1
|
Favoretto CA, Bertagna NB, Miguel TT, Quadros IMH. The CRF/Urocortin systems as therapeutic targets for alcohol use disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 178:97-152. [PMID: 39523064 DOI: 10.1016/bs.irn.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Development and maintenance of alcohol use disorders have been proposed to recruit critical mechanisms involving Corticotropin Releasing Factor and Urocortins (CRF/Ucns). The CRF/Ucns system is comprised of a family of peptides (CRF, Ucn 1, Ucn 2, Ucn 3) which act upon two receptor subtypes, CRFR1 and CRFR2, each with different affinity profiles to the endogenous peptides and differential brain distribution. Activity of CRF/Ucn system is further modulated by CRF binding protein (CRF-BP), which regulates availability of CRF and Ucns to exert their actions. Extensive evidence in preclinical models support the involvement of CRF/Ucn targets in escalated alcohol drinking, as well as point to changes in CRF/Ucn brain function as a result of chronic alcohol exposure and/or withdrawal. It highlights the role of CRF and CRFR1-mediated signaling in conditions of excessive alcohol taking and seeking, including during various stages of withdrawal and relapse to alcohol. Besides its role in the hypothalamic-pituitary-adrenal (HPA) axis, the importance of extra-hypothalamic CRF pathways, especially in the extended amygdala, in the neurobiology of alcohol abuse and dependence is emphasized. Emerging roles for other targets of the CRF/Ucn system, such as CRF2 receptors, CRF-BP and Ucns in escalated alcohol drinking is also discussed. Finally, the limited translational value of CRF/Ucn interventions in stress-related and alcohol use disorders is discussed. So far, CRFR1 antagonists have shown little or no efficacy in human clinical trials, although a range of unexplored conditions and possibilities remain to be explored.
Collapse
Affiliation(s)
- Cristiane Aparecida Favoretto
- Molecular and Behavioral Neuroscience Laboratory, Pharmacology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp), SP, Brazil; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Natalia Bonetti Bertagna
- Molecular and Behavioral Neuroscience Laboratory, Pharmacology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp), SP, Brazil
| | | | - Isabel M H Quadros
- Psychobiology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp), SP, Brazil.
| |
Collapse
|
2
|
Galaj E, Barrera ED, Persaud K, Nisanov R, Vashisht A, Goldberg H, Patel N, Lenhard H, You ZB, Gardner EL, Ranaldi R. The Impact of Heroin Self-Administration and Environmental Enrichment on Ventral Tegmental CRF1 Receptor Expression. Int J Neuropsychopharmacol 2023; 26:828-839. [PMID: 37864842 PMCID: PMC10726410 DOI: 10.1093/ijnp/pyad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/20/2023] [Indexed: 10/23/2023] Open
Abstract
BACKGROUND There is a strong link between chronic stress and vulnerability to drug abuse and addiction. Corticotropin releasing factor (CRF) is central to the stress response that contributes to continuation and relapse to heroin abuse. Chronic heroin exposure can exacerbate CRF production, leading to dysregulation of the midbrain CRF-dopamine-glutamate interaction. METHODS Here we investigated the role of midbrain CRF1 receptors in heroin self-administration and assessed neuroplasticity in CRF1 receptor expression in key opioid addiction brain regions. RESULTS Infusions of antalarmin (a CRF1 receptor antagonist) into the ventral tegmental area (VTA) dose dependently reduced heroin self-administration in rats but had no impact on food reinforcement or locomotor activity in rats. Using RNAscope in situ hybridization, we found that heroin, but not saline, self-administration upregulated CRF1 receptor mRNA in the VTA, particularly on dopamine neurons. AMPA GluR1 and dopamine reuptake transporter mRNA in VTA neurons were not affected by heroin. The western-blot assay showed that CRF1 receptors were upregulated in the VTA and nucleus accumbens. No significant changes in CRF1 protein expression were detected in the prefrontal cortex, insula, dorsal hippocampus, and substantia nigra. In addition, we found that 15 days of environmental enrichment implemented after heroin self-administration does not reverse upregulation of VTA CRF1 receptor mRNA but it downregulates dopamine transporter mRNA. CONCLUSIONS Overall, these data suggest that heroin self-administration requires stimulation of VTA CRF1 receptors and upregulates their expression in brain regions involved in reinforcement. Such long-lasting neuroadaptations may contribute to continuation of drug use and relapse due to stress exposure and are not easily reversed by EE exposure.
Collapse
Affiliation(s)
- Ewa Galaj
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, New York, USA
| | - Eddy D Barrera
- The Graduate Center of the City University of New York, New York, NYUSA
| | - Kirk Persaud
- Department of Psychology, Queens College of the City University of New York, Flushing, New York, USA
| | - Rudolf Nisanov
- The Graduate Center of the City University of New York, New York, NYUSA
| | - Apoorva Vashisht
- The Graduate Center of the City University of New York, New York, NYUSA
| | - Hindy Goldberg
- Department of Psychology, Queens College of the City University of New York, Flushing, New York, USA
| | - Nima Patel
- Department of Psychology, Queens College of the City University of New York, Flushing, New York, USA
| | - Hayley Lenhard
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, New York, USA
| | - Zhi-Bing You
- Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland, USA
| | - Eliot L Gardner
- Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland, USA
| | - Robert Ranaldi
- The Graduate Center of the City University of New York, New York, NYUSA
- Department of Psychology, Queens College of the City University of New York, Flushing, New York, USA
| |
Collapse
|
3
|
Bagosi Z, Megyesi K, Ayman J, Rudersdorf H, Ayaz MK, Csabafi K. The Role of Corticotropin-Releasing Factor (CRF) and CRF-Related Peptides in the Social Behavior of Rodents. Biomedicines 2023; 11:2217. [PMID: 37626714 PMCID: PMC10452353 DOI: 10.3390/biomedicines11082217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Since the corticotropin-releasing factor (CRF) was isolated from an ovine brain, a growing family of CRF-related peptides has been discovered. Today, the mammalian CRF system consists of four ligands (CRF, urocortin 1 (Ucn1), urocortin 2 (Ucn2), and urocortin 3 (Ucn3)); two receptors (CRF receptor type 1 (CRF1) and CRF receptor type 2 (CRF2)); and a CRF-binding protein (CRF-BP). Besides the regulation of the neuroendocrine, autonomic, and behavioral responses to stress, CRF and CRF-related peptides are also involved in different aspects of social behavior. In the present study, we review the experiments that investigated the role of CRF and the urocortins involved in the social behavior of rats, mice, and voles, with a special focus on sociability and preference for social novelty, as well as the ability for social recognition, discrimination, and memory. In general, these experiments demonstrate that CRF, Ucn1, Ucn2, and Ucn3 play important, but distinct roles in the social behavior of rodents, and that they are mediated by CRF1 and/or CRF2. In addition, we suggest the possible brain regions and pathways that express CRF and CRF-related peptides and that might be involved in social interactions. Furthermore, we also emphasize the differences between the species, strains, and sexes that make translation of these roles from rodents to humans difficult.
Collapse
Affiliation(s)
- Zsolt Bagosi
- Department of Pathophysiology, Albert Szent-Györgyi School of Medicine, University of Szeged, 6720 Szeged, Hungary; (H.R.); (M.K.A.); (K.C.)
| | - Kíra Megyesi
- Interdisciplinary Center for Excellence, Clinical Research Competence Center, Albert Szent-Györgyi School of Medicine, University of Szeged, 6720 Szeged, Hungary;
| | - Jázmin Ayman
- Department of Obstetrics and Gynecology, Albert Szent-Györgyi Albert School of Medicine, University of Szeged, 6720 Szeged, Hungary;
| | - Hanna Rudersdorf
- Department of Pathophysiology, Albert Szent-Györgyi School of Medicine, University of Szeged, 6720 Szeged, Hungary; (H.R.); (M.K.A.); (K.C.)
| | - Maieda Khan Ayaz
- Department of Pathophysiology, Albert Szent-Györgyi School of Medicine, University of Szeged, 6720 Szeged, Hungary; (H.R.); (M.K.A.); (K.C.)
| | - Krisztina Csabafi
- Department of Pathophysiology, Albert Szent-Györgyi School of Medicine, University of Szeged, 6720 Szeged, Hungary; (H.R.); (M.K.A.); (K.C.)
| |
Collapse
|
4
|
Sleep Deprivation Induces Dopamine System Maladaptation and Escalated Corticotrophin-Releasing Factor Signaling in Adolescent Mice. Mol Neurobiol 2023; 60:3190-3209. [PMID: 36813955 DOI: 10.1007/s12035-023-03258-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023]
Abstract
Sleep disruption is highly associated with the pathogenesis and progression of a wild range of psychiatric disorders. Furthermore, appreciable evidence shows that experimental sleep deprivation (SD) on humans and rodents evokes anomalies in the dopaminergic (DA) signaling, which are also implicated in the development of psychiatric illnesses such as schizophrenia or substance abuse. Since adolescence is a vital period for the maturation of the DA system as well as the occurrence of mental disorders, the present studies aimed to investigate the impacts of SD on the DA system of adolescent mice. We found that 72 h SD elicited a hyperdopaminergic status, with increased sensitivity to the novel environment and amphetamine (Amph) challenge. Also, altered neuronal activity and expression of striatal DA receptors were noticed in the SD mice. Moreover, 72 h SD influenced the immune status in the striatum, with reduced microglial phagocytic capacity, primed microglial activation, and neuroinflammation. The abnormal neuronal and microglial activity were putatively provoked by the enhanced corticotrophin-releasing factor (CRF) signaling and sensitivity during the SD period. Together, our findings demonstrated the consequences of SD in adolescents including aberrant neuroendocrine, DA system, and inflammatory status. Sleep insufficiency is a risk factor for the aberration and neuropathology of psychiatric disorders.
Collapse
|
5
|
Mantsch JR. Corticotropin releasing factor and drug seeking in substance use disorders: Preclinical evidence and translational limitations. ADDICTION NEUROSCIENCE 2022; 4:100038. [PMID: 36531188 PMCID: PMC9757758 DOI: 10.1016/j.addicn.2022.100038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The neuropeptide, corticotropin releasing factor (CRF), has been an enigmatic target for the development of medications aimed at treating stress-related disorders. Despite a large body of evidence from preclinical studies in rodents demonstrating that CRF receptor antagonists prevent stressor-induced drug seeking, medications targeting the CRF-R1 have failed in clinical trials. Here, we provide an overview of the abundant findings from preclinical rodent studies suggesting that CRF signaling is involved in stressor-induced relapse. The scientific literature that has defined the receptors, mechanisms and neurocircuits through which CRF contributes to stressor-induced reinstatement of drug seeking following self-administration and conditioned place preference in rodents is reviewed. Evidence that CRF signaling is recruited with repeated drug use in a manner that heightens susceptibility to stressor-induced drug seeking in rodents is presented. Factors that may determine the influence of CRF signaling in substance use disorders, including developmental windows, biological sex, and genetics are examined. Finally, we discuss the translational failure of medications targeting CRF signaling as interventions for substance use disorders and other stress-related conditions. We conclude that new perspectives and research directions are needed to unravel the mysterious role of CRF in substance use disorders.
Collapse
Affiliation(s)
- John R Mantsch
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, United States
| |
Collapse
|
6
|
Lowes DC, Harris AZ. Stressed and wired: The effects of stress on the VTA circuits underlying motivated behavior. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2022; 26:100388. [PMID: 36406203 PMCID: PMC9674332 DOI: 10.1016/j.coemr.2022.100388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Stress affects many brain regions, including the ventral tegmental area (VTA), which is critically involved in reward processing. Excessive stress can reduce reward-seeking behaviors but also exacerbate substance use disorders, two seemingly contradictory outcomes. Recent research has revealed that the VTA is a heterogenous structure with diverse populations of efferents and afferents serving different functions. Stress has correspondingly diverse effects on VTA neuron activity, tending to decrease lateral VTA dopamine (DA) neuron activity, while increasing medial VTA DA and GABA neuron activity. Here we review the differential effects of stress on the activity of these distinct VTA neuron populations and how they contribute to decreases in reward-seeking behavior or increases in drug self-administration.
Collapse
Affiliation(s)
- Daniel C. Lowes
- Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Alexander Z. Harris
- Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA,Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| |
Collapse
|
7
|
Avalos MP, Guzman AS, Garcia-Keller C, Mongi-Bragato B, Esparza MA, Rigoni D, Sanchez MA, Calfa GD, Bollati FA, Cancela LM. Impairment of glutamate homeostasis in the nucleus accumbens core underpins cross-sensitization to cocaine following chronic restraint stress. Front Physiol 2022; 13:896268. [PMID: 36091376 PMCID: PMC9462460 DOI: 10.3389/fphys.2022.896268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
Though the facilitating influence of stress on drug abuse is well documented, the mechanisms underlying this interaction have yet to be fully elucidated. The present study explores the neurobiological mechanisms underpinning the sensitized response to the psychomotor-stimulating effects of cocaine following chronic restraint stress (CRS), emphasizing the differential contribution of both subcompartments of the nucleus accumbens (NA), the core (NAcore) and shell (NAshell), to this phenomenon. Adult male Wistar rats were restrained for 2 h/day for 7 days and, 2 weeks after the last stress exposure (day 21), all animals were randomly assigned to behavioral, biochemical or neurochemical tests. Our results demonstrated that the enduring CRS-induced increase in psychostimulant response to cocaine was paralleled by an increase of extracellular dopamine levels in the NAcore, but not the NAshell, greater than that observed in the non-stress group. Furthermore, we found that CRS induced an impairment of glutamate homeostasis in the NAcore, but not the NAshell. Its hallmarks were increased basal extracellular glutamate concentrations driven by a CRS-induced downregulation of GLT-1, blunted glutamate levels in response to cocaine and postsynaptic structural remodeling in pre-stressed animals. In addition, ceftriaxone, a known GLT-1 enhancer, prevented the CRS-induced GLT-1 downregulation, increased basal extracellular glutamate concentrations and changes in structural plasticity in the NAcore as well as behavioral cross-sensitization to cocaine, emphasizing the biological importance of GLT-1 in the comorbidity between chronic stress exposure and drug abuse. A future perspective concerning the paramount relevance of the stress-induced disruption of glutamate homeostasis as a vulnerability factor to the development of stress and substance use disorders during early life or adulthood of descendants is provided.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Flavia A. Bollati
- Departamento de Farmacología Otto Orsingher, Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Liliana M. Cancela
- Departamento de Farmacología Otto Orsingher, Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
8
|
Hadizadeh H, Flores J, Nunes E, Mayerson T, Potenza MN, Angarita GA. Novel Pharmacological Agents for the Treatment of Cocaine Use Disorder. Curr Behav Neurosci Rep 2022. [DOI: 10.1007/s40473-022-00246-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Pomrenze MB, Paliarin F, Maiya R. Friend of the Devil: Negative Social Influences Driving Substance Use Disorders. Front Behav Neurosci 2022; 16:836996. [PMID: 35221948 PMCID: PMC8866771 DOI: 10.3389/fnbeh.2022.836996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/13/2022] [Indexed: 11/20/2022] Open
Abstract
Substance use disorders in humans have significant social influences, both positive and negative. While prosocial behaviors promote group cooperation and are naturally rewarding, distressing social encounters, such as aggression exhibited by a conspecific, are aversive and can enhance the sensitivity to rewarding substances, promote the acquisition of drug-taking, and reinstate drug-seeking. On the other hand, withdrawal and prolonged abstinence from drugs of abuse can promote social avoidance and suppress social motivation, accentuating drug cravings and facilitating relapse. Understanding how complex social states and experiences modulate drug-seeking behaviors as well as the underlying circuit dynamics, such as those interacting with mesolimbic reward systems, will greatly facilitate progress on understanding triggers of drug use, drug relapse and the chronicity of substance use disorders. Here we discuss some of the common circuit mechanisms underlying social and addictive behaviors that may underlie their antagonistic functions. We also highlight key neurochemicals involved in social influences over addiction that are frequently identified in comorbid psychiatric conditions. Finally, we integrate these data with recent findings on (±)3,4-methylenedioxymethamphetamine (MDMA) that suggest functional segregation and convergence of social and reward circuits that may be relevant to substance use disorder treatment through the competitive nature of these two types of reward. More studies focused on the relationship between social behavior and addictive behavior we hope will spur the development of treatment strategies aimed at breaking vicious addiction cycles.
Collapse
Affiliation(s)
- Matthew B. Pomrenze
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
- *Correspondence: Matthew B. Pomrenze Rajani Maiya
| | - Franciely Paliarin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Rajani Maiya
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- *Correspondence: Matthew B. Pomrenze Rajani Maiya
| |
Collapse
|
10
|
Miczek KA, DiLeo A, Newman EL, Akdilek N, Covington HE. Neurobiological Bases of Alcohol Consumption After Social Stress. Curr Top Behav Neurosci 2022; 54:245-281. [PMID: 34964935 PMCID: PMC9698769 DOI: 10.1007/7854_2021_273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The urge to seek and consume excessive alcohol is intensified by prior experiences with social stress, and this cascade can be modeled under systematically controlled laboratory conditions in rodents and non-human primates. Adaptive coping with intermittent episodes of social defeat stress often transitions to maladaptive responses to traumatic continuous stress, and alcohol consumption may become part of coping responses. At the circuit level, the neural pathways subserving stress coping intersect with those for alcohol consumption. Increasingly discrete regions and connections within the prefrontal cortex, the ventral and dorsal striatum, thalamic and hypothalamic nuclei, tegmental areas as well as brain stem structures begin to be identified as critical for reacting to and coping with social stress while seeking and consuming alcohol. Several candidate molecules that modulate signals within these neural connections have been targeted in order to reduce excessive drinking and relapse. In spite of some early clinical failures, neuropeptides such as CRF, opioids, or oxytocin continue to be examined for their role in attenuating stress-escalated drinking. Recent work has focused on neural sites of action for peptides and steroids, most likely in neuroinflammatory processes as a result of interactive effects of episodic social stress and excessive alcohol seeking and drinking.
Collapse
Affiliation(s)
- Klaus A. Miczek
- Department of Psychology, Tufts University, Medford, MA, USA,Department of Neuroscience, Tufts University, Boston, MA, USA
| | - Alyssa DiLeo
- Department of Neuroscience, Tufts University, Boston, MA, USA
| | - Emily L. Newman
- Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| | - Naz Akdilek
- Department of Psychology, Tufts University, Medford, MA, USA
| | | |
Collapse
|
11
|
Dong Z, Zhang G, Xiang S, Jiang C, Chen Z, Li Y, Huang B, Zhou W, Lian Q, Wu B. The Antagonism of Corticotropin-Releasing Factor Receptor-1 in Brain Suppress Stress-Induced Propofol Self-Administration in Rats. Front Behav Neurosci 2021; 15:775209. [PMID: 34924971 PMCID: PMC8674615 DOI: 10.3389/fnbeh.2021.775209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/22/2021] [Indexed: 11/22/2022] Open
Abstract
Propofol addiction has been detected in humans and rats, which may be facilitated by stress. Corticotropin-releasing factor acts through the corticotropin-releasing factor (CRF) receptor-1 (CRF1R) and CRF2 receptor-2 (CRF2R) and is a crucial candidate target for the interaction between stress and drug abuse, but its role on propofol addiction remains unknown. Tail clip stressful stimulation was performed in rats to test the stress on the establishment of the propofol self-administration behavioral model. Thereafter, the rats were pretreated before the testing session at the bilateral lateral ventricle with one of the doses of antalarmin (CRF1R antagonist, 100–500 ng/site), antisauvagine 30 (CRF2R antagonist, 100–500 ng/site), and RU486 (glucocorticoid receptor antagonist, 100–500 ng/site) or vehicle. The dopamine D1 receptor (D1R) in the nucleus accumbens (NAc) was detected to explore the underlying molecular mechanism. The sucrose self-administration establishment and maintenance, and locomotor activities were also examined to determine the specificity. We found that the establishment of propofol self-administration was promoted in the tail clip treated group (the stress group), which was inhibited by antalarmin at the dose of 100–500 ng/site but was not by antisauvagine 30 or RU486. Accordingly, the expression of D1R in the NAc was attenuated by antalarmin, dose-dependently. Moreover, pretreatments fail to change sucrose self-administration behavior or locomotor activities. This study supports the role of CRF1R in the brain in mediating the central reward processing through D1R in the NAc and provided a possibility that CRF1R antagonist may be a new therapeutic approach for the treatment of propofol addiction.
Collapse
Affiliation(s)
- Zhanglei Dong
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gaolong Zhang
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Saiqiong Xiang
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chenchen Jiang
- Clinical Research Unit, The Second Affiliated and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhichuan Chen
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Medical School, Institution of Reproductive Medicine, Nantong University, Nantong, China
| | - Yan Li
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bingwu Huang
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenhua Zhou
- Zhejiang Provincial Key Lab of Addiction, Ningbo Kangning Hospital, School of Medicine, Ningbo Universtiy, Ningbo, China
| | - Qingquan Lian
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Binbin Wu
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
12
|
Ritchie JL, Walters JL, Galliou JMC, Christian RJ, Qi S, Savenkova MI, Ibarra CK, Grogan SR, Fuchs RA. Basolateral amygdala corticotropin-releasing factor receptor type 1 regulates context-cocaine memory strength during reconsolidation in a sex-dependent manner. Neuropharmacology 2021; 200:108819. [PMID: 34610289 PMCID: PMC8550898 DOI: 10.1016/j.neuropharm.2021.108819] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 09/09/2021] [Accepted: 09/29/2021] [Indexed: 01/13/2023]
Abstract
The basolateral amygdala (BLA) is a critical brain region for cocaine-memory reconsolidation. Corticotropin-releasing factor receptor type 1 (CRFR1) is densely expressed in the BLA, and CRFR1 stimulation can activate intra-cellular signaling cascades that mediate memory reconsolidation. Hence, we tested the hypothesis that BLA CRFR1 stimulation is necessary and sufficient for cocaine-memory reconsolidation. Using an instrumental model of drug relapse, male and female Sprague-Dawley rats received cocaine self-administration training in a distinct environmental context over 10 days followed by extinction training in a different context over 7 days. Next, rats were re-exposed to the cocaine-paired context for 15 min to initiate cocaine-memory retrieval and destabilization. Immediately or 6 h after this session, the rats received bilateral vehicle, antalarmin (CRFR1 antagonist; 500 ng/hemisphere), or corticotropin-releasing factor (CRF; 0.2, 30 or 500 ng/hemisphere) infusions into the BLA. Resulting changes in drug context-induced cocaine seeking (index of context-cocaine memory strength) were assessed three days later. Female rats self-administered more cocaine infusions and exhibited more extinction responding than males. Intra-BLA antalarmin treatment immediately after memory retrieval (i.e., when cocaine memories were labile), but not 6 h later (i.e., after memory reconsolidation), attenuated drug context-induced cocaine seeking at test independent of sex, relative to vehicle. Conversely, intra-BLA CRF treatment increased this behavior selectively in females, in a U-shaped dose-dependent fashion. In control experiments, a high (behaviorally ineffective) dose of CRF treatment did not reduce BLA CRFR1 cell-surface expression in females. Thus, BLA CRFR1 signaling is necessary and sufficient, in a sex-dependent manner, for regulating cocaine-memory strength.
Collapse
Affiliation(s)
- Jobe L Ritchie
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Jennifer L Walters
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Justine M C Galliou
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Robert J Christian
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Shuyi Qi
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Marina I Savenkova
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Christopher K Ibarra
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Shayna R Grogan
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Rita A Fuchs
- Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA, USA; Washington State University Alcohol and Drug Abuse Research Program, Pullman, WA, USA.
| |
Collapse
|
13
|
Bardo MT, Hammerslag LR, Malone SG. Effect of early life social adversity on drug abuse vulnerability: Focus on corticotropin-releasing factor and oxytocin. Neuropharmacology 2021; 191:108567. [PMID: 33862030 DOI: 10.1016/j.neuropharm.2021.108567] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/16/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022]
Abstract
Early life adversity can set the trajectory for later psychiatric disorders, including substance use disorders. There are a host of neurobiological factors that may play a role in the negative trajectory. The current review examines preclinical evidence suggesting that early life adversity specifically involving social factors (maternal separation, adolescent social isolation and adolescent social defeat) may influence drug abuse vulnerability by strengthening corticotropin-releasing factor (CRF) systems and weakening oxytocin (OT) systems. In adulthood, pharmacological and genetic evidence indicates that both CRF and OT systems are directly involved in drug reward processes. With early life adversity, numerous studies show an increase in drug abuse vulnerability measured in adulthood, along a concomitant strengthening of CRF systems and a weakening of OT systems. Mechanistic studies, while relatively few in number, are generally consistent with the theme that strengthened CRF systems and weakened OT systems mediate, at least in part, the link between early life adversity and drug abuse vulnerability. Establishing a direct role of CRF and OT in mediating the relation between early life social stressors and drug abuse vulnerability will inform clinical researchers and practitioners toward the development of intervention strategies to reduce risk among those suffering from early life adversities. This article is part of the special issue on 'Vulnerabilities to Substance Abuse'.
Collapse
Affiliation(s)
- Michael T Bardo
- Department of Psychology, University of Kentucky, Lexington, KY, 40536-0509, USA.
| | - Lindsey R Hammerslag
- Department of Psychology, University of Kentucky, Lexington, KY, 40536-0509, USA
| | - Samantha G Malone
- Department of Psychology, University of Kentucky, Lexington, KY, 40536-0509, USA
| |
Collapse
|
14
|
Oliva I, Donate MM, Lefner MJ, Wanat MJ. Cocaine experience abolishes the motivation suppressing effect of CRF in the ventral midbrain. Addict Biol 2021; 26:e12837. [PMID: 31714675 DOI: 10.1111/adb.12837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/22/2019] [Accepted: 09/08/2019] [Indexed: 11/29/2022]
Abstract
Stress affects dopamine-dependent behaviors in part through the actions of corticotropin releasing factor (CRF) in the ventral tegmental area (VTA). For example, acute stress engages CRF signaling in the VTA to suppress the motivation to work for food rewards. In contrast, acute stress promotes drug-seeking behavior through the actions of CRF in the VTA. These diverging behavioral effects in food- and drug-based tasks could indicate that CRF modulates goal-directed actions in a reinforcer-specific manner. Alternatively, prior drug experience could functionally alter how CRF in the VTA regulates dopamine-dependent behavior. To address these possibilities, we examined how intra-VTA injections of CRF influenced cocaine intake and whether prior drug experience alters how CRF modulates the motivation for food rewards. Our results demonstrate that intra-VTA injections of CRF had no effect on drug intake when self-administering cocaine under a progressive ratio reinforcement schedule. We also found that a prior history of either contingent or noncontingent cocaine infusions abolished the capacity for CRF to reduce the motivation for food rewards. Furthermore, voltammetry recordings in the nucleus accumbens illustrate that CRF in the VTA had no effect on cocaine-evoked dopamine release. These results collectively illustrate that exposure to abused substances functionally alters how neuropeptides act within the VTA to influence motivated behavior.
Collapse
Affiliation(s)
- Idaira Oliva
- Neurosciences Institute and Department of Biology University of Texas at San Antonio San Antonio Texas USA
| | - Melissa M. Donate
- Neurosciences Institute and Department of Biology University of Texas at San Antonio San Antonio Texas USA
| | - Merridee J. Lefner
- Neurosciences Institute and Department of Biology University of Texas at San Antonio San Antonio Texas USA
| | - Matthew J. Wanat
- Neurosciences Institute and Department of Biology University of Texas at San Antonio San Antonio Texas USA
| |
Collapse
|
15
|
Xu L, Nan J, Lan Y. The Nucleus Accumbens: A Common Target in the Comorbidity of Depression and Addiction. Front Neural Circuits 2020; 14:37. [PMID: 32694984 PMCID: PMC7338554 DOI: 10.3389/fncir.2020.00037] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/22/2020] [Indexed: 12/21/2022] Open
Abstract
The comorbidity of depression and addiction has become a serious public health issue, and the relationship between these two disorders and their potential mechanisms has attracted extensive attention. Numerous studies have suggested that depression and addiction share common mechanisms and anatomical pathways. The nucleus accumbens (NAc) has long been considered a key brain region for regulating many behaviors, especially those related to depression and addiction. In this review article, we focus on the association between addiction and depression, highlighting the potential mediating role of the NAc in this comorbidity via the regulation of changes in the neural circuits and molecular signaling. To clarify the mechanisms underlying this association, we summarize evidence from overlapping reward neurocircuitry, the resemblance of cellular and molecular mechanisms, and common treatments. Understanding the interplay between these disorders should help guide clinical comorbidity prevention and the search for a new target for comorbidity treatment.
Collapse
Affiliation(s)
- Le Xu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University School of Medicine, Yanji City, China
| | - Jun Nan
- Department of Orthopedics, Affiliated Hospital of Yanbian University, Yanji City, China
| | - Yan Lan
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University School of Medicine, Yanji City, China
| |
Collapse
|
16
|
Morais-Silva G, Costa-Ferreira W, Gomes-de-Souza L, Pavan JC, Crestani CC, Marin MT. Cardiovascular outcomes related to social defeat stress: New insights from resilient and susceptible rats. Neurobiol Stress 2019; 11:100181. [PMID: 31236438 PMCID: PMC6582241 DOI: 10.1016/j.ynstr.2019.100181] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/28/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
Stress exposure is an important risk factor for psychiatric and cardiovascular disorders. Two phenotypes related to coping with stress can be observed in rodents that experience chronic social defeat stress (SDS): susceptible, showing social avoidance and behavioral changes related to depression, and resilient, showing none of these alterations. Moreover, a strong correlation exists between depression and the development of or mortality due to cardiovascular diseases. Nevertheless, little is known about cardiovascular alterations related to SDS exposure in those phenotypes or their correlation with depressive-like behaviors. Using a chronic SDS protocol followed by the social interaction test, we identified Wistar rats as resilient or susceptible to SDS. Susceptible animals showed increased depressive-like behaviors with resting tachycardia and decreased heart rate variability (HRV) due to increased sympathetic tone in the heart and a less effective baroreflex. In contrast, resilient rats were protected from these alterations by increased vagal tone, resulting in greater HRV values. To our knowledge, our study is the first to indicate that harmful cardiovascular outcomes are related to depressive-like behaviors in susceptible rats and to suggest a mechanism by which resilient rats are protected from these changes. Also, our results suggest that enhanced HRV and vagal tone may be an important trait in resilient individuals. Cardiovascular alterations are correlated to depressive-like behaviors. Susceptible rats show increased sympathetic tone to the heart and lower HRV. Baroreflex effectiveness in susceptible rats is impaired. Resilient rats show an increased vagal tone to the heart and greater values of HRV.
Collapse
Affiliation(s)
- Gessynger Morais-Silva
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Laboratory of Pharmacology, Araraquara, SP, Brazil.,Joint Graduate Program in Physiological Sciences (PIPGCF), UFSCar/UNESP, São Carlos/Araraquara, SP, Brazil
| | - Willian Costa-Ferreira
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Laboratory of Pharmacology, Araraquara, SP, Brazil.,Joint Graduate Program in Physiological Sciences (PIPGCF), UFSCar/UNESP, São Carlos/Araraquara, SP, Brazil
| | - Lucas Gomes-de-Souza
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Laboratory of Pharmacology, Araraquara, SP, Brazil.,Joint Graduate Program in Physiological Sciences (PIPGCF), UFSCar/UNESP, São Carlos/Araraquara, SP, Brazil
| | - Jacqueline C Pavan
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Laboratory of Pharmacology, Araraquara, SP, Brazil
| | - Carlos C Crestani
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Laboratory of Pharmacology, Araraquara, SP, Brazil.,Joint Graduate Program in Physiological Sciences (PIPGCF), UFSCar/UNESP, São Carlos/Araraquara, SP, Brazil
| | - Marcelo T Marin
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Laboratory of Pharmacology, Araraquara, SP, Brazil.,Joint Graduate Program in Physiological Sciences (PIPGCF), UFSCar/UNESP, São Carlos/Araraquara, SP, Brazil
| |
Collapse
|
17
|
Role of N-methyl-D-aspartate receptors in the long-term effects of repeated social defeat stress on the rewarding and psychomotor properties of cocaine in mice. Behav Brain Res 2019; 361:95-103. [DOI: 10.1016/j.bbr.2018.12.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/09/2018] [Accepted: 12/11/2018] [Indexed: 02/07/2023]
|
18
|
Mukhara D, Banks ML, Neigh GN. Stress as a Risk Factor for Substance Use Disorders: A Mini-Review of Molecular Mediators. Front Behav Neurosci 2018; 12:309. [PMID: 30622460 PMCID: PMC6308626 DOI: 10.3389/fnbeh.2018.00309] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/28/2018] [Indexed: 12/15/2022] Open
Abstract
The extant literature supports the role of stress in enhancing the susceptibility of drug abuse progressing to a substance use disorder diagnosis. However, the molecular mediators by which stress enhances the progression from cocaine abuse to cocaine use disorder via the mesolimbic pathway remain elusive. In this mini-review article, we highlight three mechanisms by which glucocorticoids (GCs) and the dopaminergic system interact. First, GCs upregulate tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine (DA) synthesis. Second, GCs downregulate monoamine-oxidase (MAO), an enzyme responsible for DA removal. Lastly, GCs are hypothesized to decrease DA reuptake, subsequently increasing synaptic DA. Based on these interactions, we review preclinical literature highlighting how stress modulates the mesolimbic pathway, including the ventral tegmental area (VTA) and nucleus accumbens (NAcs), to alter cocaine abuse-related effects. Taken together, stress enhances cocaine's abuse-related effects at multiple points along the VTA mesolimbic projection, and uniquely in the NAcs through a positive feedback type mechanism. Furthermore, we highlight future directions to elucidate the interaction between the prefrontal cortex (PFC) and key intermediaries including ΔFosB, cAMP response element binding protein (CREB) and cyclin-dependent kinase 5 (CDK5) to highlight possible mechanisms that underlie stress-induced acceleration of the progression to a cocaine use disorder diagnosis.
Collapse
Affiliation(s)
- Deepika Mukhara
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Matthew L. Banks
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Gretchen N. Neigh
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
19
|
Ferrer-Pérez C, Martinez TE, Montagud-Romero S, Ballestín R, Reguilón MD, Miñarro J, Rodríguez-Arias M. Indomethacin blocks the increased conditioned rewarding effects of cocaine induced by repeated social defeat. PLoS One 2018; 13:e0209291. [PMID: 30557308 PMCID: PMC6296503 DOI: 10.1371/journal.pone.0209291] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/01/2018] [Indexed: 01/05/2023] Open
Abstract
It is well established that repeated social defeat stress can induce negative long-term consequences such as increased anxiety-like behavior and enhances the reinforcing effect of psychostimulants in rodents. In the current study, we evaluated how the immune system may play a role in these long-term effects of stress. A total of 148 OF1 mice were divided into different experimental groups according to stress condition (exploration or social defeat) and pre-treatment (saline, 5 or 10 mg/kg of the anti-inflammatory indomethacin) before each social defeat or exploration episode. Three weeks after the last social defeat, anxiety was evaluated using an elevated plus maze paradigm. After this test, conditioned place preference (CPP) was induced by a subthreshold dose of cocaine (1 mg/kg). Biological samples were taken four hours after the first and the fourth social defeat, 3 weeks after the last defeat episode, and after the CPP procedure. Plasma and brain tissue (prefrontal cortex, striatum and hippocampus) were used to determine the levels of the pro-inflammatory cytokine interleukin 6 (IL-6). Results showed an increase of peripheral and brain IL-6 levels after the first and fourth social defeat that was reverted three weeks later. Intraperitoneal administration of the anti-inflammatory drug indomethacin before each episode of stress prevented this enhancement of IL-6 levels and also reversed the increase in the rewarding effects of cocaine in defeated mice. Conversely, this protective effect was not observed with respect to the anxiogenic consequences of social stress. Our results confirm the hypothesis of a modulatory proinflammatory contribution to stress-induced vulnerability to drug abuse disorders and highlight anti-inflammatory interventions as a potential therapeutic tool to treat stress-related addiction disorders.
Collapse
Affiliation(s)
- Carmen Ferrer-Pérez
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Tamara Escrivá Martinez
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Sandra Montagud-Romero
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Raúl Ballestín
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Marina D. Reguilón
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - José Miñarro
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| |
Collapse
|
20
|
Dedic N, Chen A, Deussing JM. The CRF Family of Neuropeptides and their Receptors - Mediators of the Central Stress Response. Curr Mol Pharmacol 2018; 11:4-31. [PMID: 28260504 PMCID: PMC5930453 DOI: 10.2174/1874467210666170302104053] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 11/26/2015] [Accepted: 08/03/2016] [Indexed: 12/12/2022]
Abstract
Background: Dysregulated stress neurocircuits, caused by genetic and/or environmental changes, underlie the development of many neuropsychiatric disorders. Corticotropin-releasing factor (CRF) is the major physiological activator of the hypothalamic-pituitary-adrenal (HPA) axis and conse-quently a primary regulator of the mammalian stress response. Together with its three family members, urocortins (UCNs) 1, 2, and 3, CRF integrates the neuroendocrine, autonomic, metabolic and behavioral responses to stress by activating its cognate receptors CRFR1 and CRFR2. Objective: Here we review the past and current state of the CRF/CRFR field, ranging from pharmacologi-cal studies to genetic mouse models and virus-mediated manipulations. Results: Although it is well established that CRF/CRFR1 signaling mediates aversive responses, includ-ing anxiety and depression-like behaviors, a number of recent studies have challenged this viewpoint by revealing anxiolytic and appetitive properties of specific CRF/CRFR1 circuits. In contrast, the UCN/CRFR2 system is less well understood and may possibly also exert divergent functions on physiol-ogy and behavior depending on the brain region, underlying circuit, and/or experienced stress conditions. Conclusion: A plethora of available genetic tools, including conventional and conditional mouse mutants targeting CRF system components, has greatly advanced our understanding about the endogenous mecha-nisms underlying HPA system regulation and CRF/UCN-related neuronal circuits involved in stress-related behaviors. Yet, the detailed pathways and molecular mechanisms by which the CRF/UCN-system translates negative or positive stimuli into the final, integrated biological response are not completely un-derstood. The utilization of future complementary methodologies, such as cell-type specific Cre-driver lines, viral and optogenetic tools will help to further dissect the function of genetically defined CRF/UCN neurocircuits in the context of adaptive and maladaptive stress responses.
Collapse
Affiliation(s)
- Nina Dedic
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstr, 2-10, 80804 Munich. Germany
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstr, 2-10, 80804 Munich. Germany
| | - Jan M Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstr, 2-10, 80804 Munich. Germany
| |
Collapse
|
21
|
Ferrer-Pérez C, Castro-Zavala A, Luján MÁ, Filarowska J, Ballestín R, Miñarro J, Valverde O, Rodríguez-Arias M. Oxytocin prevents the increase of cocaine-related responses produced by social defeat. Neuropharmacology 2018; 146:50-64. [PMID: 30448423 DOI: 10.1016/j.neuropharm.2018.11.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 12/17/2022]
Abstract
The neuropeptide oxytocin (OXT) plays a critical role in the regulation of social and emotional behaviors. OXT plays a role in stress response and in drug reward, but to date no studies have evaluated its implication in the long-lasting increase of the motivational effects of cocaine induced by repeated social defeat (RSD). During the social defeat procedure, 1 mg/kg of OXT was administered 30 min before each episode of RSD. Three weeks after the last defeat, the effects of cocaine on the conditioned place preference (CPP), locomotor sensitization and the self-administration (SA) paradigms were evaluated. The influence of OXT on the levels of BDNF in the prefrontal cortex (PFC), striatum and hippocampus was also measured. Our results confirm that raising the levels of OXT during social defeat stress can block the long-lasting effects of this type of stress. OXT counteracts the anxiety induced by social defeat and modifies BDNF levels in all the structures we have studied. Moreover, OXT prevents RSD-induced increases in the motivational effects of cocaine. Administration of OXT before each social defeat blocked the social defeat-induced increment in the conditioned rewarding effects of cocaine in the CPP, favored the extinction of cocaine-associated memories in both the CPP and SA, and decreased reinstatement of cocaine-seeking behavior in the SA. In conclusion, the long-lasting effects of RSD are counteracted by administering OXT prior to stress, and changes in BDNF expression may underlie these protective effects.
Collapse
Affiliation(s)
- Carmen Ferrer-Pérez
- Unit of Research on Psychobiology of Drug Dependence, Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Adriana Castro-Zavala
- Neurobiology of Behavior Research Group (GReNeC-NeuroBio), Department of Health and Experimental Sciences, University Pompeu Fabra, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Miguel Ángel Luján
- Neurobiology of Behavior Research Group (GReNeC-NeuroBio), Department of Health and Experimental Sciences, University Pompeu Fabra, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Joanna Filarowska
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland
| | - Raúl Ballestín
- Unit of Research on Psychobiology of Drug Dependence, Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - José Miñarro
- Unit of Research on Psychobiology of Drug Dependence, Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Olga Valverde
- Neurobiology of Behavior Research Group (GReNeC-NeuroBio), Department of Health and Experimental Sciences, University Pompeu Fabra, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Marta Rodríguez-Arias
- Unit of Research on Psychobiology of Drug Dependence, Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain.
| |
Collapse
|
22
|
Rodríguez-Arias M, Montagud-Romero S, Guardia Carrión AM, Ferrer-Pérez C, Pérez-Villalba A, Marco E, López Gallardo M, Viveros MP, Miñarro J. Social stress during adolescence activates long-term microglia inflammation insult in reward processing nuclei. PLoS One 2018; 13:e0206421. [PMID: 30365534 PMCID: PMC6203396 DOI: 10.1371/journal.pone.0206421] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/12/2018] [Indexed: 12/11/2022] Open
Abstract
The experience of social stress during adolescence is associated with higher vulnerability to drug use. Increases in the acquisition of cocaine self-administration, in the escalation of cocaine-seeking behavior, and in the conditioned rewarding effects of cocaine have been observed in rodents exposed to repeated social defeat (RSD). In addition, prolonged or severe stress induces a proinflammatory state with microglial activation and increased cytokine production. The aim of the present work was to describe the long-term effects induced by RSD during adolescence on the neuroinflammatory response and synaptic structure by evaluating different glial and neuronal markers. In addition to an increase in the conditioned rewarding effects of cocaine, our results showed that RSD in adolescence produced inflammatory reactivity in microglia that is prolonged into adulthood, affecting astrocytes and neurons of two reward-processing areas of the brain (the prelimbic cortex, and the nucleus accumbens core). Considered as a whole these results suggest that social stress experience modulates vulnerability to suffer a loss of glia-supporting functions and neuronal functional synaptic density due to drug consumption in later life.
Collapse
Affiliation(s)
- Marta Rodríguez-Arias
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
- * E-mail:
| | - Sandra Montagud-Romero
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | | | - Carmen Ferrer-Pérez
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Ana Pérez-Villalba
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Eva Marco
- Department of Animal Physiology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain
| | | | - María-Paz Viveros
- Department of physiology, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | - José Miñarro
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| |
Collapse
|
23
|
Newman EL, Leonard MZ, Arena DT, de Almeida RMM, Miczek KA. Social defeat stress and escalation of cocaine and alcohol consumption: Focus on CRF. Neurobiol Stress 2018; 9:151-165. [PMID: 30450381 PMCID: PMC6236516 DOI: 10.1016/j.ynstr.2018.09.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 12/15/2022] Open
Abstract
Both the ostensibly aversive effects of unpredictable episodes of social stress and the intensely rewarding effects of drugs of abuse activate the mesocorticolimbic dopamine systems. Significant neuroadaptations in interacting stress and reward neurocircuitry may underlie the striking connection between stress and substance use disorders. In rodent models, recurring intermittent exposure to social defeat stress appears to produce a distinct profile of neuroadaptations that translates most readily to the repercussions of social stress in humans. In the present review, preclinical rodent models of social defeat stress and subsequent alcohol, cocaine or opioid consumption are discussed with regard to: (1) the temporal pattern of social defeat stress, (2) male and female protocols of social stress-escalated drug consumption, and (3) the neuroplastic effects of social stress, which may contribute to escalated drug-taking. Neuroadaptations in corticotropin-releasing factor (CRF) and CRF modulation of monoamines in the ventral tegmental area and the bed nucleus of the stria terminalis are highlighted as potential mechanisms underlying stress-escalated drug consumption. However, the specific mechanisms that drive CRF-mediated increases in dopamine require additional investigation as do the stress-induced neuroadaptations that may contribute to the development of compulsive patterns of drug-taking.
Collapse
Affiliation(s)
- Emily L Newman
- Psychology Dept., Tufts University, Medford, MA, 02155, USA
| | | | | | - Rosa M M de Almeida
- Institute of Psychology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Klaus A Miczek
- Psychology Dept., Tufts University, Medford, MA, 02155, USA.,Dept. of Neuroscience, Sackler School of Graduate Biomedical Sciences, Boston, MA, 02111, USA
| |
Collapse
|
24
|
Montagud-Romero S, Blanco-Gandía MC, Reguilón MD, Ferrer-Pérez C, Ballestín R, Miñarro J, Rodríguez-Arias M. Social defeat stress: Mechanisms underlying the increase in rewarding effects of drugs of abuse. Eur J Neurosci 2018; 48:2948-2970. [PMID: 30144331 DOI: 10.1111/ejn.14127] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/11/2018] [Accepted: 08/14/2018] [Indexed: 12/27/2022]
Abstract
Social interaction is known to be the main source of stress in human beings, which explains the translational importance of this research in animals. Evidence reported over the last decade has revealed that, when exposed to social defeat experiences (brief episodes of social confrontations during adolescence and adulthood), the rodent brain undergoes remodeling and functional modifications, which in turn lead to an increase in the rewarding and reinstating effects of different drugs of abuse. The mechanisms by which social stress cause changes in the brain and behavior are unknown, and so the objective of this review is to contemplate how social defeat stress induces long-lasting consequences that modify the reward system. First of all, we will describe the most characteristic results of the short- and long-term consequences of social defeat stress on the rewarding effects of drugs of abuse such as psychostimulants and alcohol. Secondly, and throughout the review, we will carefully assess the neurobiological mechanisms underlying these effects, including changes in the dopaminergic system, corticotrophin releasing factor signaling, epigenetic modifications and the neuroinflammatory response. To conclude, we will consider the advantages and disadvantages and the translational value of the social defeat stress model, and will discuss challenges and future directions.
Collapse
Affiliation(s)
- Sandra Montagud-Romero
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | | | - Marina D Reguilón
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - Carmen Ferrer-Pérez
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - Raul Ballestín
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - Jose Miñarro
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| |
Collapse
|
25
|
Vannan A, Powell GL, Scott SN, Pagni BA, Neisewander JL. Animal Models of the Impact of Social Stress on Cocaine Use Disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 140:131-169. [PMID: 30193703 DOI: 10.1016/bs.irn.2018.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cocaine use disorders are strongly influenced by the social conditions prior, during, and after exposure to cocaine. In this chapter, we discuss how social factors such as early life stress, social rank stress, and environmental stress impact vulnerability and resilience to cocaine. The discussion of each animal model begins with a brief review of examples from the human literature, which provide the psychosocial background these models attempt to capture. We then discuss preclinical findings from use of each model, with emphasis on how social factors influence cocaine-related behaviors and how sex and age influence the behaviors and neurobiology. Models discussed include (1) early life social stress, such as maternal separation and neonatal isolation, (2) social defeat stress, (3) social hierarchies, and (4) social isolation and environmental enrichment. The cocaine-related behaviors reviewed for each of these animal models include cocaine-induced conditioned place preference, behavioral sensitization, and self-administration. Together, our review suggests that the degree of psychosocial stress experienced yields robust effects on cocaine-related behaviors and neurobiology, and these preclinical findings have translational impact for the future of cocaine use disorder treatment.
Collapse
Affiliation(s)
- Annika Vannan
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Gregory L Powell
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Samantha N Scott
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Broc A Pagni
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Janet L Neisewander
- School of Life Sciences, Arizona State University, Tempe, AZ, United States.
| |
Collapse
|
26
|
Shimamoto A. Social Defeat Stress, Sex, and Addiction-Like Behaviors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 140:271-313. [PMID: 30193707 DOI: 10.1016/bs.irn.2018.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Social confrontation is a form of social interaction in animals where two conspecific individuals confront each other in dispute over territory, during the formation of hierarchies, and during breeding seasons. Typically, a social confrontation involves a prevailing individual and a yielding individual. The prevailing individual often exhibits aggressive postures and launches attacks, whereas the yielding individual often adopts postures of defeat. The yielding or defeated animals experience a phenomenon known as social defeat stress, in which they show exaggerated stress as well as autonomic and endocrine responses that cause impairment of both the brain and body. In laboratory settings, one can reliably generate social defeat stress by allowing a naïve (or already defeated) animal to intrude into a home cage in which its resident has already established a territory or is nursing. This resident-intruder paradigm has been widely used in both males and females to study mechanisms in the brain that underlie the stress responses. Stress has profound effects on drug reward for cocaine, methamphetamine, alcohol, and opioids. Particularly, previous experiences with social defeat can exaggerate subsequent addiction-like behaviors. The extent of these addiction-like behaviors depends on the intensity, duration, frequency, and intermittency of the confrontation episodes. This chapter describes four types of social defeat stress: acute, repeated, intermittent, and chronic. Specifically, it focuses on social defeat stress models used in laboratories to study individual, sex, and animal strain differences in addiction-like behaviors.
Collapse
Affiliation(s)
- Akiko Shimamoto
- Department of Biochemistry, Cancer Biology, Neuroscience, and Pharmacology, Meharry Medical College, Nashville, TN, United States.
| |
Collapse
|
27
|
Ferrer-Pérez C, Reguilón MD, Manzanedo C, Aguilar MA, Miñarro J, Rodríguez-Arias M. Antagonism of corticotropin-releasing factor CRF 1 receptors blocks the enhanced response to cocaine after social stress. Eur J Pharmacol 2018; 823:87-95. [PMID: 29391155 DOI: 10.1016/j.ejphar.2018.01.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 01/07/2023]
Abstract
Numerous studies have shown that social defeat stress induces an increase in the rewarding effects of cocaine. In this study we have investigated the role played by the main hypothalamic stress hormone, corticotropin-releasing factor (CRF), in the effects that repeated social defeat (RSD) induces in the conditioned rewarding effects and locomotor sensitization induced by cocaine. A total of 220 OF1 mice were divided into experimental groups according to the treatment received before each social defeat: saline, 5 or 10 mg/kg of the nonpeptidic corticotropin-releasing factor CRF1 receptor antagonist CP-154,526, or 15 or 30 µg/kg of the peptidic corticotropin-releasing factor CRF2 receptor antagonist Astressin2-B. Three weeks after the last defeat, conditioned place preference (CPP) induced by 1 mg/kg of cocaine was evaluated. Motor response to 10 mg/kg of cocaine was also studied after a sensitization induction. Blockade of corticotropin-releasing factor CRF1 receptor reversed the increase in cocaine CPP induced by social defeat. Conversely, peripheral corticotropin-releasing factor CRF2 receptor blockade produced similar effects to those observed in socially stressed animals. The effect of RSD on cocaine sensitization was again blocked by the corticotropin-releasing factor CRF1 receptor antagonist, while peripheral CRF2 receptor antagonist did not show effect. Acute administration of Astressin2-B induced an anxiogenic response. Our results confirm that CRF modulates the effects of social stress on reinforcement and sensitization induced by cocaine in contrasting ways. These findings highlight CRF receptors as potential therapeutic targets to be explored by research about stress-related addiction problems.
Collapse
Affiliation(s)
- Carmen Ferrer-Pérez
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - Marina D Reguilón
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - Carmen Manzanedo
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - M Asunción Aguilar
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - José Miñarro
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain.
| |
Collapse
|
28
|
Leonard MZ, DeBold JF, Miczek KA. Escalated cocaine "binges" in rats: enduring effects of social defeat stress or intra-VTA CRF. Psychopharmacology (Berl) 2017; 234:2823-2836. [PMID: 28725939 PMCID: PMC5709163 DOI: 10.1007/s00213-017-4677-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/16/2017] [Indexed: 12/16/2022]
Abstract
RATIONALE Exposure to intermittent social defeat stress elicits corticotropin releasing factor (CRF) release into the VTA and induces long-term modulation of mesocorticolimbic dopamine activity in rats. These adaptations are associated with an intense cocaine-taking phenotype, which is prevented by CRF receptor antagonists. OBJECTIVE The present studies examine whether infusion of CRF into the VTA is sufficient to escalate cocaine-taking behavior, in the absence of social defeat experience. Additionally, we aimed to characterize changes in cocaine valuation that may promote binge-like cocaine intake. METHODS Male Long-Evans rats were microinjected into the VTA with CRF (50 or 500 ng/side), vehicle, or subjected to social defeat stress, intermittently over 10 days. Animals were then trained to self-administer IV cocaine (FR5). Economic demand for cocaine was evaluated using a within-session behavioral-economics threshold procedure, which was followed by a 24-h extended access "binge." RESULTS Rats that experienced social defeat or received intra-VTA CRF microinfusions (50 ng) both took significantly more cocaine than controls over the 24-h binge but showed distinct patterns of intake. Behavioral economic analysis revealed that individual demand for cocaine strongly predicts binge-like consumption, and demand elasticity (i.e. α) is augmented by intra-VTA CRF, but not by social defeat. The effects of CRF on cocaine-taking were also prevented by intra-VTA pretreatment with CP376395, but not Astressin-2B. CONCLUSIONS Repeated infusion of CRF into the VTA persistently alters cocaine valuation and intensifies binge-like drug intake in a CRF-R1-dependent manner. Conversely, the persistent pattern of cocaine bingeing induced by social defeat stress may suggest impaired inhibitory control, independent of reward valuation.
Collapse
Affiliation(s)
| | - Joseph F DeBold
- Department of Psychology, Tufts University, Medford, MA, USA
| | - Klaus A Miczek
- Department of Psychology, Tufts University, Medford, MA, USA.
- Department of Neuroscience, Tufts University, Boston, MA, USA.
| |
Collapse
|
29
|
Han X, DeBold JF, Miczek KA. Prevention and reversal of social stress-escalated cocaine self-administration in mice by intra-VTA CRFR1 antagonism. Psychopharmacology (Berl) 2017; 234:2813-2821. [PMID: 28698920 PMCID: PMC5709170 DOI: 10.1007/s00213-017-4676-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 06/16/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND A history of brief intermittent social defeat stress can escalate cocaine self-administration and induce long-term adaptations in the mesolimbic dopamine system. Extra-hypothalamic corticotrophin releasing factor (CRF) has been shown to be closely associated with stress-induced escalation of drug use. How repeated stress modulates CRF release in the ventral tegmental area (VTA) and the roles of CRF receptors during different phases of stress-induced cocaine self-administration remain to be defined. OBJECTIVE The current study examines the roles of CRF and CRF receptor 1 (CRFR1) in escalated intravenous cocaine self-administration after exposure to social defeat stress in mice. METHODS AND RESULTS First, CRFR1 antagonist (CP 376,395, 15 mg/kg, i.p.) given 30 min prior to each social defeat episode prevented later escalated cocaine self-administration. When CP 376,395 (5 and 15 mg/kg, i.p.) was administered 10 days after the last episode of social stress, the escalation of cocaine intake was dose-dependently reversed. Moreover, socially defeated mice showed increased CRF release in the VTA compared to controls. To further explore the role of CRFR1, CP 376,395 (0.5 and 1 μg/0.2 μl) was infused directly into the VTA before the cocaine self-administration session. Intra-VTA antagonism of CRFR1 was sufficient to reverse social defeat stress-escalated cocaine self-administration. CONCLUSION These findings suggest that CRF and CRFR1 exert multiple roles in the response to social stress that are relevant to escalated cocaine self-administration.
Collapse
Affiliation(s)
- Xiao Han
- Department of Psychology, Tufts University, Medford, MA, 02155, USA
| | - Joseph F. DeBold
- Department of Psychology, Tufts University, Medford, MA, 02155, USA
| | - Klaus A. Miczek
- Department of Psychology, Tufts University, Medford, MA, 02155, USA,Departments of Neuroscience, Pharmacology and Psychiatry, Tufts University, Boston, MA, 02111, USA
| |
Collapse
|
30
|
Aisenberg N, Serova L, Sabban EL, Akirav I. The effects of enhancing endocannabinoid signaling and blocking corticotrophin releasing factor receptor in the amygdala and hippocampus on the consolidation of a stressful event. Eur Neuropsychopharmacol 2017; 27:913-927. [PMID: 28663121 DOI: 10.1016/j.euroneuro.2017.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 04/20/2017] [Accepted: 06/10/2017] [Indexed: 11/18/2022]
Abstract
Current clinical and pre-clinical data suggest that both cannabinoid agents and blockage of CRF through corticotrophin releasing factor receptor type 1 (CRFr1) may offer therapeutic benefits for post-traumatic stress disorder (PTSD). Here we aim to determine whether they are more effective when combined when microinjected into the basolateral amygdala (BLA) or CA1 area of the hippocampus after exposure to a stressful event in the shock/reminders rat model for PTSD. Injection of the fatty acid amide hydrolase (FAAH) inhibitor URB597 after the shock into either the BLA or CA1 facilitated extinction, and attenuated startle response and anxiety-like behavior. These preventive effects of URB597 were found to be mediated by the CB1 receptor. Intra-BLA and intra-CA1 microinjection of the CRFr1 antagonist, CP-154,526 attenuated startle response. When microinjected into the BLA, CP-154,526 also attenuated freezing behavior during exposure to the first reminder and decreased anxiety-like behavior. The combined treatment of URB597 and CP-154,526 was not more effective than the separate treatments. Finally, mRNA levels of CRF, CRFr1 and CB1r were significantly higher in the BLA of rats exposed to shock and reminders compared to non-shocked rats almost one month after the shock. Taken together, the results show that enhancing endocannabinoid signaling in the amygdala and hippocampus produced a more favorable spectrum of effects than those caused by the CRFr1 antagonist. The findings suggest that FAAH inhibitors may be used as a novel treatment for stress-related anxiety disorders.
Collapse
MESH Headings
- Amidohydrolases/antagonists & inhibitors
- Amidohydrolases/metabolism
- Animals
- Anxiety/drug therapy
- Anxiety/metabolism
- Basolateral Nuclear Complex/drug effects
- Basolateral Nuclear Complex/metabolism
- Benzamides/pharmacology
- CA1 Region, Hippocampal/drug effects
- CA1 Region, Hippocampal/metabolism
- Carbamates/pharmacology
- Disease Models, Animal
- Endocannabinoids/metabolism
- Male
- Memory Consolidation/drug effects
- Memory Consolidation/physiology
- Nootropic Agents/pharmacology
- Pyrimidines/pharmacology
- Pyrroles/pharmacology
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/metabolism
- Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors
- Receptors, Corticotropin-Releasing Hormone/metabolism
- Reflex, Startle/drug effects
- Reflex, Startle/physiology
- Stress Disorders, Post-Traumatic/drug therapy
- Stress Disorders, Post-Traumatic/metabolism
- Stress, Psychological/drug therapy
- Stress, Psychological/metabolism
Collapse
Affiliation(s)
- Nurit Aisenberg
- Department of Psychology, University of Haifa, Haifa 3498838, Israel
| | - Lidia Serova
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Irit Akirav
- Department of Psychology, University of Haifa, Haifa 3498838, Israel.
| |
Collapse
|
31
|
Roberto M, Spierling SR, Kirson D, Zorrilla EP. Corticotropin-Releasing Factor (CRF) and Addictive Behaviors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 136:5-51. [PMID: 29056155 PMCID: PMC6155477 DOI: 10.1016/bs.irn.2017.06.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Drug addiction is a complex disorder that is characterized by compulsivity to seek and take the drug, loss of control in limiting intake of the drug, and emergence of a withdrawal syndrome in the absence of the drug. The transition from casual drug use to dependence is mediated by changes in reward and brain stress functions and has been linked to a shift from positive reinforcement to negative reinforcement. The recruitment of brain stress systems mediates the negative emotional state produced by dependence that drives drug seeking through negative reinforcement mechanisms, defined as the "dark side" of addiction. In this chapter we focus on behavioral and cellular neuropharmacological studies that have implicated brain stress systems (i.e., corticotropin-releasing factor [CRF]) in the transition to addiction and the predominant brain regions involved. We also discuss the implication of CRF recruitment in compulsive eating disorders.
Collapse
Affiliation(s)
- Marisa Roberto
- The Scripps Research Institute, La Jolla, CA, United States.
| | | | - Dean Kirson
- The Scripps Research Institute, La Jolla, CA, United States
| | | |
Collapse
|
32
|
Role of dopamine neurotransmission in the long-term effects of repeated social defeat on the conditioned rewarding effects of cocaine. Prog Neuropsychopharmacol Biol Psychiatry 2016; 71:144-54. [PMID: 27476156 DOI: 10.1016/j.pnpbp.2016.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/27/2016] [Accepted: 07/23/2016] [Indexed: 02/06/2023]
Abstract
Numerous studies report that social defeat stress alters dopamine (DA) neurotransmission in several areas of the brain. Alterations of the mesolimbic dopaminergic pathway are believed to be responsible for the increased vulnerability to drug use observed as a result of social stress. In the present study, we evaluated the influence of DA receptors on the long-term effect of repeated social defeat (RSD) on the conditioned rewarding and reinstating effects of cocaine. For this purpose, the D1R antagonist SCH 23390 and the D1R antagonist raclopride were administered 30min before each social defeat and a cocaine-induced CPP procedure was initiated three weeks later. The expression of the D1R and D2R was also measured in the cortex and hippocampus throughout the entire procedure. Mice exposed to RSD showed an increase in the conditioned rewarding effects of cocaine that was blocked by both DA receptors antagonists when a subthreshold dose of cocaine was employed. However, while the vulnerability to reinstatement of the preference induced by 25mg/kg cocaine-induced CPP was abolished by the D1R antagonist, it was practically unaffected by raclopride. Increases in D2R receptor levels were observed in the cortex of defeated animals after the first and fourth social defeats and in the hippocampus 3weeks later. Nevertheless, D1R receptor levels in the hippocampus decreased only after the last social defeat. Our results confirm that RSD enhances the conditioned rewarding effects of cocaine and that both DA receptors are involved in this enduring effect of social stress.
Collapse
|
33
|
Montagud-Romero S, Montesinos J, Pascual M, Aguilar MA, Roger-Sanchez C, Guerri C, Miñarro J, Rodríguez-Arias M. `Up-regulation of histone acetylation induced by social defeat mediates the conditioned rewarding effects of cocaine. Prog Neuropsychopharmacol Biol Psychiatry 2016; 70:39-48. [PMID: 27180319 DOI: 10.1016/j.pnpbp.2016.04.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/24/2016] [Accepted: 04/28/2016] [Indexed: 12/16/2022]
Abstract
Social defeat (SD) induces a long-lasting increase in the rewarding effects of psychostimulants measured using the self-administration and conditioned place procedures (CPP). However, little is known about the epigenetic changes induced by social stress and about their role in the increased response to the rewarding effects of psychostimulants. Considering that histone acetylation regulates transcriptional activity and contributes to drug-induced behavioral changes, we addressed the hypothesis that SD induces transcriptional changes by histone modifications associated with the acquisition of place conditioning. After a fourth defeat, H3(K9) acetylation was decreased in the hippocampus, while there was an increase of HAT and a decrease of HDAC levels in the cortex. Three weeks after the last defeat, mice displayed an increase in histone H4(K12) acetylation and an upregulation of histone acetyl transferase (HAT) activity in the hippocampus. In addition, H3(K4)me3, which is closely associated with transcriptional initiation, was also augmented in the hippocampus three weeks after the last defeat. Inhibition of HAT by curcumin (100mg/kg) before each SD blocked the increase in the conditioned reinforcing effects of 1mg/kg of cocaine, while inhibition of HDAC by valproic acid (500mg/kg) before social stress potentiated cocaine-induced CPP. Preference was reinstated when animals received a priming dose of 0.5mg/kg of cocaine, an effect that was absent in untreated defeated mice. These results suggest that the experience of SD induces chromatin remodeling, alters histone acetylation and methylation, and modifies the effects of cocaine on place conditioning. They also point to epigenetic mechanisms as potential avenues leading to new treatments for the long-term effects of social stress on drug addiction.
Collapse
Affiliation(s)
- S Montagud-Romero
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - J Montesinos
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, C/Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
| | - M Pascual
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, C/Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
| | - M A Aguilar
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - C Roger-Sanchez
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - C Guerri
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, C/Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
| | - J Miñarro
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - M Rodríguez-Arias
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain.
| |
Collapse
|
34
|
Garcia-Keller C, Kupchik Y, Gipson CD, Brown RM, Spencer S, Bollati F, Esparza MA, Roberts-Wolfe D, Heinsbroek J, Bobadilla AC, Cancela LM, Kalivas PW. Glutamatergic mechanisms of comorbidity between acute stress and cocaine self-administration. Mol Psychiatry 2016; 21:1063-9. [PMID: 26821978 PMCID: PMC4823171 DOI: 10.1038/mp.2015.151] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 06/24/2015] [Accepted: 07/07/2015] [Indexed: 12/31/2022]
Abstract
There is substantial comorbidity between stress disorders and substance use disorders (SUDs), and acute stress augments the locomotor stimulant effect of cocaine in animal models. Here we endeavor to understand the neural underpinnings of comorbid stress disorders and drug use by determining whether the glutamatergic neuroadaptations that characterize cocaine self-administration are induced by acute stress. Rats were exposed to acute (2 h) immobilization stress, and 3 weeks later the nucleus accumbens core was examined for changes in glutamate transport, glutamate-mediated synaptic currents and dendritic spine morphology. We also determined whether acute stress potentiated the acquisition of cocaine self-administration. Acute stress produced an enduring reduction in glutamate transport and potentiated excitatory synapses on medium spiny neurons. Acute stress also augmented the acquisition of cocaine self-administration. Importantly, by restoring glutamate transport in the accumbens core with ceftriaxone the capacity of acute stress to augment the acquisition of cocaine self-administration was abolished. Similarly, ceftriaxone treatment prevented stress-induced potentiation of cocaine-induced locomotor activity. However, ceftriaxone did not reverse stress-induced synaptic potentiation, indicating that this effect of stress exposure did not underpin the increased acquisition of cocaine self-administration. Reversing acute stress-induced vulnerability to self-administer cocaine by normalizing glutamate transport poses a novel treatment possibility for reducing comorbid SUDs in stress disorders.
Collapse
Affiliation(s)
- Constanza Garcia-Keller
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA,IFEC-CONICET, Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Yonatan Kupchik
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem, Israel 9112102
| | - Cassandra D Gipson
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Robyn M Brown
- Florey Institute of Neuroscience & Mental Health, University of Melbourne, Parkville, Australia
| | - Sade Spencer
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Flavia Bollati
- IFEC-CONICET, Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maria A Esparza
- IFEC-CONICET, Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Doug Roberts-Wolfe
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Jasper Heinsbroek
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Ana-Clara Bobadilla
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Liliana M Cancela
- IFEC-CONICET, Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA,Corresponding Author. Peter Kalivas, Ph.D., , Phone: 843-876-2340, FAX: 843-792-4423
| |
Collapse
|
35
|
Burke AR, DeBold JF, Miczek KA. CRF type 1 receptor antagonism in ventral tegmental area of adolescent rats during social defeat: prevention of escalated cocaine self-administration in adulthood and behavioral adaptations during adolescence. Psychopharmacology (Berl) 2016; 233:2727-36. [PMID: 27251131 PMCID: PMC4919183 DOI: 10.1007/s00213-016-4336-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/03/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND Activation of corticotropin-releasing factor type 1 receptors (CRF-R1) in the ventral tegmental area (VTA) represents a critical mechanism for social defeat to escalate cocaine self-administration in adult rats. OBJECTIVE We determined the acute effect of a CRF-R1 antagonist (CP376395) microinfusion into the VTA prior to each episode of social defeat in adolescent rats and determined whether this drug treatment could prevent later escalation of cocaine taking in early adulthood. METHODS Rats were implanted with bilateral cannulae aimed at the VTA 5 days before the first social defeat. Bilateral microinfusion of CP376395 (500 ng/side) or vehicle occurred 20 min before each episode of social defeat on postnatal days (P) 35, 38, 41, and 44. Behavior was quantified on P35 and P44. On P57, rats were implanted with intra-jugular catheters, and subsequent cocaine self-administration was analyzed. RESULTS CP376395-treated adolescent rats walked less and were attacked more slowly but were socially investigated more than vehicle-treated adolescents. Vehicle-treated rats showed increased social and decreased non-social exploration from P35 to P44, while CP376395-treated rats did not. Socially defeated, vehicle-treated adolescents took more cocaine during a 24-h unlimited access binge during adulthood. The latency to supine posture on P44 was inversely correlated with later cocaine self-administration during fixed and progressive ratio schedules of reinforcement and during the binge. CONCLUSIONS CP376395 treatment in adolescence blocked escalation of cocaine taking in adulthood. Episodes of social defeat stress engender neuroadaptation in CRF-R1s in the VTA that alter coping with social stress and that persist into adulthood.
Collapse
Affiliation(s)
- Andrew R Burke
- Department of Psychology, Tufts University, 530 Boston Avenue (Bacon Hall), Medford, MA, 02155, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Joseph F DeBold
- Department of Psychology, Tufts University, 530 Boston Avenue (Bacon Hall), Medford, MA, 02155, USA
| | - Klaus A Miczek
- Department of Psychology, Tufts University, 530 Boston Avenue (Bacon Hall), Medford, MA, 02155, USA.
- Department of Neuroscience, Tufts University, Boston, MA, 02111, USA.
- Department of Pharmacology, Tufts University, Boston, MA, 02111, USA.
- Department of Psychiatry, Tufts University, Boston, MA, 02111, USA.
| |
Collapse
|
36
|
Ng E, Browne CJ, Samsom JN, Wong AHC. Depression and substance use comorbidity: What we have learned from animal studies. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2016; 43:456-474. [PMID: 27315335 DOI: 10.1080/00952990.2016.1183020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Depression and substance use disorders are often comorbid, but the reasons for this are unclear. In human studies, it is difficult to determine how one disorder may affect predisposition to the other and what the underlying mechanisms might be. Instead, animal studies allow experimental induction of behaviors relevant to depression and drug-taking, and permit direct interrogation of changes to neural circuits and molecular pathways. While this field is still new, here we review animal studies that investigate whether depression-like states increase vulnerability to drug-taking behaviors. Since chronic psychosocial stress can precipitate or predispose to depression in humans, we review studies that use psychosocial stressors to produce depression-like phenotypes in animals. Specifically, we describe how postweaning isolation stress, repeated social defeat stress, and chronic mild (or unpredictable) stress affect behaviors relevant to substance abuse, especially operant self-administration. Potential brain changes mediating these effects are also discussed where available, with an emphasis on mesocorticolimbic dopamine circuits. Postweaning isolation stress and repeated social defeat generally increase acquisition or maintenance of drug self-administration, and alter dopamine sensitivity in various brain regions. However, the effects of chronic mild stress on drug-taking have been much less studied. Future studies should consider standardizing stress-induction protocols, including female subjects, and using multi-hit models (e.g. genetic vulnerabilities and environmental stress).
Collapse
Affiliation(s)
- Enoch Ng
- a Lunenfeld-Tanenbaum Research Institute , Mount Sinai Hospital , Toronto , Canada.,b Institute of Medical Science, University of Toronto , Toronto , Canada
| | - Caleb J Browne
- c Department of Psychology , University of Toronto , Toronto , Canada.,d Campbell Family Health Institute , Centre for Addiction and Mental Health , Toronto , Canada
| | - James N Samsom
- d Campbell Family Health Institute , Centre for Addiction and Mental Health , Toronto , Canada.,e Department of Pharmacology , University of Toronto , Toronto , Canada
| | - Albert H C Wong
- b Institute of Medical Science, University of Toronto , Toronto , Canada.,d Campbell Family Health Institute , Centre for Addiction and Mental Health , Toronto , Canada.,e Department of Pharmacology , University of Toronto , Toronto , Canada.,f Department of Psychiatry , University of Toronto , Toronto , Canada
| |
Collapse
|
37
|
Hwa LS, Holly EN, DeBold JF, Miczek KA. Social stress-escalated intermittent alcohol drinking: modulation by CRF-R1 in the ventral tegmental area and accumbal dopamine in mice. Psychopharmacology (Berl) 2016; 233:681-90. [PMID: 26576941 PMCID: PMC4729595 DOI: 10.1007/s00213-015-4144-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 10/29/2015] [Indexed: 12/22/2022]
Abstract
RATIONALE Excessive alcohol (EtOH) drinking is difficult to model in animals despite the extensive human literature demonstrating that stress increases EtOH consumption. OBJECTIVE The current experiments show escalations in voluntary EtOH drinking caused by a history of social defeat stress and intermittent access to EtOH in C57BL/6J mice compared to non-stressed mice given intermittent EtOH or continuous EtOH. To explore a mechanistic link between stress and drinking, we studied the role of corticotropin-releasing factor type-1 receptors (CRF-R1) in the dopamine-rich ventral tegmental area (VTA). RESULTS Intra-VTA infusions of a CRF-R1 antagonist, CP376395, infused into the VTA dose-dependently and selectively reduced intermittent EtOH intake in stressed and non-stressed mice, but not in mice given continuous EtOH. In contrast, intra-VTA infusions of the CRF-R2 antagonist astressin2B non-specifically suppressed both EtOH and H2O drinking in the stressed group without effects in the non-stressed mice. Using in vivo microdialysis in the nucleus accumbens (NAc) shell, we observed that stressed mice drinking EtOH intermittently had elevated levels of tonic dopamine concentrations compared to non-stressed drinking mice. Also, VTA CP376395 potentiated dopamine output to the NAc only in the stressed group causing further elevations of dopamine post-infusion. CONCLUSIONS These findings illustrate a role for extrahypothalamic CRF-R1 as especially important for stress-escalated EtOH drinking beyond schedule-escalated EtOH drinking. CRF-R1 may be a mechanism for balancing the dysregulation of stress and reward in alcohol use disorders.
Collapse
Affiliation(s)
- Lara S Hwa
- Psychology Department, Tufts University, 530 Boston Avenue, Medford, MA, 02155, USA
| | - Elizabeth N Holly
- Psychology Department, Tufts University, 530 Boston Avenue, Medford, MA, 02155, USA
| | - Joseph F DeBold
- Psychology Department, Tufts University, 530 Boston Avenue, Medford, MA, 02155, USA
| | - Klaus A Miczek
- Psychology Department, Tufts University, 530 Boston Avenue, Medford, MA, 02155, USA.
- Neuroscience Department, Tufts University, Boston, MA, 02111, USA.
| |
Collapse
|
38
|
García-Pardo MP, Blanco-Gandía MC, Valiente-Lluch M, Rodríguez-Arias M, Miñarro J, Aguilar MA. Long-term effects of repeated social stress on the conditioned place preference induced by MDMA in mice. Prog Neuropsychopharmacol Biol Psychiatry 2015; 63:98-109. [PMID: 26093344 DOI: 10.1016/j.pnpbp.2015.06.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/26/2015] [Accepted: 06/09/2015] [Indexed: 02/07/2023]
Abstract
Previous studies have demonstrated that social defeat stress increases the rewarding effects of psychostimulant drugs such as cocaine and amphetamine. In the present study we evaluated the long-term effects of repeated social defeat (RSD) on the rewarding effects of ±3,4-methylenedioxymethamphetamine (MDMA) hydrochloride in the conditioned place preference (CPP) paradigm. Adolescent and young adult mice were exposed to four episodes of social defeat (on PND 29-40 and PND 47-56, respectively) and were conditioned three weeks later with 1.25 or 10mg/kg i.p. of MDMA (experiment 1). The long-term effects of RSD on anxiety, social behavior and cognitive processes were also evaluated in adult mice (experiment 2). RSD during adolescence enhanced vulnerability to priming-induced reinstatement in animals conditioned with 1.25mg/kg of MDMA and increased the duration of the CPP induced by the 10mg/kg of MDMA. The latter effect was also observed after RSD in young adult mice, as well as an increase in anxiety-like behavior, an alteration in social interaction (reduction in attack and increase in avoidance/flee and defensive/submissive behaviors) and an impairment of maze learning. These results support the idea that RSD stress increases the rewarding effects of MDMA and induces long-term alterations in anxiety, learning and social behavior in adult mice. Thus, exposure to stress may increase the vulnerability of individuals to developing MDMA dependence, which is a factor to be taken into account in relation to the prevention and treatment of this disorder.
Collapse
Affiliation(s)
- M P García-Pardo
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiologia, Facultad de Psicología, Universidad de Valencia, Spain
| | - M C Blanco-Gandía
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiologia, Facultad de Psicología, Universidad de Valencia, Spain
| | - M Valiente-Lluch
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiologia, Facultad de Psicología, Universidad de Valencia, Spain
| | - M Rodríguez-Arias
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiologia, Facultad de Psicología, Universidad de Valencia, Spain
| | - J Miñarro
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiologia, Facultad de Psicología, Universidad de Valencia, Spain
| | - M A Aguilar
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiologia, Facultad de Psicología, Universidad de Valencia, Spain.
| |
Collapse
|
39
|
Kang-Park M, Kieffer BL, Roberts AJ, Siggins GR, Moore SD. Interaction of CRF and kappa opioid systems on GABAergic neurotransmission in the mouse central amygdala. J Pharmacol Exp Ther 2015; 355:206-11. [PMID: 26350161 DOI: 10.1124/jpet.115.225870] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/04/2015] [Indexed: 01/09/2023] Open
Abstract
The corticotropin-releasing factor (CRF) and kappa-opioid receptor (KOR) systems are both implicated in stress-related behaviors and drug dependence. Although previous studies suggest that antagonism of each system blocks aspects of experimental models of drug dependence, the possible interaction between these systems at the neuronal level has not been completely examined. We used an in vitro brain slice preparation to investigate the interaction of these two peptide systems on inhibitory neurotransmission in the central nucleus of the amygdala (CeA). Application of exogenous CRF increased the mean frequency of GABAergic miniature inhibitory postsynaptic currents (mIPSC) by 20.2%, suggesting an increase in presynaptic GABA release. Although the pharmacological blockade of KORs by norBNI alone did not significantly affect mIPSC frequency, it significantly enhanced the effect of CRF (by 43.9%, P = 0.02). Similarly, the CRF effects in slices from KOR knockout (KO) mice (84.0% increase) were significantly greater than in wild-type (WT) mice (24.6%, P = 0.01), although there was no significant difference in baseline mIPSC frequency between slices from KOR KO and WT mice. The increase in CRF action in the presence of norBNI was abolished by a CRF-1 receptor antagonist but was unaffected by a CRF-2 receptor antagonist. We hypothesize that CRF facilitates the release of an endogenous ligand for KORs and that subsequent activation of KOR receptors modulates presynaptic effects of CRF in CeA. These results suggest that potential pharmacotherapies aimed at neurobehavioral and addictive disorders may need to involve both the KOR/dynorphin and the CRF systems in CeA.
Collapse
Affiliation(s)
- Maenghee Kang-Park
- Department of Psychiatry, Duke University Medical Center, and Research Service, Veterans Administration Medical Center, Durham, North Carolina (M.K., S.D.M.); IGBMC, CNRS/INSERM/ULP, Strasbourg, France, and McGill, Douglas Institute Research Center, Montréal, Canada (B.L.K.); Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, and Alcohol Research Center, La Jolla, California (A.J.R., G.R.S.)
| | - Brigitte L Kieffer
- Department of Psychiatry, Duke University Medical Center, and Research Service, Veterans Administration Medical Center, Durham, North Carolina (M.K., S.D.M.); IGBMC, CNRS/INSERM/ULP, Strasbourg, France, and McGill, Douglas Institute Research Center, Montréal, Canada (B.L.K.); Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, and Alcohol Research Center, La Jolla, California (A.J.R., G.R.S.)
| | - Amanda J Roberts
- Department of Psychiatry, Duke University Medical Center, and Research Service, Veterans Administration Medical Center, Durham, North Carolina (M.K., S.D.M.); IGBMC, CNRS/INSERM/ULP, Strasbourg, France, and McGill, Douglas Institute Research Center, Montréal, Canada (B.L.K.); Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, and Alcohol Research Center, La Jolla, California (A.J.R., G.R.S.)
| | - George R Siggins
- Department of Psychiatry, Duke University Medical Center, and Research Service, Veterans Administration Medical Center, Durham, North Carolina (M.K., S.D.M.); IGBMC, CNRS/INSERM/ULP, Strasbourg, France, and McGill, Douglas Institute Research Center, Montréal, Canada (B.L.K.); Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, and Alcohol Research Center, La Jolla, California (A.J.R., G.R.S.)
| | - Scott D Moore
- Department of Psychiatry, Duke University Medical Center, and Research Service, Veterans Administration Medical Center, Durham, North Carolina (M.K., S.D.M.); IGBMC, CNRS/INSERM/ULP, Strasbourg, France, and McGill, Douglas Institute Research Center, Montréal, Canada (B.L.K.); Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, and Alcohol Research Center, La Jolla, California (A.J.R., G.R.S.)
| |
Collapse
|
40
|
Kalló I, Molnár CS, Szöke S, Fekete C, Hrabovszky E, Liposits Z. Area-specific analysis of the distribution of hypothalamic neurons projecting to the rat ventral tegmental area, with special reference to the GABAergic and glutamatergic efferents. Front Neuroanat 2015; 9:112. [PMID: 26388742 PMCID: PMC4559648 DOI: 10.3389/fnana.2015.00112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/30/2015] [Indexed: 12/22/2022] Open
Abstract
The ventral tegmental area (VTA) is a main regulator of reward and integrates a wide scale of hormonal and neuronal information. Feeding-, energy expenditure-, stress, adaptation- and reproduction-related hypothalamic signals are processed in the VTA and influence the reward processes. However, the neuroanatomical origin and chemical phenotype of neurons mediating these signals to the VTA have not been fully characterized. In this study we have systematically mapped hypothalamic neurons that project to the VTA using the retrograde tracer Choleratoxin B subunit (CTB) and analyzed their putative gamma-aminobutyric acid (GABA) and/or glutamate character with in situ hybridization in male rats. 23.93 ± 3.91% of hypothalamic neurons projecting to the VTA was found in preoptic and 76.27 ± 4.88% in anterior, tuberal and mammillary hypothalamic regions. Nearly half of the retrogradely-labeled neurons in the preoptic, and more than one third in the anterior, tuberal and mammillary hypothalamus appeared in medially located regions. The analyses of vesicular glutamate transporter 2 (VGLUT2) and glutamate decarboxylase 65 (GAD65) mRNA expression revealed both amino acid markers in different subsets of retrogradely-labeled hypothalamic neurons, typically with the predominance of the glutamatergic marker VGLUT2. About one tenth of CTB-IR neurons were GAD65-positive even in hypothalamic nuclei expressing primarily VGLUT2. Some regions were populated mostly by GAD65 mRNA-containing retrogradely-labeled neurons. These included the perifornical part of the lateral hypothalamus where 58.63 ± 19.04% of CTB-IR neurons were GABAergic. These results indicate that both the medial and lateral nuclear compartments of the hypothalamus provide substantial input to the VTA. Furthermore, colocalization studies revealed that these projections not only use glutamate but also GABA for neurotransmission. These GABAergic afferents may underlie important inhibitory mechanism to fine-tune the reward value of specific signals in the VTA.
Collapse
Affiliation(s)
- Imre Kalló
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary ; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University Budapest, Hungary
| | - Csilla S Molnár
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Sarolta Szöke
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Csaba Fekete
- Laboratory of Integrative Neuroendocrinology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary ; Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical Center Boston, MA, USA
| | - Erik Hrabovszky
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary ; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University Budapest, Hungary
| |
Collapse
|
41
|
Escalation of cocaine self-administration in adulthood after social defeat of adolescent rats: role of social experience and adaptive coping behavior. Psychopharmacology (Berl) 2015; 232:3067-79. [PMID: 25943168 PMCID: PMC4515153 DOI: 10.1007/s00213-015-3947-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/19/2015] [Indexed: 01/29/2023]
Abstract
BACKGROUND The link between adolescent social stress and substance abuse is modeled in social defeat of adolescent male rats, at an age when social experiences are essential for neurobehavioral maturation. OBJECTIVE We investigated the role of social experience and social defeat stress during adolescence on social behavior and cocaine self-administration (CocSelfAd) in early adulthood. METHODS We manipulated social experience by housing male rats in pairs (PH) or singly (SH) on postnatal day (P) 21. In addition, rats were subjected to social defeat from P35-44. Social behavior was measured during the first and last social defeat in PH and SH adolescents and PH adults. After assessing the behavioral response to novelty and cocaine (P57-61), intrajugular catheters were implanted and CocSelfAd was analyzed. RESULTS Residents were less aggressive toward PH adolescent intruders compared to PH adult intruders. Adults were submissive and defensive when attacked, whereas PH adolescents froze. In the course of repeated defeats, adolescent PH rats increased freezing, while SH rats decreased freezing. Longer attack-induced freezing after repeated defeats predicted escalated CocSelfAd in adulthood. PH controls acquired CocSelfAd more slowly than PH defeated and SH rats. Defeated PH rats increased CocSelfAd during progressive ratio schedules of reinforcement and during a 24-h continuous access binge compared to PH controls and SH defeated rats. CONCLUSIONS Social defeat in adolescence of PH rats caused persistent increases in adult CocSelfAd. Adolescent PH rats coped with attacks adaptively by increasing freezing behavior after repeated social defeats, a measure that predicted CocSelfAd in adulthood.
Collapse
|
42
|
Acute social defeat stress increases the conditioned rewarding effects of cocaine in adult but not in adolescent mice. Pharmacol Biochem Behav 2015; 135:1-12. [DOI: 10.1016/j.pbb.2015.05.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 04/27/2015] [Accepted: 05/04/2015] [Indexed: 02/06/2023]
|
43
|
Yap JJ, Chartoff EH, Holly EN, Potter DN, Carlezon WA, Miczek KA. Social defeat stress-induced sensitization and escalated cocaine self-administration: the role of ERK signaling in the rat ventral tegmental area. Psychopharmacology (Berl) 2015; 232:1555-69. [PMID: 25373870 PMCID: PMC4397167 DOI: 10.1007/s00213-014-3796-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 10/21/2014] [Indexed: 01/20/2023]
Abstract
RATIONALE Intermittent social defeat stress can induce neuroadaptations that promote compulsive drug taking. Within the mesocorticolimbic circuit, repeated cocaine administration activates extracellular signal-regulated kinase (ERK). OBJECTIVE The present experiments examine whether changes in ERK phosphorylation are necessary for the behavioral and neural adaptations that occur as a consequence of intermittent defeat stress. MATERIALS AND METHODS Rats were exposed to four brief intermittent defeats over the course of 10 days. Ten days after the last defeat, rats were challenged with cocaine (10 mg/kg, i.p.) or saline, and ERK activity was examined in mesocorticolimbic regions. To determine the role of ERK in defeat stress-induced behavioral sensitization, we bilaterally microinjected the MAPK/ERK kinase inhibitor U0126 (1 μg/side) or vehicle (20 % DMSO) into the ventral tegmental area (VTA) prior to each of four defeats. Ten days following the last defeat, locomotor activity was assessed for the expression of behavioral cross-sensitization to cocaine (10 mg/kg, i.p.). Thereafter, rats self-administered cocaine under fixed and progressive ratio schedules of reinforcement, including a 24-h continuous access "binge" (0.3 mg/kg/infusion). RESULTS We found that repeated defeat stress increased ERK phosphorylation in the VTA. Inhibition of VTA ERK prior to each social defeat attenuated the development of stress-induced sensitization and prevented stress-induced enhancement of cocaine self-administration during a continuous access binge. CONCLUSIONS These results suggest that enhanced activation of ERK in the VTA due to brief defeats is critical in the induction of sensitization and escalated cocaine taking.
Collapse
Affiliation(s)
- Jasmine J Yap
- Department of Psychology, Tufts University, Medford, MA, 02155, USA,
| | | | | | | | | | | |
Collapse
|
44
|
Koob GF. The dark side of emotion: the addiction perspective. Eur J Pharmacol 2015; 753:73-87. [PMID: 25583178 PMCID: PMC4380644 DOI: 10.1016/j.ejphar.2014.11.044] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/06/2014] [Accepted: 11/26/2014] [Indexed: 01/04/2023]
Abstract
Emotions are "feeling" states and classic physiological emotive responses that are interpreted based on the history of the organism and the context. Motivation is a persistent state that leads to organized activity. Both are intervening variables and intimately related and have neural representations in the brain. The present thesis is that drugs of abuse elicit powerful emotions that can be interwoven conceptually into this framework. Such emotions range from pronounced euphoria to a devastating negative emotional state that in the extreme can create a break with homeostasis and thus an allostatic hedonic state that has been considered key to the etiology and maintenance of the pathophysiology of addiction. Drug addiction can be defined as a three-stage cycle-binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation-that involves allostatic changes in the brain reward and stress systems. Two primary sources of reinforcement, positive and negative reinforcement, have been hypothesized to play a role in this allostatic process. The negative emotional state that drives negative reinforcement is hypothesized to derive from dysregulation of key neurochemical elements involved in the brain incentive salience and stress systems. Specific neurochemical elements in these structures include not only decreases in incentive salience system function in the ventral striatum (within-system opponent processes) but also recruitment of the brain stress systems mediated by corticotropin-releasing factor (CRF), dynorphin-κ opioid systems, and norepinephrine, vasopressin, hypocretin, and substance P in the extended amygdala (between-system opponent processes). Neuropeptide Y, a powerful anti-stress neurotransmitter, has a profile of action on compulsive-like responding for drugs similar to a CRF1 receptor antagonist. Other stress buffers include nociceptin and endocannabinoids, which may also work through interactions with the extended amygdala. The thesis argued here is that the brain has specific neurochemical neurocircuitry coded by the hedonic extremes of pleasant and unpleasant emotions that have been identified through the study of opponent processes in the domain of addiction. These neurochemical systems need to be considered in the context of the framework that emotions involve the specific brain regions now identified to differentially interpreting emotive physiological expression.
Collapse
Affiliation(s)
- George F Koob
- National Institute on Alcohol Abuse and Alcoholism, Washington, DC, USA.
| |
Collapse
|
45
|
Social stress and escalated drug self-administration in mice I. Alcohol and corticosterone. Psychopharmacology (Berl) 2015; 232:991-1001. [PMID: 25242256 PMCID: PMC4339510 DOI: 10.1007/s00213-014-3733-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/26/2014] [Indexed: 12/20/2022]
Abstract
RATIONALE Stress experiences have been shown to be a risk factor for alcohol abuse in humans; however, a reliable mouse model using episodic social stress has yet to be developed. OBJECTIVES The current studies investigated the effects of mild and moderate social defeat protocols on plasma corticosterone, voluntary alcohol drinking, and motivation to drink alcohol. METHODS Outbred Carworth Farms Webster (CFW) mice were socially defeated for 10 days during which the intruder mouse underwent mild (15 bites: mean = 1.5 min) or moderate (30 bites: mean = 3.8 min) stress. Plasma corticosterone was measured on days 1 and 10 of the defeat. Ethanol drinking during continuous access to alcohol was measured 10 days following the defeat or 10 days prior to, during, and 20 days after the defeat. Motivation to drink was determined using a progressive ratio (PR) operant conditioning schedule during intermittent access to alcohol. RESULTS Plasma corticosterone was elevated in both stress groups on days 1 and 10. Ethanol consumption and preference following moderate stress were higher (13.3 g/kg/day intake) than both the mild stress group (8.0 g/kg/day) and controls (7.4 g/kg/day). Mice with previously acquired ethanol drinking showed decreased alcohol consumption during the moderate stress followed by an increase 20 days post-defeat. Moderately stressed mice also showed escalated ethanol intake and self-administration during a schedule of intermittent access to alcohol. CONCLUSION Social defeat experiences of moderate intensity and duration led to increased ethanol drinking and preference in CFW mice. Ongoing work investigates the interaction between glucocorticoids and dopaminergic systems as neural mechanisms for stress-escalated alcohol consumption.
Collapse
|
46
|
Grieder TE, Herman MA, Contet C, Tan LA, Vargas-Perez H, Cohen A, Chwalek M, Maal-Bared G, Freiling J, Schlosburg JE, Clarke L, Crawford E, Koebel P, Repunte-Canonigo V, Sanna PP, Tapper AR, Roberto M, Kieffer BL, Sawchenko PE, Koob GF, van der Kooy D, George O. VTA CRF neurons mediate the aversive effects of nicotine withdrawal and promote intake escalation. Nat Neurosci 2014; 17:1751-8. [PMID: 25402857 PMCID: PMC4241147 DOI: 10.1038/nn.3872] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/17/2014] [Indexed: 12/15/2022]
Abstract
Dopaminergic neurons in the ventral tegmental area (VTA) are well known for mediating the positive reinforcing effects of drugs of abuse. Here we identify in rodents and humans a population of VTA dopaminergic neurons expressing corticotropin-releasing factor (CRF). We provide further evidence in rodents that chronic nicotine exposure upregulates Crh mRNA (encoding CRF) in dopaminergic neurons of the posterior VTA, activates local CRF1 receptors and blocks nicotine-induced activation of transient GABAergic input to dopaminergic neurons. Local downregulation of Crh mRNA and specific pharmacological blockade of CRF1 receptors in the VTA reversed the effect of nicotine on GABAergic input to dopaminergic neurons, prevented the aversive effects of nicotine withdrawal and limited the escalation of nicotine intake. These results link the brain reward and stress systems in the same brain region to signaling of the negative motivational effects of nicotine withdrawal.
Collapse
Affiliation(s)
- Taryn E Grieder
- Institute of Medical Science and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Melissa A Herman
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California, USA
| | - Candice Contet
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California, USA
| | - Laura A Tan
- The Salk Institute, La Jolla, California, USA
| | - Hector Vargas-Perez
- Institute of Medical Science and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Ami Cohen
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California, USA
| | - Michal Chwalek
- Institute of Medical Science and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Geith Maal-Bared
- Institute of Medical Science and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - John Freiling
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California, USA
| | - Joel E Schlosburg
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California, USA
| | - Laura Clarke
- Institute of Medical Science and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Elena Crawford
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California, USA
| | - Pascale Koebel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS / INSERM / Université de Strasbourg, Illkirch, France
| | - Vez Repunte-Canonigo
- Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California, USA
| | - Pietro P Sanna
- Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California, USA
| | - Andrew R Tapper
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Marisa Roberto
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California, USA
| | - Brigitte L Kieffer
- 1] Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS / INSERM / Université de Strasbourg, Illkirch, France. [2] Douglas Hospital Research Center, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | | | - George F Koob
- National Institute on Alcohol Abuse and Alcoholism, Rockville, Maryland, USA
| | - Derek van der Kooy
- Institute of Medical Science and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Olivier George
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
47
|
Knockdown of CRF1 receptors in the ventral tegmental area attenuates cue- and acute food deprivation stress-induced cocaine seeking in mice. J Neurosci 2014; 34:11560-70. [PMID: 25164654 DOI: 10.1523/jneurosci.4763-12.2014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Corticotrophin-releasing factor (CRF) modulates the influence of stress on cocaine reward and reward seeking acting at multiple sites, including the ventral tegmental area (VTA). There is controversy, however, concerning the contribution of CRF receptor type 1 (CRFR1) to this effect and whether CRF within the VTA is involved in other aspects of reward seeking independent of acute stress. Here we examine the role of CRFR1 within the VTA in relation to cocaine and natural reward using viral delivery of short hairpin RNAs (lenti-shCRFR1) and investigate the effect on operant self-administration and motivation to self-administer, as well as stress- and cue-induced reward seeking in mice. While knockdown of CRFR1 in the VTA had no effect on self-administration behavior for either cocaine or sucrose, it effectively blocked acute food deprivation stress-induced reinstatement of cocaine seeking. We also observed reduced cue-induced cocaine seeking assessed in a single extinction session after extended abstinence, but cue-induced sucrose seeking was unaffected, suggesting dissociation between the contribution of CRFR1 in the VTA in cocaine reward and sucrose and cocaine seeking. Further, our data indicate a role for VTA CRFR1 signaling in cocaine seeking associated with, and independent of, stress potentially involving conditioning and/or salience attribution of cocaine reward-related cues. CRFR1 signaling in the VTA therefore presents a target for convergent effects of both cue- and stress-induced cocaine-seeking pathways.
Collapse
|
48
|
Effects of acute social stress on the conditioned place preference induced by MDMA in adolescent and adult mice. Behav Pharmacol 2014; 25:532-46. [DOI: 10.1097/fbp.0000000000000065] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
49
|
Waters RP, Moorman DE, Young AB, Feltenstein MW, See RE. Assessment of a proposed "three-criteria" cocaine addiction model for use in reinstatement studies with rats. Psychopharmacology (Berl) 2014; 231:3197-205. [PMID: 24615055 DOI: 10.1007/s00213-014-3497-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 02/07/2014] [Indexed: 01/08/2023]
Abstract
RATIONALE Relapse is a primary obstacle in the treatment of addiction disorders, and as such, understanding this phenomenon is a major effort of clinical and preclinical studies of cocaine addiction. OBJECTIVE A recently developed protocol uses laboratory rats to model cocaine addiction by examining three criteria of addiction-like behaviors (persistent seeking in the absence of drug, high motivation for drug, and resistance to punishment during drug seeking) to detect subjects that possess an addiction phenotype. We closely followed this protocol in order to detect rats possessing this addiction phenotype, with the goal of utilizing this model in future studies investigating potential therapies for relapse in human cocaine addicts. RESULTS The majority of the rats used in this study exhibited multiple characteristics thought to be associated with addiction-like behavior in rats, including robust reinstatement to multiple stimuli and high motivation to obtain cocaine. However, no rats displayed the complete addiction phenotype as previously described, due to a complete lack of addiction-like behavior in all subjects on two of the three addiction criteria (drug seeking in the absence of drug and resistance to punishment). CONCLUSIONS Our data highlight the independence of behavioral aspects of a rat addiction-like phenotype and suggest that some of these behavioral criteria may be altogether absent in some rat populations. Furthermore, our results suggest a closer review and analysis of some parameters used in this protocol and its global utility.
Collapse
Affiliation(s)
- R Parrish Waters
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Charité Platz 1, 10117, Berlin, Germany,
| | | | | | | | | |
Collapse
|
50
|
Role of GABA-active neurosteroids in the efficacy of metyrapone against cocaine addiction. Behav Brain Res 2014; 271:269-76. [PMID: 24959859 DOI: 10.1016/j.bbr.2014.06.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/09/2014] [Accepted: 06/16/2014] [Indexed: 01/29/2023]
Abstract
Previous research has demonstrated a complicated role for stress and HPA axis activation in potentiating various cocaine-related behaviors in preclinical models of drug dependence. However, the investigation of several antiglucocorticoid therapies has yielded equivocal results in reducing cocaine-related behaviors, possibly because of varying mechanisms of actions. Specifically, research suggests that metyrapone (a corticosterone synthesis inhibitor) may reduce cocaine self-administration in rats via a nongenomic, extra-adrenal mechanism without altering plasma corticosterone. In the current experiments, male rats were trained to self-administer cocaine infusions and food pellets in a multiple, alternating schedule of reinforcement. Metyrapone pretreatment dose-dependently decreased cocaine self-administration as demonstrated previously. Pharmacological inhibition of neurosteroid production by finasteride had significant effects on cocaine self-administration, regardless of metyrapone pretreatment. However, metyrapone's effects on cocaine self-administration were significantly attenuated with bicuculline pretreatment, suggesting a role for GABA-active neurosteroids in cocaine-reinforced behaviors. In vitro binding data also confirmed that metyrapone does not selectively bind to GABA-related proteins. The results of these experiments support the hypothesis that metyrapone may increase neurosteroidogenesis to produce effects on cocaine-related behaviors.
Collapse
|