R, Costello PM, Holbrook JD, Hopkins JC, Childs CE, Paras-Chavez C, Calder PC, Mori TA, Beilin L, Burdge GC, Gluckman PD, Inskip HM, Harvey NC, Hanson MA, Huang RC, Cooper C, Godfrey KM. Differential SLC6A4 methylation: a predictive epigenetic marker of adiposity from birth to adulthood. Int J Obes (Lond) 2019; 43:974-988. [PMID: 30622309 PMCID: PMC6522375 DOI: 10.1038/s41366-018-0254-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 08/21/2018] [Accepted: 08/26/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND The early life environment may influence susceptibility to obesity and metabolic disease in later life through epigenetic processes. SLC6A4 is an important mediator of serotonin bioavailability, and has a key role in energy balance. We tested the hypothesis that methylation of the SLC6A4 gene predicts adiposity across the life course. METHODS DNA methylation at 5 CpGs within the SLC6A4 gene identified from a previous methyl binding domain array was measured by pyrosequencing. We measured DNA methylation in umbilical cord (UC) from children in the Southampton Women's Survey cohort (n = 680), in peripheral blood from adolescents in the Western Australian Pregnancy Cohort Study (n = 812), and in adipose tissue from lean and obese adults from the UK BIOCLAIMS cohort (n = 81). Real-time PCR was performed to assess whether there were corresponding alterations in gene expression in the adipose tissue. RESULTS Lower UC methylation of CpG5 was associated with higher total fat mass at 4 years (p = 0.031), total fat mass at 6-7 years (p = 0.0001) and % fat mass at 6-7 years (p = 0.004). Lower UC methylation of CpG5 was also associated with higher triceps skinfold thickness at birth (p = 0.013), 6 months (p = 0.038), 12 months (p = 0.062), 2 years (p = 0.0003), 3 years (p = 0.00004) and 6-7 years (p = 0.013). Higher maternal pregnancy weight gain (p = 0.046) and lower parity (p = 0.029) were both associated with lower SLC6A4 CpG5 methylation. In adolescents, lower methylation of CpG5 in peripheral blood was associated with greater concurrent measures of adiposity including BMI (p ≤ 0.001), waist circumference (p = 0.011), subcutaneous fat (p ≤ 0.001) and subscapular, abdominal and suprailiac skinfold thicknesses (p = 0.002, p = 0.008, p = 0.004, respectively). In adipose tissue, methylation of both SLC6A4 CpG5 (p = 0.019) and expression of SLC6A4 (p = 0.008) was lower in obese compared with lean adults. CONCLUSIONS These data suggest that altered methylation of CpG loci within SLC6A4 may provide a robust marker of adiposity across the life course.
Collapse
Affiliation(s)
- Karen A Lillycrop
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK.
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK.
| | - Emma S Garratt
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Philip Titcombe
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Phillip E Melton
- Centre for Genetics of Health and Disease, University of Western Australia, Perth, Australia
- Faculty of Health Science, Curtin University, Perth, WA, Australia
| | - Robert J S Murray
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Sheila J Barton
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Rebecca Clarke-Harris
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Paula M Costello
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Joanna D Holbrook
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - James C Hopkins
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Caroline E Childs
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Carolina Paras-Chavez
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Philip C Calder
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Trevor A Mori
- School of Medicine, University of Western Australia, Perth, WA, Australia
| | - Lawrie Beilin
- School of Medicine, University of Western Australia, Perth, WA, Australia
| | - Graham C Burdge
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Peter D Gluckman
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Hazel M Inskip
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Nicholas C Harvey
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Mark A Hanson
- Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Rae-Chi Huang
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Cyrus Cooper
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Keith M Godfrey
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| |
Collapse
|
5
|
Matrov D, Kaart T, Lanfumey L, Maldonado R, Sharp T, Tordera RM, Kelly PA, Deakin B, Harro J. Cerebral oxidative metabolism mapping in four genetic mouse models of anxiety and mood disorders. Behav Brain Res 2018; 356:435-443. [PMID: 29885846 DOI: 10.1016/j.bbr.2018.05.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/29/2018] [Accepted: 05/29/2018] [Indexed: 02/06/2023]
Abstract
The psychopathology of depression is highly complex and the outcome of studies on animal models is divergent. In order to find brain regions that could be metabolically distinctively active across a variety of mouse depression models and to compare the interconnectivity of brain regions of wild-type and such genetically modified mice, histochemical mapping of oxidative metabolism was performed by the measurement of cytochrome oxidase activity. We included mice with the heterozygous knockout of the vesicular glutamate transporter (VGLUT1-/+), full knockout of the cannabinoid 1 receptor (CB1-/-), an anti-sense knockdown of the glucocorticoid receptor (GRi) and overexpression of the human 5-hydroxytryptamine transporter (h5-HTT). Altogether 76 mouse brains were studied to measure oxidative metabolism in one hundred brain regions, and the obtained dataset was submitted to a variety of machine learning algorithms and multidimensional scaling. Overall, the top brain regions having the largest contribution to classification into depression model were the lateroanterior hypothalamic nucleus, the anterior part of the basomedial amygdaloid nucleus, claustrum, the suprachiasmatic nucleus, the ventromedial hypothalamic nucleus, and the anterior hypothalamic area. In terms of the patterns of inter-regional relationship between wild-type and genetically modified mice there was little overall difference, while the most deviating brain regions were cortical amygdala and ventrolateral and ventral posteromedial thalamic nuclei. The GRi mice that most clearly differed from their controls exhibited deviation of connectivity for a number of brain regions, such as ventrolateral thalamic nucleus, the intermediate part of the lateral septal nucleus, the anteriodorsal part of the medial amygdaloid nucleus, the medial division of the central amygdaloid nucleus, ventral pallidum, nucleus of the vertical limb of the diagonal band, anteroventral parts of the thalamic nucleus and parts of the bed nucleus of the stria terminalis. Conclusively, the GRi mouse model was characterized by changes in the functional connectivity of the extended amygdala and stress response circuits.
Collapse
Affiliation(s)
- Denis Matrov
- Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Ravila 14A Chemicum, 50411 Tartu, Estonia; Department of Neuroscience, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tanel Kaart
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia
| | - Laurence Lanfumey
- Centre de Psychiatrie et Neuroscience, INSERM U 894, 2 ter rue d'Alésia, 75014 Paris, France
| | - Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Trevor Sharp
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, United Kingdom
| | - Rosa M Tordera
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain
| | - Paul A Kelly
- Centre for Cognitive and Neural Systems, University of Edinburgh, Scotland, United Kingdom
| | - Bill Deakin
- Neuroscience and Psychiatry Unit, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Jaanus Harro
- Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Ravila 14A Chemicum, 50411 Tartu, Estonia.
| |
Collapse
|
6
|
PINHEIRO IL, SANTANA BJRCDE, GALINDO LCM, MANHÃES DE CASTRO R, SOUSA SLD. Perinatal serotonergic activity: A decisive factor in the control of food intake. REV NUTR 2017. [DOI: 10.1590/1678-98652017000400012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT The serotoninergic system controls key events related to proper nervous system development. The neurotransmitter serotonin and the serotonin transporter are critical for this control. Availability of these components is minutely regulated during the development period, and the environment may affect their action on the nervous system. Environmental factors such as undernutrition and selective serotonin reuptake inhibitors may increase the availability of serotonin in the synaptic cleft and change its anorectic action. The physiological responses promoted by serotonin on intake control decrease when requested by acute stimuli or stress, demonstrating that animals or individuals develop adaptations in response to the environmental insults they experience during the development period. Diseases, such as anxiety and obesity, appear to be associated with the body’s response to stress or stimulus, and require greater serotonergic system action. These findings demonstrate the importance of the level of serotonin in the perinatal period to the development of molecular and morphological aspects of food intake control, and its decisive role in understanding the possible environmental factors that cause diseases in adulthood.
Collapse
|
7
|
Dopamine and serotonin modulation of motor and non-motor functions of the non-human primate striato-pallidal circuits in normal and pathological states. J Neural Transm (Vienna) 2017; 125:485-500. [PMID: 28176009 DOI: 10.1007/s00702-017-1693-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/30/2017] [Indexed: 10/20/2022]
Abstract
Thanks to the non-human primate (NHP), we have shown that the pharmacological disturbance of the anterior striatum or of external globus pallidus triggers a set of motivation and movement disorders, depending on the functional subterritory involved. One can, therefore, assume that the aberrant activity of the different subterritories of basal ganglia (BG) could lead to different behavioral disorders in neuropsychiatric disorders as Tourette's syndrome and Parkinson's disease. We are now addressing in the NHP the impact of modulating dopamine or serotonin within the BG on behavioral disorders. Indeed, we have shown a prominent role of serotonergic degeneration within the ventral striatum and caudate nucleus in neuropsychiatric symptoms in de novo PD patients. Of note, the serotonergic modulation of these BG regions in the NHP plays also a critical role in the induction or treatment of behavioral disorders. Given that both dopamine and serotonin are targeted to treat neuropsychiatric disorders, we are studying the effects of modulating dopamine and serotonin transporters in the different territories of the striatum, and more particularly within the ventral striatum on decision-making processing at both behavioral and neuronal levels. Finally, we evidence the need to extend the pharmacological approach to the receptors of these two neuromodulator systems as the use of substances targeting receptor subtypes preferentially localized in the associative and limbic territories of BG could be very effective to specifically improve the behavioral disorders in Parkinson's disease, Gilles de la Tourette syndrome but also in several psychiatric disorders such as depression, anxiety, anorexia, or impulse control disorders.
Collapse
|
8
|
Hainer C, Mosienko V, Koutsikou S, Crook JJ, Gloss B, Kasparov S, Lumb BM, Alenina N. Beyond Gene Inactivation: Evolution of Tools for Analysis of Serotonergic Circuitry. ACS Chem Neurosci 2015; 6:1116-29. [PMID: 26132472 DOI: 10.1021/acschemneuro.5b00045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In the brain, serotonin (5-hydroxytryptamine, 5-HT) controls a multitude of physiological and behavioral functions. Serotonergic neurons in the raphe nuclei give rise to a complex and extensive network of axonal projections throughout the whole brain. A major challenge in the analysis of these circuits is to understand how the serotonergic networks are linked to the numerous functions of this neurotransmitter. In the past, many studies employed approaches to inactivate different genes involved in serotonergic neuron formation, 5-HT transmission, or 5-HT metabolism. Although these approaches have contributed significantly to our understanding of serotonergic circuits, they usually result in life-long gene inactivation. As a consequence, compensatory changes in serotonergic and other neurotransmitter systems may occur and complicate the interpretation of the observed phenotypes. To dissect the complexity of the serotonergic system with greater precision, approaches to reversibly manipulate subpopulations of serotonergic neurons are required. In this review, we summarize findings on genetic animal models that enable control of 5-HT neuronal activity or mapping of the serotonergic system. This includes a comparative analysis of several mouse and rat lines expressing Cre or Flp recombinases under Tph2, Sert, or Pet1 promoters with a focus on specificity and recombination efficiency. We further introduce applications for Cre-mediated cell-type specific gene expression to optimize spatial and temporal precision for the manipulation of serotonergic neurons. Finally, we discuss other temporally regulated systems, such as optogenetics and designer receptors exclusively activated by designer drugs (DREADD) approaches to control 5-HT neuron activity.
Collapse
Affiliation(s)
- Cornelia Hainer
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin 13125, Germany
| | | | | | | | - Bernd Gloss
- National Institute of Environmental Health Science, Durham, North Carolina 27709, United States
| | | | | | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin 13125, Germany
- Institute
of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| |
Collapse
|
9
|
Martin CBP, Martin VS, Trigo JM, Chevarin C, Maldonado R, Fink LH, Cunningham KA, Hamon M, Lanfumey L, Mongeau R. 5-HT2C receptor desensitization moderates anxiety in 5-HTT deficient mice: from behavioral to cellular evidence. Int J Neuropsychopharmacol 2015; 18:pyu056. [PMID: 25522398 PMCID: PMC4360241 DOI: 10.1093/ijnp/pyu056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Desensitization and blockade of 5-HT2C receptors (5-HT2CR) have long been thought to be central in the therapeutic action of antidepressant drugs. However, besides behavioral pharmacology studies, there is little in vivo data documenting antidepressant-induced 5-HT2CR desensitization in specific brain areas. METHODS Mice lacking the 5-HT reuptake carrier (5-HTT(-/-)) were used to model the consequences of chronic 5-HT reuptake inhibition with antidepressant drugs. The effect of this mutation on 5-HT2CR was evaluated at the behavioral (social interaction, novelty-suppressed feeding, and 5-HT2CR-induced hypolocomotion tests), the neurochemical, and the cellular (RT-qPCR, mRNA editing, and c-fos-induced expression) levels. RESULTS Although 5-HTT(-/-) mice had an anxiogenic profile in the novelty-suppressed feeding test, they displayed less 5-HT2CR-mediated anxiety in response to the agonist m-chlorophenylpiperazine in the social interaction test. In addition, 5-HT2CR-mediated inhibition of a stress-induced increase in 5-HT turnover, measured in various brain areas, was markedly reduced in 5-HTT(-/-) mutants. These indices of tolerance to 5-HT2CR stimulation were associated neither with altered levels of 5-HT2CR protein and mRNA nor with changes in pre-mRNA editing in the frontal cortex. However, basal c-fos mRNA production in cells expressing 5-HT2CR was higher in 5-HTT(-/-) mutants, suggesting an altered basal activity of these cells following sustained 5-HT reuptake carrier inactivation. Furthermore, the increased c-fos mRNA expression in 5-HT2CR-like immune-positive cortical cells observed in wild-type mice treated acutely with the 5-HT2CR agonist RO-60,0175 was absent in 5-HTT(-/-) mutants. CONCLUSIONS Such blunted responsiveness of the 5-HT2CR system, observed at the cell signaling level, probably contributes to the moderation of the anxiety phenotype in 5-HTT(-/-) mice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Raymond Mongeau
- Paris Descartes, Univ Paris 05, Paris, France (Drs CBP Martin, VS Martin, Chevarin, Hamon, Lanfumey, and Mongeau); UPMC, Univ Paris 06, Paris, France (Drs CBP Martin, VS Martin, Chevarin, Hamon, Lanfumey, and Mongeau); INSERM UMR S894, Centre de Psychiatrie et Neurosciences, Paris, France (Drs CBP Martin, VS Martin, Chevarin, Hamon, Lanfumey, and Mongeau); Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain (Drs Trigo and Maldonado); Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX (Drs Fink and Cunningham).
| |
Collapse
|
10
|
Voigt JP, Fink H. Serotonin controlling feeding and satiety. Behav Brain Res 2015; 277:14-31. [PMID: 25217810 DOI: 10.1016/j.bbr.2014.08.065] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 08/14/2014] [Accepted: 08/19/2014] [Indexed: 02/06/2023]
|
11
|
Line SJ, Barkus C, Rawlings N, Jennings K, McHugh S, Sharp T, Bannerman DM. Reduced sensitivity to both positive and negative reinforcement in mice over-expressing the 5-hydroxytryptamine transporter. Eur J Neurosci 2014; 40:3735-45. [PMID: 25283165 PMCID: PMC4737229 DOI: 10.1111/ejn.12744] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 08/30/2014] [Accepted: 09/02/2014] [Indexed: 11/30/2022]
Abstract
The 5‐hydroxytryptamine (5‐HT) transporter (5‐HTT) is believed to play a key role in both normal and pathological psychological states. Much previous data suggest that the s allele of the polymorphic regulatory region of the 5‐HTT gene promoter is associated with reduced 5‐HTT expression and vulnerability to psychiatric disorders, including anxiety and depression. In comparison, the l allele, which increases 5‐HTT expression, is generally considered protective. However, recent data link this allele to both abnormal 5‐HT signalling and psychopathic traits. Here, we studied the processing of aversive and rewarding cues in transgenic mice that over‐express the 5‐HTT (5‐HTTOE mice). Compared with wild‐type mice, 5‐HTTOE mice froze less in response to both a tone that had previously been paired with footshock, and the conditioning context. In addition, on a decision‐making T‐maze task, 5‐HTTOE mice displayed reduced preference for a larger, delayed reward and increased preference for a smaller, immediate reward, suggesting increased impulsiveness compared with wild‐type mice. However, further inspection of the data revealed that 5‐HTTOE mice displayed a relative insensitivity to reward magnitude, irrespective of delay. In contrast, 5‐HTTOE mice appeared normal on tests of spatial working and reference memory, which required an absolute choice between options associated with either reward or no reward. Overall, the present findings suggest that 5‐HTT over‐expression results in a reduced sensitivity to both positive and negative reinforcers. Thus, these data show that increased 5‐HTT expression has some maladaptive effects, supporting recent suggestions that l allele homozygosity may be a potential risk factor for disabling psychiatric traits.
Collapse
Affiliation(s)
- Samantha J Line
- Department of Experimental Psychology, The University of Oxford, South Parks Road, Oxford, OX1 3UD, UK
| | | | | | | | | | | | | |
Collapse
|
12
|
Beaudoin-Gobert M, Sgambato-Faure V. Serotonergic pharmacology in animal models: from behavioral disorders to dyskinesia. Neuropharmacology 2014; 81:15-30. [PMID: 24486710 DOI: 10.1016/j.neuropharm.2014.01.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 01/19/2014] [Accepted: 01/20/2014] [Indexed: 02/04/2023]
Abstract
Serotonin (5-HT) dysfunction has been involved in both movement and behavioral disorders. Serotonin pharmacology improves dyskinetic movements as well as depressive, anxious, aggressive and anorexic symptoms. Animal models have been useful to investigate more precisely to what extent 5-HT is involved and whether drugs targeting the 5-HT system can counteract the symptoms exhibited. We review existing rodent and non-human primate (NHP) animal models in which selective 5-HT or dual 5-HT-norepinephrine (NE) transporter inhibitors, as well as specific 5-HT receptors agonists and antagonists, monoamine oxidase A inhibitors (IMAO-A) and MDMA (Ecstasy) have been used. We review overlaps between the various drug classes involved. We confront behavioral paradigms and treatment regimen. Some but not all animal models and associated pharmacological treatments have been extensively studied in the litterature. In particular, the impact of selective serotonin reuptake inhibitors (SSRI) has been extensively investigated using a variety of pharmacological or genetic rodent models of depression, anxiety, aggressiveness. But the validity of these rodent models is questioned. On the contrary, few studies did address the potential impact of targeting the 5-HT system on NHP models of behavioral disorders, despite the fact that those models may match more closely to human pathologies. Further investigations with carefull behavioral analysis will improve our understanding of neural bases underlying the pathophysiology of movement and behavioral disorders.
Collapse
Affiliation(s)
- Maude Beaudoin-Gobert
- Centre de Neuroscience Cognitive, Centre National de la Recherche Scientifique UMR 5229, Bron cedex F-69675, France; Université Lyon 1, France
| | - Véronique Sgambato-Faure
- Centre de Neuroscience Cognitive, Centre National de la Recherche Scientifique UMR 5229, Bron cedex F-69675, France; Université Lyon 1, France.
| |
Collapse
|
13
|
Donovan MH, Tecott LH. Serotonin and the regulation of mammalian energy balance. Front Neurosci 2013; 7:36. [PMID: 23543912 PMCID: PMC3608917 DOI: 10.3389/fnins.2013.00036] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 03/03/2013] [Indexed: 01/17/2023] Open
Abstract
Maintenance of energy balance requires regulation of the amount and timing of food intake. Decades of experiments utilizing pharmacological and later genetic manipulations have demonstrated the importance of serotonin signaling in this regulation. Much progress has been made in recent years in understanding how central nervous system (CNS) serotonin systems acting through a diverse array of serotonin receptors impact feeding behavior and metabolism. Particular attention has been paid to mechanisms through which serotonin impacts energy balance pathways within the hypothalamus. How upstream factors relevant to energy balance regulate the release of hypothalamic serotonin is less clear, but work addressing this issue is underway. Generally, investigation into the central serotonergic regulation of energy balance has had a predominantly “hypothalamocentric” focus, yet non-hypothalamic structures that have been implicated in energy balance regulation also receive serotonergic innervation and express multiple subtypes of serotonin receptors. Moreover, there is a growing appreciation of the diverse mechanisms through which peripheral serotonin impacts energy balance regulation. Clearly, the serotonergic regulation of energy balance is a field characterized by both rapid advances and by an extensive and diverse set of central and peripheral mechanisms yet to be delineated.
Collapse
Affiliation(s)
- Michael H Donovan
- Department of Psychiatry, University of California San Francisco CA, USA
| | | |
Collapse
|
14
|
Long term impact of prenatal exposure to SSRIs on growth and body weight in childhood: evidence from animal and human studies. Reprod Toxicol 2012; 34:101-9. [PMID: 22433946 DOI: 10.1016/j.reprotox.2012.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 03/01/2012] [Accepted: 03/03/2012] [Indexed: 11/21/2022]
Abstract
Prenatal exposure to SSRIs has the potential to alter fetal 5-HT signalling during critical periods of development: the long-term consequences of which have not been well studied. Of particular interest are the potential long-term effects of prenatal SSRI exposure on growth and body weight in later life, given the role of the serotonergic system in regulating food intake and body weight. Animal studies demonstrate that changes in 5-HT homeostasis during critical periods of fetal development can lead to sex-specific molecular and functional alterations in the serotonergic and HPA systems, leading to an increased risk of overweight in male, but not female, offspring in later life. This review highlights the evidence and the need for studies in humans to determine whether prenatal SSRI exposure is associated with alterations in child growth and body weight and the importance of delineating these effects from those of the underlying maternal illness.
Collapse
|
15
|
Marston OJ, Garfield AS, Heisler LK. Role of central serotonin and melanocortin systems in the control of energy balance. Eur J Pharmacol 2011; 660:70-9. [DOI: 10.1016/j.ejphar.2010.12.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 12/22/2010] [Indexed: 11/28/2022]
|
16
|
Targeting 5-HT receptors for the treatment of obesity. Curr Opin Pharmacol 2011; 11:52-8. [DOI: 10.1016/j.coph.2011.01.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/24/2011] [Accepted: 01/25/2011] [Indexed: 01/09/2023]
|
17
|
Line SJ, Barkus C, Coyle C, Jennings KA, Deacon RM, Lesch KP, Sharp T, Bannerman DM. Opposing alterations in anxiety and species-typical behaviours in serotonin transporter overexpressor and knockout mice. Eur Neuropsychopharmacol 2011; 21:108-16. [PMID: 20863670 PMCID: PMC3038260 DOI: 10.1016/j.euroneuro.2010.08.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 07/25/2010] [Accepted: 08/18/2010] [Indexed: 11/24/2022]
Abstract
Human gene association studies have produced conflicting findings regarding the relationship between the 5-HT transporter (5-HTT) and anxiety. In the present study genetically modified mice were utilised to examine the effects of changes in 5-HTT expression on anxiety. In addition, the influence of 5-HTT expression on two innate "species-typical" behaviours (burrowing and marble burying) and body weight was explored. Across a range of models, 5-HTT overexpressing mice displayed reduced anxiety-like behaviour whilst 5-HTT knockout mice showed increased anxiety-like behaviour, compared to wildtype controls. In tests of species-typical behaviour 5-HTT overexpressing mice showed some facilitation whilst 5-HTT knockout mice were impaired. Reciprocal effects were also seen on body weight, as 5-HTT overexpressors were lighter and 5-HTT knockouts were heavier than wildtype controls. These findings show that variation in 5-HTT gene expression produces robust changes in anxiety and species-typical behaviour. Furthermore, the data add further support to findings that variation of 5-HTT expression in the human population is linked to changes in anxiety-related personality traits.
Collapse
Affiliation(s)
- Samantha J Line
- Department of Experimental Psychology, South Parks Road, Oxford, OX1 3UD, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Fabre V, Massart R, Rachalski A, Jennings K, Brass A, Sharp T, Lesch KP, Lanfumey L, Hamon M. Differential gene expression in mutant mice overexpressing or deficient in the serotonin transporter: a focus on urocortin 1. Eur Neuropsychopharmacol 2011; 21:33-44. [PMID: 21075611 DOI: 10.1016/j.euroneuro.2010.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 10/08/2010] [Accepted: 10/13/2010] [Indexed: 11/28/2022]
Abstract
Transcriptome analyses were performed in the anterior raphe area of mutant mice deficient in the serotonin transporter (5-HTT KO) or overexpressing this protein (5-HTT TG), which exhibit opposite changes in anxiety-related behavior. Among genes with altered expression, the gene encoding the neuropeptide urocortin 1 was down-regulated in 5-HTT KO and up-regulated in 5-HTT TG mice. Expression of the gene encoding cocaine-and-amphetamine-related-peptide, which colocalizes with urocortin 1, was also increased in 5-HTT TG mutants. Real-time RT-PCR confirmed these data and immunoautoradiographic labeling showed that parallel changes in neuropeptide levels were confined to the non-preganglionic Edinger-Westphal nucleus. Thus, 5-HTT expression correlates with that of urocortin 1, suggesting that this peptide can be involved in the behavioral changes observed in 5-HTT mutant mice.
Collapse
Affiliation(s)
- Véronique Fabre
- Université Pierre et Marie Curie-Paris6, Faculté de Médecine Pierre et Marie Curie, Site Pitié-Salpêtrière, IFR 70 des Neurosciences, UMR S677, Paris, F-75013, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Behavioural satiety sequence (BSS): Separating wheat from chaff in the behavioural pharmacology of appetite. Pharmacol Biochem Behav 2010; 97:3-14. [DOI: 10.1016/j.pbb.2010.03.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 02/15/2010] [Accepted: 03/02/2010] [Indexed: 11/18/2022]
|
20
|
Lam DD, Garfield AS, Marston OJ, Shaw J, Heisler LK. Brain serotonin system in the coordination of food intake and body weight. Pharmacol Biochem Behav 2010; 97:84-91. [PMID: 20837046 DOI: 10.1016/j.pbb.2010.09.003] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 08/02/2010] [Accepted: 09/06/2010] [Indexed: 11/30/2022]
Abstract
An inverse relationship between brain serotonin and food intake and body weight has been known for more than 30 years. Specifically, augmentation of brain serotonin inhibits food intake, while depletion of brain serotonin promotes hyperphagia and weight gain. Through the decades, serotonin receptors have been identified and their function in the serotonergic regulation of food intake clarified. Recent refined genetic studies now indicate that a primary mechanism through which serotonin influences appetite and body weight is via serotonin 2C receptor (5-HT(2C)R) and serotonin 1B receptor (5-HT(1B)R) influencing the activity of endogenous melanocortin receptor agonists and antagonists at the melanocortin 4 receptor (MC4R). However, other mechanisms are also possible and the challenge of future research is to delineate them in the complete elucidation of the complex neurocircuitry underlying the serotonergic control of appetite and body weight.
Collapse
Affiliation(s)
- Daniel D Lam
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | | | | | | | |
Collapse
|
21
|
Atalayer D, Rowland NE. Meal patterns of mice under systematically varying approach and unit costs for food in a closed economy. Physiol Behav 2009; 98:85-93. [PMID: 19394352 DOI: 10.1016/j.physbeh.2009.04.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 03/24/2009] [Accepted: 04/20/2009] [Indexed: 01/08/2023]
Abstract
Several field and experimental studies have investigated the behavioral economics of food intake. In the laboratory, operant behavior has been used to emulate cost and to generate demand functions that express the relationship between the price of food and amount consumed. There have been few such studies of motivated food seeking and intake in mice, and none has reported demand functions. Using albino (CD1) male mice, the present study compares food intake and meal patterns across a series of ratio cost schedules. The first experiment examined unit price. A closed economy was used in which the mice were in the test chambers for 23 h/day and earned all of their food via either a nose poke or lever press response under fixed (FUP5, FUP10, FUP25, FUP50), variable (VUP10, VUP20, VUP50), and progressive (PUP1.25, PUP1.5, PUP1.75) unit prices. Mice were run for 4 days at each cost. There were no consistent differences between the first and last day indicating that behavioral adjustments to schedule changes occurred rapidly. When averaged across all price schedules, mice in the nose poke group consumed more food than their lever press counterparts but the overall shapes of the demand curves did not differ between the two operant responses, with intake decreasing as price increased. The number of meals taken per day differed between two meal-defining criteria that we applied, and there were some differences between the types of unit price schedule. In the second experiment, approach cost in the form of nose poke responses was required to activate a response device (lever) on which a fixed unit price for food was in force. These approach and unit costs were varied systematically. Meal number decreased, and meal size increased, with increasing approach cost even though nose pokes accounted for only a small fraction of the total response activity. Thus, meal patterns in mice are sensitive to approach cost while total amount consumed is more sensitive to unit price. These data are discussed in terms of the concept of foraging cost as either a unitary or a multidimensional variable.
Collapse
Affiliation(s)
- Deniz Atalayer
- Department of Psychology, University of Florida, Gainesville, FL 32611-2250, USA
| | | |
Collapse
|
22
|
Night and day: diurnal differences in the behavioural satiety sequence in male rats. Physiol Behav 2009; 97:125-30. [PMID: 19419667 DOI: 10.1016/j.physbeh.2009.01.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 01/20/2009] [Accepted: 01/27/2009] [Indexed: 11/20/2022]
Abstract
The behavioural satiety sequence (BSS) is an important method for assessing the selectivity of treatment (physiological, pharmacological and/or genetic) effects on food intake in rodents. The concept describes the natural progression from feeding to resting, with the transition between the two a useful biomarker of behavioural satiety. Although treatments can accelerate (anorexigenics) or delay (orexigenics) this transition without disrupting behavioural structure, the detection of such changes depends upon the timing of the transition under control conditions. Fasting and presatiation are known to affect this timing. However, recent observations in our laboratory have suggested that phase of testing (light or dark) might also be an important consideration. The present study therefore directly compared food intake and the BSS in thoroughly habituated male rats maintained either on a normal light cycle and tested during the light phase or on a reversed light cycle and tested during the dark phase. The results show that phase of testing had relatively little impact on food intake or diverse measures of ingestive and non-ingestive behaviour. Although modest differences were detected in locomotion, grooming and scratching (higher in dark phase), by far the largest difference concerned resting behaviour which had both a later onset and a much lower peak level during dark phase testing. Importantly, these behavioural differences delayed the transition between eating and resting. The potential contribution of diurnal differences in rate of eating is discussed as are the implications of these findings for future studies on the neurobiology of feeding behaviour.
Collapse
|