1
|
Guiraud J, van den Brink W. Sodium oxybate: A comprehensive review of efficacy and safety in the treatment of alcohol withdrawal syndrome and alcohol dependence. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 178:213-281. [PMID: 39523055 DOI: 10.1016/bs.irn.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Alcohol dependence (AD) significantly impacts public health, affecting 3.4% of people aged 18-64 and contributing to around 12% of overall mortality. Individuals with AD have a markedly reduced life expectancy, dying up to 28 years earlier than the general population. Current treatments for AD show limited efficacy, with many patients not responding to these interventions, highlighting the need for new therapeutic options with novel mechanisms of action. Sodium oxybate (SMO), the sodium salt of GHB, is one such candidate, pharmacologically similar to alcohol; it acts on several neurotransmitters including GABA, potentially mitigating withdrawal symptoms and craving for alcohol. SMO has been clinically used in Italy and Austria since the 1990s, approved for treating alcohol withdrawal syndrome (AWS) and for maintaining abstinence in AD patients. Several randomized clinical trials (RCTs) and meta-analyses showed evidence of SMO to be effective and safe in these indications. For AWS, SMO was more effective than placebo and as effective as benzodiazepines in reducing withdrawal symptoms. For maintaining abstinence, SMO significantly improved continuous abstinence duration and abstinence rate compared to placebo. Comprehensive clinical data indicate that SMO is well-tolerated, with main adverse effects being mild, such as dizziness and vertigo, and serious adverse events being rare. The effectiveness and safety of SMO, coupled with its approval in two EU countries affirm its potential as a treatment option for AD, particularly in severe cases. Further RCTs, especially with stratification by severity of dependence, are suggested to refine our understanding of its efficacy across different patient subgroups.
Collapse
Affiliation(s)
- Julien Guiraud
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Vergio, Clichy, France.
| | - Wim van den Brink
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Cuypers C, Devreese M, Van Uytfanghe K, Stove C, Schauvliege S. Pharmacokinetics of gamma-hydroxybutyric acid in 6-week-old swine (Sus scrofa domesticus) after intravenous and oral administration. J Vet Pharmacol Ther 2024; 47:95-106. [PMID: 37985193 DOI: 10.1111/jvp.13418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
Sedative as well as protective effects during hypoxia have been described for gamma-hydroxybutyric acid (GHB). Six swine (Sus scrofa domesticus) of 6 weeks old were administered NaGHB at a dose of 500 mg/kg intravenously (IV) and 500 and 750 mg/kg orally (PO) in a triple cross-over design. Repeated blood sampling was performed to allow pharmacokinetic analysis of GHB. Whole blood concentration at time point 0 after IV administration was 1727.21 ± 280.73 μg/mL, with a volume of distribution of 339.45 ± 51.41 mL/kg and clearance of 164.94 ± 47.05 mL/(kg h). The mean peak plasma concentrations after PO administration were 326.57 ± 36.70 and 488.01 ± 154.62 μg/mL for 500 mg/kg and 750 mg/kg, respectively. These were recorded at 1.42 ± 0.72 and 1.58 ± 0.58 h after PO dose for GHB 500 mg/kg and 750 mg/kg, respectively. The elimination half-life for IV and PO 500 mg/kg and PO 750 mg/kg dose was respectively 1.33 ± 0.30, 1.16 ± 0.31 and 1.11 ± 0.33 h. The bioavailability (F) for PO administration was 45%. No clinical adverse effects were observed after PO administration. Deep sleep was seen in one animal after IV administration, other animals showed head pressing and ataxia.
Collapse
Affiliation(s)
- Charlotte Cuypers
- Department of Large Animal Surgery, Anaesthesia and Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Mathias Devreese
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Katleen Van Uytfanghe
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Christophe Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Stijn Schauvliege
- Department of Large Animal Surgery, Anaesthesia and Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
3
|
Dufayet L, Bargel S, Bonnet A, Boukerma AK, Chevallier C, Evrard M, Guillotin S, Loeuillet E, Paradis C, Pouget AM, Reynoard J, Vaucel JA. Gamma-hydroxybutyrate (GHB), 1,4-butanediol (1,4BD), and gamma-butyrolactone (GBL) intoxication: A state-of-the-art review. Regul Toxicol Pharmacol 2023; 142:105435. [PMID: 37343712 DOI: 10.1016/j.yrtph.2023.105435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/13/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023]
Abstract
γ-hydroxybutyrate (GHB) is synthesized endogenously from γ-aminobutyric acid (GABA) or exogenously from 1,4-butanediol (butane-1,4-diol; 1,4-BD) or γ-butyrolactone (GBL). GBL, and 1,4-BD are rapidly converted to GHB. The gastric absorption time, volume of distribution, and half-life of GHB are between 5 and 45 min, 0.49 ± 0.9 L/kg, and between 20 and 60 min, respectively. GHB and its analogues have a dose-dependent effect on the activation of GHB receptor, GABA-B, and GABA localized to the central nervous system. After ingestion, most patients present transient neurological disorders (lethal dose: 60 mg/kg). Chronic GHB consumption is associated with disorders of use and a withdrawal syndrome when the consumption is discontinued. GHB, GBL, and 1,4-BD are classified as narcotics but only the use of GHB is controlled internationally. They are used for drug facilitated (sexual) assault, recreational purposes, slamsex, and chemsex. To confirm an exogenous intake or administration of GHB, GBL, or 1-4-BD, the pre-analytical conservation is crucial. The antemortem cutoff doses for detection are 5 and 5-15 mg/L, with detection windows of 6 and 10 h in the blood and urine, respectively Control of GHB is essential to limit the number of users, abuse, associated risks, and death related to their consumption.
Collapse
Affiliation(s)
- Laurene Dufayet
- Unité Médico-judiciaire, Hôtel-Dieu, APHP, 75001, Paris, France; Centre Antipoison de Paris - Fédération de Toxicologie (FeTox), Hôpital Fernand-Widal, APHP, 75010, Paris, France; INSERM, UMRS-1144, Faculté de Pharmacie, 75006, Paris, France; UFR de Médecine, Université de Paris, 75010, Paris, France.
| | - Sophie Bargel
- Section Toxicologie - Sécurité Routière, Laboratoire de Police Scientifique de Lille, SNPS, France
| | - Anastasia Bonnet
- Centre Antipoison de Toulouse, CHU de Toulouse, Toulouse, France
| | | | | | - Marion Evrard
- Centre Antipoison de Nancy, CHRU de Nancy, Nancy, France
| | - Sophie Guillotin
- Centre Antipoison de Toulouse, CHU de Toulouse, Toulouse, France
| | | | - Camille Paradis
- Centre Antipoison de Bordeaux CHU de Bordeaux, Bordeaux, France
| | | | - Julien Reynoard
- Pharmacologie Clinique CAP-TV, APHM, Hôpitaux Sud, Marseille, France
| | | |
Collapse
|
4
|
Jung S, Kim M, Kim S, Lee S. Interaction between γ-Hydroxybutyric Acid and Ethanol: A Review from Toxicokinetic and Toxicodynamic Perspectives. Metabolites 2023; 13:180. [PMID: 36837798 PMCID: PMC9965651 DOI: 10.3390/metabo13020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Gamma-hydroxybutyric acid (GHB) is a potent, short-acting central nervous system depressant as well as an inhibitory neurotransmitter or neuromodulator derived from gamma-aminobutyric acid (GABA), a major inhibitory neurotransmitter. The sodium salt of GHB, sodium oxybate, has been used for the treatment of narcolepsy and cataplexy, whereas GHB was termed as a date rape drug or a club drug in the 1990s. Ethanol is the most co-ingested drug in acute GHB intoxication. In this review, the latest findings on the combined effects of GHB and ethanol are summarized from toxicokinetic and toxicodynamic perspectives. For this purpose, we mainly discussed the pharmacology and toxicology of GHB, GHB intoxication under alcohol consumption, clinical cases of the combined intoxication of GHB and ethanol, and previous studies on the toxicokinetic and toxicodynamic interactions between GHB and ethanol in humans, animals, and an in vitro model. The combined administration of GHB and ethanol enhanced sedation and cardiovascular dysfunction, probably by the additive action of GABA receptors, while toxicokinetic changes of GHB were not significant. The findings of this review will contribute to clinical and forensic interpretation related to GHB intoxication. Furthermore, this review highlights the significance of studies aiming to further understand the enhanced inhibitory effects of GHB induced by the co-ingestion of ethanol.
Collapse
Affiliation(s)
| | | | | | - Sooyeun Lee
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Republic of Korea
| |
Collapse
|
5
|
Acide γ-Hydroxybutyrique (GHB), γ-butyrolactone (GBL) et 1,4-butanediol (1,4-BD) : revue de la littérature des aspects pharmacologiques, cliniques, analytiques et médico-légaux. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2022. [DOI: 10.1016/j.toxac.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Fateh ST, Salehi-Najafabadi A. Repurposing of substances with lactone moiety for the treatment of γ-Hydroxybutyric acid and γ-Butyrolactone intoxication through modulating paraoxonase and PPARγ. Front Pharmacol 2022; 13:909460. [PMID: 35935832 PMCID: PMC9354891 DOI: 10.3389/fphar.2022.909460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
GHB and GBL are highly accessible recreational drugs of abuse with a high risk of adverse effects and mortality while no specific antidotes exist. These components can also be found in the clinical setting, beverages, and cosmetic products, leading to unwanted exposures and further intoxications. As the structural analogue of GABA, GHB is suggested as the primary mediator of GHB/GBL effects. We further suggest that GBL might be as critical as GHB in this process, acting through PPARγ as its receptor. Moreover, PPARγ and PON (i.e., the GHB-GBL converting enzyme) can be targeted for GHB/GBL addiction and intoxication, leading to modulation of the GHB-GBL balance and blockage of their effects. We suggest that repurposing substances with lactone moiety such as bacterial lactones, sesquiterpene lactones, and statins might lead to potential therapeutic options as they occupy the active sites of PPARγ and PON and interfere with the GHB-GBL balance. In conclusion, this hypothesis improves the GHB/GBL mechanism of action, suggests potential therapeutic options, and highlights the necessity of classifying GBL as a controlled substance.
Collapse
Affiliation(s)
- Sepand Tehrani Fateh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Salehi-Najafabadi
- Department of Microbiology, School of Biology, University College of Science, University of Tehran, Tehran, Iran
- *Correspondence: Amir Salehi-Najafabadi,
| |
Collapse
|
7
|
Schöneich S, Ochoa GS, Monzón CM, Synovec RE. Minimum variance optimized Fisher ratio analysis of comprehensive two-dimensional gas chromatography / mass spectrometry data: Study of the pacu fish metabolome. J Chromatogr A 2022; 1667:462868. [DOI: 10.1016/j.chroma.2022.462868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 11/25/2022]
|
8
|
Felmlee MA, Morse BL, Morris ME. γ-Hydroxybutyric Acid: Pharmacokinetics, Pharmacodynamics, and Toxicology. AAPS J 2021; 23:22. [PMID: 33417072 PMCID: PMC8098080 DOI: 10.1208/s12248-020-00543-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/23/2020] [Indexed: 12/23/2022] Open
Abstract
Gamma-hydroxybutyrate (GHB) is a short-chain fatty acid present endogenously in the brain and used therapeutically for the treatment of narcolepsy, as sodium oxybate, and for alcohol abuse/withdrawal. GHB is better known however as a drug of abuse and is commonly referred to as the "date-rape drug"; current use in popular culture includes recreational "chemsex," due to its properties of euphoria, loss of inhibition, amnesia, and drowsiness. Due to the steep concentration-effect curve for GHB, overdoses occur commonly and symptoms include sedation, respiratory depression, coma, and death. GHB binds to both GHB and GABAB receptors in the brain, with pharmacological/toxicological effects mainly due to GABAB agonist effects. The pharmacokinetics of GHB are complex and include nonlinear absorption, metabolism, tissue uptake, and renal elimination processes. GHB is a substrate for monocarboxylate transporters, including both sodium-dependent transporters (SMCT1, 2; SLC5A8; SLC5A12) and proton-dependent transporters (MCT1-4; SLC16A1, 7, 8, and 3), which represent significant determinants of absorption, renal reabsorption, and brain and tissue uptake. This review will provide current information of the pharmacology, therapeutic effects, and pharmacokinetics/pharmacodynamics of GHB, as well as therapeutic strategies for the treatment of overdoses. Graphical abstract.
Collapse
Affiliation(s)
- Melanie A Felmlee
- Department of Pharmaceutics and Medicinal Chemistry Thomas J Long School of Pharmacy, University of the Pacific, Stockton, California, USA
| | - Bridget L Morse
- Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, 46285, USA
| | - Marilyn E Morris
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, 304 Pharmacy Building, Buffalo, New York, 14214, USA.
| |
Collapse
|
9
|
Sysel P, Kulhánková H, Weinertová K. Polyimides prepared without the use of toxic amidic solvents. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02177-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Marinelli E, Beck R, Malvasi A, Faro AFL, Zaami S. Gamma-hydroxybutyrate abuse: pharmacology and poisoning and withdrawal management. Arh Hig Rada Toksikol 2020; 71:19-26. [PMID: 32597141 PMCID: PMC7837237 DOI: 10.2478/aiht-2020-71-3314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/01/2019] [Accepted: 03/01/2020] [Indexed: 12/19/2022] Open
Abstract
Gamma-hydroxybutyrate (GHB) is a central nervous system depressant primarily used as a recreational drug of abuse, but also for the treatment of narcolepsy with cataplexy in adult patients and as an adjuvant for control of alcohol withdrawal syndrome. The main aim of this review is to summarise updated knowledge about GHB pharmacokinetics and pharmacodynamics, acute poisoning, and clinical features of GHB withdrawal syndrome, its diagnosis and medical treatment. The most common clinical signs and symptoms of acute poisoning include sleepiness to deep coma, bradycardia, hypotension, and respiratory failure. Therapy is essentially supportive and based on continuous monitoring of vital signs. GHB withdrawal syndrome shares patterns with other withdrawal syndromes such as alcohol withdrawal and is sometimes difficult to distinguish, especially if toxicological tests are GHB-negative or cannot be performed. There are no official detoxification protocols for GHB withdrawal syndrome, but its therapy is based on benzodiazepine. When benzodiazepine alone is not effective, it can be combined with barbiturates or antipsychotics. Information about abuse and distribution of GHB and its precursors/analogues among the general population is still limited. Their prompt identification is therefore crucial in conventional and non-conventional biological matrices, the latter in particular, to clarify all the issues around this complex molecule.
Collapse
Affiliation(s)
- Enrico Marinelli
- Department of Anatomical, Histological, Forensic, and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Renata Beck
- Department of Anaesthesia, Santa Maria Hospital, GVM Care & Research, Bari, Italy
| | - Antonio Malvasi
- Department of Obstetrics and Gynaecology, Santa Maria Hospital, Bari, Italy
| | - Alfredo Fabrizio Lo Faro
- Section of Legal Medicine, Department of Excellence SBSP, University “Politecnica delle Marche” of Ancona, Ancona, Italy
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic, and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
11
|
Trombley TA, Capstick RA, Lindsley CW. DARK Classics in Chemical Neuroscience: Gamma-Hydroxybutyrate (GHB). ACS Chem Neurosci 2019; 11:3850-3859. [PMID: 31287661 DOI: 10.1021/acschemneuro.9b00336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gamma-hydroxybutyrate (GHB) is a naturally occurring short-chain fatty acid that rose to prominence as a popular club drug in the 1990s. Originally developed as an anesthetic in the early 1960s, it was later sold as an over-the-counter dietary supplement before becoming a rising substance of abuse in the following decades as one of the "date rape" drugs. Despite its abuse potential, there has been a recent surge in therapeutic interest in the drug due to its clinical viability in the treatment of narcolepsy and alcohol abuse/withdrawal. Its interactions with the GABAergic framework of higher mammals has made it the prototypical example for the study of the chief inhibitory mechanism in the human central nervous system. Though relatively obscure in terms of popular culture, it has a storied history with widespread usage in therapeutic, recreational ("Chemsex"), and some disturbingly nefarious contexts. This Review aims to capture its legacy through review of the history, synthesis, pharmacology, drug metabolism, and societal impact of this DARK classic in chemical neuroscience.
Collapse
Affiliation(s)
- Trevor A. Trombley
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Rory A. Capstick
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Craig W. Lindsley
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
12
|
Holtyn AF, Weerts EM. Evaluation of mifepristone effects on alcohol-seeking and self-administration in baboons. Exp Clin Psychopharmacol 2019; 27:227-235. [PMID: 30570274 PMCID: PMC6727199 DOI: 10.1037/pha0000246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mifepristone, a type II glucocorticoid receptor antagonist, is under investigation as a potential pharmacotherapy for alcohol use disorder. This study examined effects of chronic administration of mifepristone on alcohol-seeking and self-administration in large nonhuman primates. Adult baboons (n = 5) self-administered alcohol 7 days/week under a chained schedule of reinforcement (CSR). The CSR comprised 3 components in which distinct cues were paired with different schedule requirements, with alcohol available for self-administration only in the final component, to model different phases of alcohol anticipation, seeking, and consumption. Under baseline conditions, baboons self-administered an average of 1g/kg/day of alcohol in the self-administration period. Mifepristone (10, 20, and 30 mg/kg) or vehicle was administered orally 30 min before each CSR session for 7 consecutive days. In a separate group of baboons (n = 5) acute doses of mifepristone (10, 20, and 30 mg/kg) were administered, and blood samples were collected over 72 hr to examine mifepristone pharmacokinetics. Some samples also were collected from the baboons that self-administered alcohol under the CSR after the chronic mifepristone condition. Mifepristone did not alter alcohol-seeking or self-administration under the CSR when compared with the vehicle condition. Mifepristone pharmacokinetics were nonlinear, and appear to be capacity limited. In sum, mifepristone did not reduce alcohol-maintained behaviors when administered to baboons drinking 1g/kg daily. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
Affiliation(s)
- August F. Holtyn
- Johns Hopkins University School of Medicine, 5200 Eastern Ave, Baltimore, MD 21224, USA
| | - Elise M. Weerts
- Johns Hopkins University School of Medicine, 5510 Nathan Shock Dr, Baltimore, MD 21224, USA
| |
Collapse
|
13
|
Follman KE, Morris ME. Treatment of γ-Hydroxybutyric Acid and γ-Butyrolactone Overdose with Two Potent Monocarboxylate Transporter 1 Inhibitors, AZD3965 and AR-C155858. J Pharmacol Exp Ther 2019; 370:84-91. [PMID: 31010842 DOI: 10.1124/jpet.119.256503] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/17/2019] [Indexed: 11/22/2022] Open
Abstract
The illicit use of γ-hydroxybutyric acid (GHB), and its prodrug, γ-butyrolactone (GBL), results in severe adverse effects including sedation, coma, respiratory depression, and death. Current treatment of GHB/GBL overdose is limited to supportive care. Recent reports indicate that GHB-related deaths are on the rise; a specific treatment may reduce lethality associated with GHB/GBL. Pretreatment with inhibitors of monocarboxylate transporter 1 (MCT1), a transporter that mediates many of the processes involved in the absorption, distribution (including brain uptake), and elimination of GHB/GBL, has been shown to prevent GHB-induced respiratory depression by increasing the renal clearance of GHB. To identify whether MCT1 inhibition is an effective treatment of GHB overdose, the impact of two MCT1 inhibitors, (S)-5-(4-hydroxy-4-methylisoxazolidine-2-carbonyl)-1-isopropyl-3-methyl-6-((3-methyl-5-(trifluoromethyl)-1H-pyrazol-4-yl)methyl)thieno[2,3-day]pyrimidine-2,4(1H,3H)-dione (AZD3965) and 6-[(3,5-dimethyl-1H-pyrazol-4-yl)methyl]-5-[[(4S)-4-hydroxy-2-isoxazolidinyl]carbonyl]-3-methyl-1-(2-methylpropyl)thieno[2,3-day]pyrimidine2,4(1H,3H)-dione (AR-C155858), on the toxicokinetics and toxicodynamics of GHB/GBL was assessed when the administration of the inhibitor was delayed 60 and 120 minutes (post-treatment) after administration of GHB/GBL. AR-C155858 and AZD3965 reduced the toxicodynamic effects of GHB when GHB was administered intravenously, orally, or orally as the prodrug GBL. The impact of these inhibitors on GHB toxicokinetics was dependent on the route of GHB administration and the delay between GHB/GBL administration and administration of the MCT1 inhibitor. The reduction in GHB plasma exposure did not explain the observed effect of MCT1 inhibition on GHB-induced respiratory depression. The efficacy of MCT1 inhibition on GHB toxicodynamics is likely driven by the pronounced reduction in GHB brain concentrations. Overall, this study indicates that inhibition of MCT1 is an effective treatment of GHB/GBL overdose.
Collapse
Affiliation(s)
- Kristin E Follman
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York
| | - Marilyn E Morris
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York
| |
Collapse
|
14
|
Madah-Amiri D, Myrmel L, Brattebø G. Intoxication with GHB/GBL: characteristics and trends from ambulance-attended overdoses. Scand J Trauma Resusc Emerg Med 2017; 25:98. [PMID: 28938889 PMCID: PMC5610436 DOI: 10.1186/s13049-017-0441-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/13/2017] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Overdoses from so-called "club drugs" (GHB/GBL) have become a more frequent cause of overdoses attended by ambulance services. Given its availability, affordability, and lack of awareness of risks, there is a common misconception among users that the drug is relatively safe. METHODS This study reviewed ambulance records in Bergen, Norway between 2009 and 2015 for cases of acute poisonings, particularly from suspected GHB/GBL intoxication. RESULTS In total, 1112 cases of GHB and GBL poisoning were identified. GHB was suspected for 995 (89%) of the patients. Men made up the majority of the cases (n = 752, 67.6%) with a median age of 27 years old. Temporal trends for GHB/GBL overdoses displayed a late-night, weekend pattern. The most frequent initial symptoms reported were unconsciousness, or reduced consciousness. Most of the patients required further treatment and transport. During the period from 2009 to 2015, there was a nearly 50% decrease in GHB/GBL overdoses from 2013 to 2014. DISCUSSION The characteristics of GHB/GBL overdose victims shed light on this patient group. The decrease in incidence over the years may be partly due to a legal ban on GBL in Norway, declared in 2010. It may also be due to an increase in the use of MDMA/ecstasy. CONCLUSION The review of ambulance records on the prehospital treatment of overdoses can be beneficial in monitoring, preparing, and prevention efforts aimed to benefit this vulnerable group.
Collapse
Affiliation(s)
- Desiree Madah-Amiri
- The Norwegian Centre for Addiction Research, The University of Oslo, Oslo, Norway
| | - Lars Myrmel
- Bergen Emergency Medical Services, Department of Anesthesia and Intensive Care, Haukeland University Hospital, Bergen, Norway
| | - Guttorm Brattebø
- Bergen Emergency Medical Services, Department of Anesthesia and Intensive Care, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
15
|
Soso SB, Koziel JA. Characterizing the scent and chemical composition of Panthera leo marking fluid using solid-phase microextraction and multidimensional gas chromatography-mass spectrometry-olfactometry. Sci Rep 2017; 7:5137. [PMID: 28698649 PMCID: PMC5506057 DOI: 10.1038/s41598-017-04973-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 05/22/2017] [Indexed: 12/21/2022] Open
Abstract
Lions (Panthera leo) use chemical signaling to indicate health, reproductive status, and territorial ownership. To date, no study has reported on both scent and composition of marking fluid (MF) from P. leo. The objectives of this study were to: 1) develop a novel method for simultaneous chemical and scent identification of lion MF in its totality (urine + MF), 2) identify characteristic odorants responsible for the overall scent of MF as perceived by human panelists, and 3) compare the existing library of known odorous compounds characterized as eliciting behaviors in animals in order to understand potential functionality in lion behavior. Solid-phase microextraction and simultaneous chemical-sensory analyses with multidimensional gas-chromatography-mass spectrometry-olfactometry improved separating, isolating, and identifying mixed (MF, urine) compounds versus solvent-based extraction and chemical analyses. 2,5-Dimethylpyrazine, 4-methylphenol, and 3-methylcyclopentanone were isolated and identified as the compounds responsible for the characteristic odor of lion MF. Twenty-eight volatile organic compounds (VOCs) emitted from MF were identified, adding a new list of compounds previously unidentified in lion urine. New chemicals were identified in nine compound groups: ketones, aldehydes, amines, alcohols, aromatics, sulfur-containing compounds, phenyls, phenols, and volatile fatty acids. Twenty-three VOCs are known semiochemicals that are implicated in attraction, reproduction, and alarm-signaling behaviors in other species.
Collapse
Affiliation(s)
- Simone B Soso
- Iowa State University, Environmental Science Graduate Program, Ames, IA, 50011, United States of America.,Iowa State University, Department of Agricultural and Biosystems Engineering, Ames, IA, 50011, United States of America
| | - Jacek A Koziel
- Iowa State University, Environmental Science Graduate Program, Ames, IA, 50011, United States of America. .,Iowa State University, Department of Agricultural and Biosystems Engineering, Ames, IA, 50011, United States of America.
| |
Collapse
|
16
|
Kamal RM, van Noorden MS, Wannet W, Beurmanjer H, Dijkstra BAG, Schellekens A. Pharmacological Treatment in γ-Hydroxybutyrate (GHB) and γ-Butyrolactone (GBL) Dependence: Detoxification and Relapse Prevention. CNS Drugs 2017; 31:51-64. [PMID: 28004314 DOI: 10.1007/s40263-016-0402-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The misuse of γ-hydroxybutyrate (GHB) for recreational purposes has resulted in an increase in GHB-related problems such as intoxications, dependence and withdrawal in several countries in Europe, Australia and the US over the last decade. However, prevalence rates of misuse of GHB and its precursor, γ-butyrolactone (GBL), are still relatively low. In this qualitative review paper, after a short introduction on the pharmacology of GHB/GBL, followed by a summary of the epidemiology of GHB abuse, an overview of GHB dependence syndrome and GHB/GBL withdrawal syndrome is provided. Finally, the existing literature on management of GHB detoxification, both planned and unplanned, as well as the available management of GHB withdrawal syndrome, is summarized. Although no systematic studies on detoxification and management of withdrawal have been performed to date, general recommendations are given on pharmacological treatment and preferred treatment setting.
Collapse
Affiliation(s)
- Rama M Kamal
- Nijmegen Institute for Scientist-Practitioners in Addiction (NISPA), Toernooiveld 5, 6525 ED, Nijmegen, The Netherlands.
- Novadic-Kentron Addiction Care Network, Hogedwarsstraat 3, PO Box 243, 5260 AE, Vught, The Netherlands.
| | | | - Wim Wannet
- Scientific Research Committee IrisZorg, Kronenburgsingel 545, 6831 GM, Arnhem, The Netherlands
| | - Harmen Beurmanjer
- Nijmegen Institute for Scientist-Practitioners in Addiction (NISPA), Toernooiveld 5, 6525 ED, Nijmegen, The Netherlands
- Novadic-Kentron Addiction Care Network, Hogedwarsstraat 3, PO Box 243, 5260 AE, Vught, The Netherlands
| | - Boukje A G Dijkstra
- Nijmegen Institute for Scientist-Practitioners in Addiction (NISPA), Toernooiveld 5, 6525 ED, Nijmegen, The Netherlands
| | - Arnt Schellekens
- Nijmegen Institute for Scientist-Practitioners in Addiction (NISPA), Toernooiveld 5, 6525 ED, Nijmegen, The Netherlands
| |
Collapse
|
17
|
Bosch OG, Seifritz E. The behavioural profile of gamma-hydroxybutyrate, gamma-butyrolactone and 1,4-butanediol in humans. Brain Res Bull 2016; 126:47-60. [PMID: 26855327 DOI: 10.1016/j.brainresbull.2016.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 01/28/2016] [Accepted: 02/02/2016] [Indexed: 01/24/2023]
Abstract
Gamma-hydroxybutyrate (GHB) is a putative neurotransmitter, a drug of abuse, and a medical treatment for narcolepsy and other neuropsychiatric disorders. Its precursors gamma-butyrolactone (GBL) and 1,4-butanediol (1,4-BD) are endogenously converted to GHB and thereby exert their psychobehavioural effects. In humans, GHB has a wide spectrum of properties ranging from stimulation and euphoria in lower doses, to sedation, deep sleep, and coma after ingestion of high doses. However, behavioural studies in healthy volunteers remain scarce and are usually limited to psychomotor performance testing. Most available data arise from either qualitative studies with illicit users or clinical trials examining therapeutic properties of GHB (then usually termed sodium oxybate). Here, we present an overview of the behavioural effects of GHB, GBL, and 1,4-BD in these three populations. GHB and its precursors strongly influence behaviours related to core human autonomic functions such as control of food intake, sexual behaviour, and sleep-wake regulation. These effects are instrumentalised by illicit users and clinically utilised in neuropsychiatric disorders such as narcolepsy, fibromyalgia, and binge-eating syndrome. Considering the industry withdrawal from psychopharmacology development, repurposing of drugs according to their behavioural and clinical profiles has gained increasing relevance. As such, GHB seems to be an attractive candidate as an experimental therapeutic in depression.
Collapse
Affiliation(s)
- Oliver G Bosch
- Department of Psychiatry, Psychotherapy and Psychosomatics, Zurich University Hospital for Psychiatry, Lenggstrasse 31, 8032 Zurich, Switzerland.
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Zurich University Hospital for Psychiatry, Lenggstrasse 31, 8032 Zurich, Switzerland
| |
Collapse
|
18
|
Comprehensive Application of Time-of-flight Secondary Ion Mass Spectrometry (TOF-SIMS) for Ionic Imaging and Bio-energetic Analysis of Club Drug-induced Cognitive Deficiency. Sci Rep 2015; 5:18420. [PMID: 26674573 PMCID: PMC4682059 DOI: 10.1038/srep18420] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 11/17/2015] [Indexed: 12/15/2022] Open
Abstract
Excessive exposure to club drug (GHB) would cause cognitive dysfunction in which impaired hippocampal Ca2+-mediated neuroplasticity may correlate with this deficiency. However, the potential changes of in vivo Ca2+ together with molecular machinery engaged in GHB-induced cognitive dysfunction has never been reported. This study aims to determine these changes in bio-energetic level through ionic imaging, spectrometric, biochemical, morphological, as well as behavioral approaches. Adolescent rats subjected to GHB were processed for TOF-SIMS, immunohistochemistry, biochemical assay, together with Morris water maze to detect the ionic, molecular, neurochemical, and behavioral changes of GHB-induced cognitive dysfunction, respectively. Extent of oxidative stress and bio-energetics were assessed by levels of lipid peroxidation, Na+/K+ ATPase, cytochrome oxidase, and [14C]-2-deoxyglucose activity. Results indicated that in GHB intoxicated rats, decreased Ca2+ imaging and reduced NMDAR1, nNOS, and p-CREB reactivities were detected in hippocampus. Depressed Ca2+-mediated signaling corresponded well with intense oxidative stress, diminished Na+/K+ ATPase, reduced COX, and decreased 2-DG activity, which all contributes to the development of cognitive deficiency. As impaired Ca2+-mediated signaling and oxidative stress significantly contribute to GHB-induced cognitive dysfunction, delivering agent(s) that improves hippocampal bio-energetics may thus serve as a promising strategy to counteract the club drug-induced cognitive dysfunction emerging in our society nowadays.
Collapse
|
19
|
van Amsterdam J, Brunt T, Pennings E, van den Brink W. Risk assessment of GBL as a substitute for the illicit drug GHB in the Netherlands. A comparison of the risks of GBL versus GHB. Regul Toxicol Pharmacol 2014; 70:507-13. [PMID: 25204614 DOI: 10.1016/j.yrtph.2014.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 12/15/2022]
Abstract
In the Netherlands, γ-hydroxybutyric acid (GHB) was recently banned, but γ-butyrolactone (GBL) was not. As such, GBL remained a legal alternative to GHB. This review compares the risks of GBL and GHB. Pure GBL is per unit of volume about threefold stronger and therefore threefold more potent than currently used GHB-preparations in the Netherlands. Like GHB, GBL use hardly leads to organ toxicity, although, as with GHB, frequent GBL use may lead to repeated comas that may result in residual impairments in cognitive function and memory. Little is known about the prevalence of GBL use in Europe, but the recent increase in improper trading in GBL confirms that users of GHB gradually switch to the use of GBL. This shift may result in an increase in the number GBL dependent users, because the dependence potential of GBL is as great as that of GHB. Severe withdrawal symptoms and a high relapse rate are seen following cessation of heavy GBL use. GBL-dependent users seem to be severe (dependent, problematic) GHB users who started using GBL, the legal GHB substitute. Subjects who are solely dependent to GBL are rarely reported. About 5-10% of the treatment seeking GHB dependent subjects also use GBL and this subpopulation forms a vulnerable group with multiple problems. Fatal accidents with GBL are rarely reported, but non-fatal GHB (or GBL) overdoses frequently occur for which supportive treatment is needed. It is recommended to monitor the recreational use of GBL, the rate of GBL dependence treatment, and the improper trading of GBL.
Collapse
Affiliation(s)
- Jan van Amsterdam
- Amsterdam Institute for Addiction Research, Academic Medical Center University of Amsterdam, P.O. Box 22660, 1100 DD Amsterdam, The Netherlands; Amsterdam Institute for Addiction Research, Academic Medical Center, P.O. Box 75867, 1070 AW Amsterdam, The Netherlands.
| | - Tibor Brunt
- Trimbos Institute (Netherlands Institute of Mental Health and Addiction), Da Costakade 45, 3521 VS Utrecht, The Netherlands
| | - Ed Pennings
- The Maastricht Forensic Institute, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Wim van den Brink
- Amsterdam Institute for Addiction Research, Academic Medical Center University of Amsterdam, P.O. Box 22660, 1100 DD Amsterdam, The Netherlands; Amsterdam Institute for Addiction Research, Academic Medical Center, P.O. Box 75867, 1070 AW Amsterdam, The Netherlands
| |
Collapse
|
20
|
van Nieuwenhuijzen P, McGregor I, Chebib M, Hunt G. Regional Fos-expression induced by γ-hydroxybutyrate (GHB): Comparison with γ-butyrolactone (GBL) and effects of co-administration of the GABAB antagonist SCH 50911 and putative GHB antagonist NCS-382. Neuroscience 2014; 277:700-15. [DOI: 10.1016/j.neuroscience.2014.07.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 06/25/2014] [Accepted: 07/01/2014] [Indexed: 10/25/2022]
|
21
|
Physical dependence on gamma-hydroxybutrate (GHB) prodrug 1,4-butanediol (1,4-BD): time course and severity of withdrawal in baboons. Drug Alcohol Depend 2013; 132:427-33. [PMID: 23538206 PMCID: PMC3718862 DOI: 10.1016/j.drugalcdep.2013.02.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 11/20/2022]
Abstract
BACKGROUND 1,4-Butanediol (1,4-BD) is a gamma-hydroxybutyrate (GHB) pro-drug, with multiple commercial uses, and a drug of abuse. Although there are case reports of a withdrawal syndrome following 1,4-BD use, no studies have evaluated the physical dependence potential of 1,4-BD and characterized the time course of withdrawal. METHODS Vehicle and then 1,4-BD were administered continuously 24 h/day via intragastric catheters in male baboons (Papio anubis, n=3). Dosing was initiated at 100 mg/kg and increased by 100mg/kg/day to 400mg/kg. After a stabilization period, doses of 500 and then 600 mg/kg/day were each maintained for 3-4 weeks. Plasma levels of 1,4-BD and GHB were determined for each dose condition. Physical dependence was assessed via administration of a GABA-B antagonist (precipitated withdrawal test) during administration of the 600 mg/kg dose and via abrupt termination of chronic 1,4-BD administration (spontaneous withdrawal test). Outcome measures included the number of food pellets earned, performance on a fine-motor task, observed behaviors, and plasma levels of GHB and 1,4-BD. RESULTS Following maintenance of 1,4-BD 600 mg/kg for 3 weeks, the number of food pellets earned was significantly decreased. At the end of chronic 1,4-BD dosing, the levels of GHB in plasma ranged from 1290 to 2300 μmol/L and levels of 1,4-BD in plasma ranged from 13.1 to 37.9 μmol/L. Signs of physical dependence were observed following precipitated and spontaneous withdrawal tests. Seizures were not observed. CONCLUSIONS These data indicate chronic 1,4-BD produced physical dependence in baboons and the withdrawal syndrome can be characterized as mild to intermediate.
Collapse
|
22
|
Goodwin AK, Mueller M, Shell CD, Ricaurte GA, Ator NA. Behavioral effects and pharmacokinetics of (±)-3,4-methylenedioxymethamphetamine (MDMA, Ecstasy) after intragastric administration to baboons. J Pharmacol Exp Ther 2013; 345:342-53. [PMID: 23516331 DOI: 10.1124/jpet.113.203729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
(±)-3,4-Methylenedioxymethamphetamine (MDMA, "Ecstasy") is a popular drug of abuse. We aimed to characterize the behavioral effects of intragastric MDMA in a species closely related to humans and to relate behavioral effects to plasma MDMA and metabolite concentrations. Single doses of MDMA (0.32-7.8 mg/kg) were administered via an intragastric catheter to adult male baboons (N = 4). Effects of MDMA on food-maintained responding were assessed over a 20-hour period, whereas untrained behaviors and fine-motor coordination were characterized every 30 minutes until 3 hours postadministration. Levels of MDMA and metabolites in plasma were measured in the same animals (n = 3) after dosing on a separate occasion. MDMA decreased food-maintained responding over the 20-hour period, and systematic behavioral observations revealed increased frequency of bruxism as the dose of MDMA was increased. Drug blood level determinations showed no MDMA after the lower doses of MDMA tested (0.32-1.0 mg/kg) and modest levels after higher MDMA doses (3.2-7.8 mg/kg). High levels of 3,4-dihydroxymethamphetamine (HHMA) were detected after all doses of MDMA, suggesting extensive first-pass metabolism of MDMA in the baboon. The present results demonstrate that MDMA administered via an intragastric catheter produced behavioral effects that have also been reported in humans. Similar to humans, blood levels of MDMA after oral administration may not be predictive of the behavioral effects of MDMA. Metabolites, particularly HHMA, may play a significant role in the behavioral effects of MDMA.
Collapse
Affiliation(s)
- Amy K Goodwin
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224-6823, USA
| | | | | | | | | |
Collapse
|
23
|
Morse BL, Morris ME. Effects of monocarboxylate transporter inhibition on the oral toxicokinetics/toxicodynamics of γ-hydroxybutyrate and γ-butyrolactone. J Pharmacol Exp Ther 2013; 345:102-10. [PMID: 23392755 DOI: 10.1124/jpet.112.202796] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Respiratory depression and death secondary to respiratory arrest have occurred after oral overdoses of γ-hydroxybutyrate (GHB) and its precursor γ-butyrolactone (GBL). GHB is a substrate for monocarboxylate transporters (MCTs), and increasing GHB renal clearance or decreasing GHB absorption via MCT inhibition represents a potential treatment strategy for GHB/GBL overdose. In these studies, GHB and GBL were administered in doses of 1.92, 5.77, and 14.4 mmol/kg orally with and without MCT inhibition to determine effects of this treatment strategy on the oral toxicokinetics and toxicodynamics of GHB and GBL. The competitive MCT inhibitor l-lactate was administered by intravenous infusion starting 1 hour after GHB and GBL administration. Oral administration of l-lactate and the MCT inhibitor luteolin was also evaluated. Respiratory depression was measured using plethysmography. Intravenous l-lactate, but not oral treatments, significantly increased GHB renal and/or oral clearances. At the low dose of GHB and GBL, i.v. l-lactate increased GHB renal clearance. Due to the increased contribution of renal clearance to total clearance at the moderate dose, increased renal clearance translated to an increase in oral clearance. At the highest GHB dose, oral clearance was increased without a significant change in renal clearance. The lack of effect of i.v. l-lactate on renal clearance after a high oral GHB dose suggests possible effects of i.v. l-lactate on MCT-mediated absorption. The resulting increases in oral clearance improved respiratory depression. Intravenous l-lactate also reduced mortality with the high GBL dose. These data indicate i.v. l-lactate represents a potential treatment strategy in oral overdose of GHB and GBL.
Collapse
Affiliation(s)
- Bridget L Morse
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, USA
| | | |
Collapse
|
24
|
Self-administration of gamma-hydroxybutyric acid (GHB) precursors gamma-butyrolactone (GBL) and 1,4-butanediol (1,4-BD) in baboons. Psychopharmacology (Berl) 2013; 225:637-46. [PMID: 22945514 PMCID: PMC3547147 DOI: 10.1007/s00213-012-2851-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 08/14/2012] [Indexed: 10/27/2022]
Abstract
RATIONALE Gamma-butyrolactone (GBL) and 1,4-butanediol (1,4-BD) are gamma-hydroxybutyrate (GHB) pro-drugs and drugs of abuse. OBJECTIVE Given the reports of abuse, and the ease at which GBL and 1,4-BD may be obtained, we investigated the reinforcing effects of GBL (n = 5) and 1,4-BD (n = 4) in baboons using IV self-administration procedures. METHODS Sessions ran 24 h/day. Each injection was contingent upon completion of a fixed number (120 or 160) of lever responses. A 3-h timeout period followed each injection, limiting the total number of injections to eight per day. Self-administration was first established with cocaine (0.32 mg/kg/injection). GBL (10-130.0 mg/kg/injection), 1,4-BD (10-100 mg/kg/injection), or vehicle was substituted for cocaine for at least 15 days. Food pellets were available ad libitum 24 h/day and were contingent upon completion of ten lever responses. RESULTS GBL (32-100 mg/kg/injection) maintained significantly greater numbers of injections when compared to vehicle in four of five baboons, and the mean rates of injection were high (more than six per day) in three baboons and moderate in the fourth baboon (four to six per day). 1,4-BD (78-130 mg/kg/injection) maintained significantly greater numbers of injections when compared to vehicle in only two out of four baboons, and mean rates were moderate to high in both baboons. Self-injection of these doses of GBL and 1,4-BD generally inhibited food-maintained responding. CONCLUSIONS GBL and 1,4-BD have abuse liability. Given that GBL and 1,4-BD are self-administered, are easier to obtain than GHB, and are detected in seized samples, additional legal control measures of these GHB pro-drugs may be needed.
Collapse
|
25
|
Grenier V, Huppé G, Lamarche M, Mireault P. Enzymatic assay for GHB determination in forensic matrices. J Anal Toxicol 2012; 36:523-8. [PMID: 22722059 DOI: 10.1093/jat/bks053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Current procedures for the determination of gamma-hydroxybutyric acid (GHB) require time-consuming extraction and derivatization steps before chromatographic detection, making a high-throughput alternative desirable. Bühlmann Laboratories offers an enzymatic assay for the quantitative determination of GHB in urine and serum. We report the adaptation of this photometric assay to the Thermo Scientific MGC-240 analyzer and its use in the determination of GHB in forensic matrices including urine, whole blood and vitreous humour. Most matrices require only a brief centrifugation before analysis, while blood requires an additional protein precipitation step. A variety of cases (sexual assaults, impaired drivers and death investigations) have been analyzed alongside the gas chromatography-mass spectrometry (GC-MS) reference method. Correlation with the GC-MS has been found to be acceptable, with no false negatives and few false positives, although postmortem samples appear more prone to testing false positive than do antemortem samples. Simple sample preparation and high throughput allow for a significant reduction in analysis time relative to chromatographic methods. This assay is used as a screening method in our laboratory, with a quantitative GC-MS method serving for the confirmation of positive results. To our knowledge, this represents the first evaluation of an enzymatic assay for GHB in a forensic context.
Collapse
|
26
|
Kim KJ, Pearl PL, Jensen K, Snead OC, Malaspina P, Jakobs C, Gibson KM. Succinic semialdehyde dehydrogenase: biochemical-molecular-clinical disease mechanisms, redox regulation, and functional significance. Antioxid Redox Signal 2011; 15:691-718. [PMID: 20973619 PMCID: PMC3125545 DOI: 10.1089/ars.2010.3470] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Succinic semialdehyde dehydrogenase (SSADH; aldehyde dehydrogenase 5a1, ALDH5A1; E.C. 1.2.1.24; OMIM 610045, 271980) deficiency is a rare heritable disorder that disrupts the metabolism of the inhibitory neurotransmitter 4-aminobutyric acid (GABA). Identified in conjunction with increased urinary excretion of the GABA analog gamma-hydroxybutyric acid (GHB), numerous patients have been identified worldwide and the autosomal-recessive disorder has been modeled in mice. The phenotype is one of nonprogressive neurological dysfunction in which seizures may be prominently displayed. The murine model is a reasonable phenocopy of the human disorder, yet the severity of the seizure disorder in the mouse exceeds that observed in SSADH-deficient patients. Abnormalities in GABAergic and GHBergic neurotransmission, documented in patients and mice, form a component of disease pathophysiology, although numerous other disturbances (metabolite accumulations, myelin abnormalities, oxidant stress, neurosteroid depletion, altered bioenergetics, etc.) are also likely to be involved in developing the disease phenotype. Most recently, the demonstration of a redox control system in the SSADH protein active site has provided new insights into the regulation of SSADH by the cellular oxidation/reduction potential. The current review summarizes some 30 years of research on this protein and disease, addressing pathological mechanisms in human and mouse at the protein, metabolic, molecular, and whole-animal level.
Collapse
Affiliation(s)
- Kyung-Jin Kim
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Phillip L. Pearl
- Department of Neurology, Children's National Medical Center, Washington, District of Columbia
| | - Kimmo Jensen
- Synaptic Physiology Laboratory, Department of Physiology and Biophysics, Aarhus University, Aarhus, Denmark
- Center for Psychiatric Research, Aarhus University Hospital, Risskov, Denmark
| | - O. Carter Snead
- Department of Neurology, Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | | | - Cornelis Jakobs
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - K. Michael Gibson
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan
| |
Collapse
|
27
|
Krugner-Higby L, KuKanich B, Schmidt B, Heath TD, Brown C. Pharmacokinetics and behavioral effects of liposomal hydromorphone suitable for perioperative use in rhesus macaques. Psychopharmacology (Berl) 2011; 216:511-23. [PMID: 21404039 PMCID: PMC3142292 DOI: 10.1007/s00213-011-2239-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 02/19/2011] [Indexed: 11/30/2022]
Abstract
INTRODUCTION This study aims to evaluate the pharmacokinetic, behavioral, and motor effects of a liposomal preparation of hydromorphone hydrochloride (LE-hydro) in rhesus monkeys. We administered either 2 mg/kg of LE-hydro (n = 8) subcutaneous (s.c.) or 0.1 mg/kg of standard pharmaceutical hydromorphone HCl (hydro) preparation either intravenous (i.v.; n = 4) or s.c. (n = 5). MATERIALS AND METHODS Serial blood samples were drawn after injection and analyzed for serum hydro concentration by liquid chromatography/mass spectrometry. Following s.c. injection of 0.1 mg/kg hydro or 2 mg/kg LE-hydro, behavioral evaluations were conducted in groups of rhesus monkeys (n = 10/group) in the presence of a compatible stimulus animal and motor skills were also evaluated (n = 10/group). The motor skills test consisted of removing a food reward (carrot ring) from either a straight peg (simple task) or a curved peg (difficult task). RESULTS LE-hydro (MRT(0-INF) = 105.9 h) demonstrated extended-release pharmacokinetics compared to hydro when administered by either i.v. (MRT(0-INF) =1.1 h) or s.c. (MRT(0-INF) =1.3 h) routes. Hydro did not affect motor performance of the simpler task, but the monkeys' performance deteriorated on the more difficult task at 0.5 and 1 h after injection. LE-hydro had no effect on motor skills in either the simpler or more difficult task. CONCLUSIONS The results of these studies indicate that LE-hydro has a pharmacokinetic and behavioral side effects profile consistent with an analgesic that could be tested for surgical use in animals. Our studies also expand the use of rhesus monkeys as a translational behavioral pharmacodynamics model for testing extended-release opioid medication.
Collapse
Affiliation(s)
- Lisa Krugner-Higby
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53726-4089, USA.
| | - Butch KuKanich
- PharmCATS and the Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, USA
| | - Brynn Schmidt
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Timothy D. Heath
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, WI, USA
| | - Carolyn Brown
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
28
|
Roberts DM, Smith MW, Gopalakrishnan M, Whittaker G, Day RO. Extreme γ-Butyrolactone Overdose With Severe Metabolic Acidosis Requiring Hemodialysis. Ann Emerg Med 2011; 58:83-5. [DOI: 10.1016/j.annemergmed.2011.01.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 01/15/2011] [Accepted: 01/24/2011] [Indexed: 11/25/2022]
|
29
|
Wood DM, Brailsford AD, Dargan PI. Acute toxicity and withdrawal syndromes related to γ-hydroxybutyrate (GHB) and its analogues γ-butyrolactone (GBL) and 1,4-butanediol (1,4-BD). Drug Test Anal 2011; 3:417-25. [PMID: 21548140 DOI: 10.1002/dta.292] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 03/21/2011] [Accepted: 03/22/2011] [Indexed: 02/05/2023]
Abstract
Gamma-hydroxybutyrate (GHB) has been used as a recreational drug since the 1990s and over the last few years there has been increasing use of its analogues gamma-butyrolactone (GBL) and to a lesser extent 1,4-butanediol (1,4BD). This review will summarize the literature on the pharmacology of these compounds; the patterns and management of acute toxicity associated with their use; and the clinical patterns of presentation and management of chronic dependency associated with GHB and its analogues.
Collapse
Affiliation(s)
- David M Wood
- Guy's and St Thomas' NHS Foundation Trust, London, UK.
| | | | | |
Collapse
|
30
|
Felmlee MA, Roiko SA, Morse BL, Morris ME. Concentration-effect relationships for the drug of abuse gamma-hydroxybutyric acid. J Pharmacol Exp Ther 2010; 333:764-71. [PMID: 20215411 DOI: 10.1124/jpet.109.165381] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
gamma-Hydroxybutyric acid (GHB) is an endogenous neurotransmitter that is abused because of its sedative/hypnotic and euphoric effects. The objectives of this study were to evaluate the concentration-effect relationships of GHB in plasma, cerebrospinal fluid (CSF), brain (whole and discrete brain regions), and brain frontal cortex extracellular fluid. This information is crucial for future studies to evaluate effects of therapeutic interventions on the toxicodynamics of GHB. GHB (200-1000 mg/kg) was administered intravenously to rats, and plasma and frontal cortex microdialysate samples were collected for up to 6 h after the dose, or plasma, CSF, and brain (whole, frontal cortex, striatum, and hippocampus) concentrations were determined at the offset of its sedative/hypnotic effect [return to righting reflex (RRR)]. GHB-induced changes in the brain neurotransmitters gamma-aminobutyric acid (GABA) and glutamate were also determined. GHB, GABA, and glutamate concentrations were measured by liquid chromatography/tandem mass spectrometry. GHB-induced sleep time significantly increased in a dose-dependent manner (20-fold increase from 200 to 1000 mg/kg). GHB concentrations in plasma (300-400 microg/ml), whole brain (70 microg/g), discrete brain regions (80-100 microg/g), and brain microdialysate (29-39 microg/ml) correlated with RRR. In contrast, CSF GHB and GABA and glutamate concentrations in discrete brain regions exhibited no relationship with RRR. Our results suggest that GHB-induced sedative/hypnotic effects are mediated directly by GHB and that at high GHB doses, GABA formation from GHB may not contribute to the observed sedative/hypnotic effect. These results support the use of a clinical GHB detoxification strategy aimed at decreasing plasma and brain GHB concentrations after GHB overdoses.
Collapse
Affiliation(s)
- Melanie A Felmlee
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Amherst, New York, USA
| | | | | | | |
Collapse
|