1
|
Huang S, Riley AL. Drug discrimination learning: Interoceptive stimulus control of behavior and its implications for regulated and dysregulated drug intake. Pharmacol Biochem Behav 2024; 244:173848. [PMID: 39137873 DOI: 10.1016/j.pbb.2024.173848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
Drug discrimination research has generated rich evidence for the capacity of interoceptive drug stimuli to control behavior by serving as discriminative cues. Owing to its neuropharmacological specificity, drug discrimination learning has been widely used to characterize the stimulus effects and neuropharmacological underpinning of drugs. Apart from such utility, discriminative drug stimuli may help regulate drug use by disambiguating conditioned associations and post-intake outcomes. First, this review summarizes the evidence supporting interoceptive regulation of drug intake from the literature of exteroceptive discriminative control of drug-related behavior, effects of drug priming, and self-titration of drug intake. Second, an overview of interoceptive control of reward-seeking and the animal model of discriminated goal-tracking is provided to illustrate interoceptive stimulus control of the initiation and patterning of drug intake. Third, we highlight the importance of interoceptive control of aversion-avoidance in the termination of drug-use episodes and describe the animal model of discriminated taste avoidance that supports such a position. In bridging these discriminative functions of drug stimuli, we propose that interoceptive drug stimuli help regulate intake by disambiguating whether intake will be rewarding, nonrewarding, or aversive. The reflection and discussion on current theoretical formulations of interoceptive control of drug intake may further scientific advances to improve animal models to study the mechanisms by which interoceptive stimuli regulate drug intake, as well as how alterations of interoceptive processes may contribute to the transition to dysregulated drug use.
Collapse
Affiliation(s)
- Shihui Huang
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Neuroscience and Behavior, American University, 4400 Massachusetts Ave, NW, Washington, DC 20016, USA.
| | - Anthony L Riley
- Psychopharmacology Laboratory, Department of Neuroscience, Center for Neuroscience and Behavior, American University, 4400 Massachusetts Ave, NW, Washington, DC 20016, USA.
| |
Collapse
|
2
|
Rehman A, Baloch NUA, Morrow JP, Pacher P, Haskó G. Targeting of G-protein coupled receptors in sepsis. Pharmacol Ther 2020; 211:107529. [PMID: 32197794 PMCID: PMC7388546 DOI: 10.1016/j.pharmthera.2020.107529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022]
Abstract
The Third International Consensus Definitions (Sepsis-3) define sepsis as life-threatening multi-organ dysfunction caused by a dysregulated host response to infection. Sepsis can progress to septic shock-an even more lethal condition associated with profound circulatory, cellular and metabolic abnormalities. Septic shock remains a leading cause of death in intensive care units and carries a mortality of almost 25%. Despite significant advances in our understanding of the pathobiology of sepsis, therapeutic interventions have not translated into tangible differences in the overall outcome for patients. Clinical trials of antagonists of various pro-inflammatory mediators in sepsis have been largely unsuccessful in the past. Given the diverse physiologic roles played by G-protein coupled receptors (GPCR), modulation of GPCR signaling for the treatment of sepsis has also been explored. Traditional pharmacologic approaches have mainly focused on ligands targeting the extracellular domains of GPCR. However, novel techniques aimed at modulating GPCR intracellularly through aptamers, pepducins and intrabodies have opened a fresh avenue of therapeutic possibilities. In this review, we summarize the diverse roles played by various subfamilies of GPCR in the pathogenesis of sepsis and identify potential targets for pharmacotherapy through these novel approaches.
Collapse
Affiliation(s)
- Abdul Rehman
- Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Noor Ul-Ain Baloch
- Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - John P Morrow
- Department of Medicine, Columbia University, New York City, NY, United States
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York City, NY, United States.
| |
Collapse
|
3
|
Rosecrans JA, Young R. Discriminative Stimulus Properties of S(-)-Nicotine: "A Drug for All Seasons". Curr Top Behav Neurosci 2019; 39:51-94. [PMID: 28391535 DOI: 10.1007/7854_2017_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
S(-)-Nicotine is the major pharmacologically active substance in tobacco and can function as an effective discriminative stimulus in both experimental animals and humans. In this model, subjects must detect and communicate the nicotine drug state versus the non-drug state. This review describes the usefulness of the procedure to study nicotine, presents a general overview of the model, and provides some relevant methodological details for the establishment of this drug as a stimulus. Once established, the (-)-nicotine stimulus can be characterized for dose response and time course effects. Moreover, tests can be conducted to determine the similarity of effects produced by test drugs to those produced by the training dose of nicotine. Such tests have shown that the stimulus effects of nicotine are stereoselective [S(-)-nicotine >R(+)-nicotine] and that other "natural" tobacco alkaloids and (-)-nicotine metabolites can produce (-)-nicotine-like effects, but these drugs are much less potent than (-)-nicotine. Stimulus antagonism tests with mecamylamine and DHβE (dihydro-β-erythroidine) indicate that the (-)-nicotine stimulus is mediated via α4β2 nicotinic acetylcholine receptors (nAChRs) in brain; dopamine systems also are likely involved. Individuals who try to cease their use of nicotine-based products are often unsuccessful. Bupropion (Zyban®) and varenicline (Chantix®) may be somewhat effective as anti-smoking medications because they probably produce stimulus effects that serve as suitable substitutes for (-)-nicotine in the individual who is motivated to quit smoking. Finally, it is proposed that future drug discrimination studies should apply the model to the issue of maintenance of abstinence from (-)-nicotine-based products.
Collapse
Affiliation(s)
- John A Rosecrans
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, P.O. Box 980613, Richmond, VA, 23298-0613, USA
| | - Richard Young
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 East Leigh Street, P.O. Box 980540, Richmond, VA, 23219-0540, USA.
| |
Collapse
|
4
|
Lawson K. A Brief Review of the Pharmacology of Amitriptyline and Clinical Outcomes in Treating Fibromyalgia. Biomedicines 2017; 5:biomedicines5020024. [PMID: 28536367 PMCID: PMC5489810 DOI: 10.3390/biomedicines5020024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 05/10/2017] [Accepted: 05/13/2017] [Indexed: 02/07/2023] Open
Abstract
Fibromyalgia is a complex chronic condition characterized by pain, physical fatigue, sleep disorder and cognitive impairment. Evidence-based guidelines recommend antidepressants as treatments of fibromyalgia where tricyclics are often considered to have the greatest efficacy, with amitriptyline often being a first-line treatment. Amitriptyline evokes a preferential reduction in pain and fatigue of fibromyalgia, and in the Fibromyalgia Impact Questionnaire (FIQ) score, which is a quality of life assessment. The multimodal profile of the mechanisms of action of amitriptyline include monoamine reuptake inhibition, receptor modulation and ion channel modulation. Several of the actions of amitriptyline on multiple nociceptive and sensory processes at central and peripheral locations have the potential to act cumulatively to suppress the characteristic symptoms of fibromyalgia. Greater understanding of the role of these mechanisms of action of amitriptyline could provide further clues to the pathophysiology of fibromyalgia and to a preferable pharmacological profile for future drug development.
Collapse
Affiliation(s)
- Kim Lawson
- Department of Biosciences and Chemistry, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK.
| |
Collapse
|
5
|
Lagière M, Navailles S, Bosc M, Guthrie M, Deurwaerdère PD. Serotonin2C Receptors and the Motor Control of Oral Activity. Curr Neuropharmacol 2013; 11:160-70. [PMID: 23997751 PMCID: PMC3637670 DOI: 10.2174/1570159x11311020003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 10/11/2012] [Accepted: 11/17/2012] [Indexed: 11/22/2022] Open
Abstract
Data from many experiments has shown that serotonin2C (5-HT2C) receptor plays a role in the control of orofacial activity in rodents. Purposeless oral movements can be elicited either by agonists or inverse agonists implying a tight control exerted by the receptor upon oral activity. The effects of agonists has been related to an action of these drugs in the subthalamic nucleus and the striatum, the two input structures for cortical efferents to the basal ganglia, a group of subcortical structures involved in the control of motor behaviors. The oral effects of agonists are dramatically enhanced in case of chronic blockade of central dopaminergic transmission induced by neuroleptics or massive destruction of dopamine neurons. The mechanisms involved in the hypersensitized oral responses to 5-HT2C agonists are not clear and deserve additional studies. Indeed, while the oral behavior triggered by 5-HT2C drugs would barely correspond to the dyskinesia observed in humans, the clinical data have consistently postulated that 5-HT2C receptors could be involved in these aberrant motor manifestations.
Collapse
Affiliation(s)
- Mélanie Lagière
- Université Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France ; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | | | | | | | | |
Collapse
|
6
|
Serotonin2C ligands exhibiting full negative and positive intrinsic activity elicit purposeless oral movements in rats: distinct effects of agonists and inverse agonists in a rat model of Parkinson's disease. Int J Neuropsychopharmacol 2013; 16:593-606. [PMID: 22717119 DOI: 10.1017/s1461145712000417] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
This study examined in naive or hemiparkinsonian rats the effect of various serotonin 2C (5-HT(2C)) receptor ligands differing in their intrinsic activity at 5-HT(2C) receptors on purposeless oral movements, a motor response integrated in the basal ganglia. Intraperitoneal administration of a non-selective [meta-chlorophenylpiperazine (m-CPP) 0.1-3 mg/kg], preferential [S-2-(6-chloro-5-fluoroindol-1-yl)-1-methylethylamine, Ro60-0175, 0.1-3 mg/kg] or selective [(7bR,10aR)-1,2,3,4,8,9,10,10a-octahydro-7bH-cyclopenta-[b][1,4]diazepino[6,7,1hi]indole, WAY163909, 0.3-10 mg/kg] 5-HT(2C) agonists enhanced oral bouts in naive rats. The 5-HT(2C) inverse agonists SB206553 [1-20 mg/kg; 5-methyl-1-(3-pyridylcarbamoyl)-1,2,3,5-tetrahydropyrrolo[2,3-f]indole] and S32006 [1-20 mg/kg; N-pyridin-3-yl-1,2-dihydro-3H-benzo[e]indole-3-carboxamide], but not the 5-HT(2C) antagonist SB243213 [1-10 mg/kg; 5-methyl-1-[[2-[(2-methyl-3-pyridyl)oxy]-5-pyridyl]carbamoyl]-6-trifluoromethylindoline], likewise dose-dependently enhanced oral movements. The effects induced by preferential 5-HT(2C) agonists and inverse agonists, but not by the cholinomimetic drug pilocarpine (5 mg/kg), were abolished by SB243213 underpinning its specificity. S32006-induced oral bouts was unaffected by the 5,7-dihydroxytryptamine lesions of 5-HT neurons. Nigrostriatal dopaminergic lesions potentiated oral effects induced by the agonists Ro60-0175 (3 mg/kg) and WAY163909 (1 mg/kg), but not by the inverse agonist SB206553 (10 mg/kg). The effect of Ro60-0175 in dopamine-lesioned rats was suppressed by SB243213. These data show that 5-HT(2C) agonists and full inverse agonists (but not neutral antagonists) perturb oral activity in rodents, paralleling studies of common antidepressant, anxiolytic and antipsychotic properties. The differential sensitivity of their actions to depletion of dopamine suggests recruitment of different contrasting neural mechanisms in the basal ganglia.
Collapse
|
7
|
Kadiri N, Lagière M, Le Moine C, Millan MJ, De Deurwaerdère P, Navailles S. Diverse effects of 5-HT2C receptor blocking agents on c-Fos expression in the rat basal ganglia. Eur J Pharmacol 2012; 689:8-16. [DOI: 10.1016/j.ejphar.2012.05.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 05/02/2012] [Accepted: 05/15/2012] [Indexed: 11/24/2022]
|
8
|
Agomelatine suppresses locomotor hyperactivity in olfactory bulbectomised rats: A comparison to melatonin and to the 5-HT2c antagonist, S32006. Eur J Pharmacol 2012; 674:27-32. [DOI: 10.1016/j.ejphar.2011.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/28/2011] [Accepted: 10/08/2011] [Indexed: 01/27/2023]
|
9
|
Graves SM, Napier TC. Mirtazapine alters cue-associated methamphetamine seeking in rats. Biol Psychiatry 2011; 69:275-81. [PMID: 21093851 PMCID: PMC3015001 DOI: 10.1016/j.biopsych.2010.09.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 09/20/2010] [Accepted: 09/26/2010] [Indexed: 12/22/2022]
Abstract
BACKGROUND Methamphetamine (METH) is a potent psychostimulant, repeated use of which can result in a substance abuse disorder. Withdrawn individuals are highly prone to relapse, which may be driven, at least in part, by a hyperresponsivity to METH-associated cues that can prompt METH-seeking. Clinically efficacious pharmacotherapies for METH abuse are critically needed. Mirtazapine (Remeron) is an atypical antidepressant that antagonizes activated norepinephrine(α)₂, histamine₁ serotonin (5-HT)₂(A/C), and 5-HT₃ receptors. This pharmacologic profile prompted our interest in its potential for preventing relapse to METH-taking. This study tested the hypothesis that mirtazapine would attenuate METH-seeking in rats trained to self-administer METH. METHODS Rats were trained to self-administer METH in a lever-pressing operant task. The effect of mirtazapine on METH-seeking was determined by evaluating lever pressing in the presence of cues previously associated with METH, but in the absence of METH reinforcement. Two paradigms were used: cue reactivity, wherein rats do not undergo extinction training, and a cue-induced reinstatement paradigm after extinction. RESULTS Mirtazapine (5.0 mg/kg) pretreatment reduced METH-seeking by ∼ 50% in the first 15 min of cue reactivity and cue-induced reinstatement testing. This mirtazapine dose did not significantly affect motor performance. CONCLUSIONS This study revealed the overlapping nature of cue reactivity and cue-induced reinstatement procedures and provided preclinical evidence that mirtazapine can attenuate METH-seeking behavior.
Collapse
Affiliation(s)
- Steven M Graves
- Department of Pharmacology, Rush University Medical Center, Chicago, Illinois 60612, USA.
| | | |
Collapse
|
10
|
Vacher B, Funes P, Chopin P, Cussac D, Heusler P, Tourette A, Marien M. Rigid analogues of the α2-adrenergic blocker atipamezole: small changes, big consequences. J Med Chem 2010; 53:6986-95. [PMID: 20809632 DOI: 10.1021/jm1006269] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the discovery of a new family of α(2) adrenergic receptor antagonists derived from atipamezole. Affinities of the compounds at human α(2) and α(1b) receptors as well as their functional activities at hα(2A) receptors were determined in competition binding and G-protein activation assays, respectively. Central α(2) antagonist activities were confirmed in mice after oral administration. Further studies on a selected example: (+)-4-(1a,6-dihydro-1H-cyclopropa[a]inden-6a-yl)-1H-imidazole, (+)-1 (F 14805), were undertaken to probe the potential of the series. On the one hand, (+)-1 increased the release of noradrenaline in mouse frontal cortex following acute systemic administration, the magnitude of this effect being much larger than that obtained with reference agents. On the other, (+)-1 produced minimal cardiovascular effects in intact, anesthetized rat, a surprising outcome that might be explained by its differential action at peripheral and central α(2) receptors. A strategy for improving the therapeutic window of α(2) antagonists is put forward.
Collapse
Affiliation(s)
- Bernard Vacher
- Medicinal Chemistry 1 Division, Pierre Fabre Research Center,17 Avenue Jean Moulin, 81106 Castres Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
11
|
Porter JH, Prus AJ. Drug discrimination: 30 years of progress. Psychopharmacology (Berl) 2009; 203:189-91. [PMID: 19225764 DOI: 10.1007/s00213-009-1478-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Accepted: 01/22/2009] [Indexed: 10/21/2022]
|