1
|
Kroll T, Miranda A, Drechsel A, Beer S, Lang M, Drzezga A, Rosa-Neto P, Verhaeghe J, Elmenhorst D, Bauer A. Dynamic neuroreceptor positron emission tomography in non-anesthetized rats using point source based motion correction: A feasibility study with [ 11C]ABP688. J Cereb Blood Flow Metab 2024; 44:1852-1866. [PMID: 38684219 PMCID: PMC11504418 DOI: 10.1177/0271678x241239133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/25/2024] [Accepted: 02/14/2024] [Indexed: 05/02/2024]
Abstract
To prevent motion artifacts in small animal positron emission tomography (PET), animals are routinely scanned under anesthesia or physical restraint. Both may potentially alter metabolism and neurochemistry. This study investigates the feasibility of fully awake acquisition and subsequent absolute quantification of dynamic brain PET data via pharmacokinetic modelling in moving rats using the glutamate 5 receptor radioligand [11C]ABP688 and point source based motion correction. Five male rats underwent three dynamic [11C]ABP688 PET scans: two test-retest awake PET scans and one scan under anesthesia for comparison. Specific radioligand binding was determined via the simplified reference tissue model (reference: cerebellum) and outcome parameters BPND and R1 were evaluated in terms of stability and reproducibility. Test-retest measurements in awake animals gave reliable results with high correlations of BPND (y = 1.08 × -0.2, r = 0.99, p < 0.01) and an acceptable variability (mean over all investigated regions 15.7 ± 2.4%). Regional [11C]ABP688 BPNDs under awake and anesthetized conditions were comparable although in awake scans, absolute radioactive peak uptakes were lower and relative blood flow in terms of R1 was higher. Awake small animal PET with absolute quantification of neuroreceptor availability is technically feasible and reproducible thereby providing a suitable alternative whenever effects of anesthesia are undesirable, e.g. in sleep research.
Collapse
Affiliation(s)
- Tina Kroll
- Institute of Neurosciences and Medicine (INM-2), Forschungszentrum Jülich GmbH, Germany
| | - Alan Miranda
- Molecular Imaging Center Antwerp, University of Antwerp, Belgium
| | - Alexandra Drechsel
- Institute of Neurosciences and Medicine (INM-2), Forschungszentrum Jülich GmbH, Germany
| | - Simone Beer
- Institute of Neurosciences and Medicine (INM-2), Forschungszentrum Jülich GmbH, Germany
| | - Markus Lang
- Institute of Neurosciences and Medicine (INM-5), Forschungszentrum Jülich GmbH, Germany
| | - Alexander Drzezga
- Institute of Neurosciences and Medicine (INM-2), Forschungszentrum Jülich GmbH, Germany
- Department of Nuclear Medicine, University Hospital Cologne, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn-Cologne, Germany
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Jeroen Verhaeghe
- Molecular Imaging Center Antwerp, University of Antwerp, Belgium
| | - David Elmenhorst
- Institute of Neurosciences and Medicine (INM-2), Forschungszentrum Jülich GmbH, Germany
- Department of Nuclear Medicine, University Hospital Cologne, Germany
| | - Andreas Bauer
- Institute of Neurosciences and Medicine (INM-2), Forschungszentrum Jülich GmbH, Germany
| |
Collapse
|
2
|
Ochoa-Amaya JE, Paula LDOA, Luciano FF, Bernardi MM. Repeated saline injections reduce the pulmonary allergic inflammatory response in rats by inducing short-term stress. Brain Behav Immun Health 2024; 40:100822. [PMID: 39144834 PMCID: PMC11320420 DOI: 10.1016/j.bbih.2024.100822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/28/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Purpose Asthma is characterized by pulmonary cell infiltration and hyper-responsiveness of the airways. Short-term stress reduces airway inflammation. Thus, in the present study, we examined the effects of short-term stress induced by repeated treatment with saline injections on the pulmonary allergic inflammatory response in rats. Methods Adult male rats were divided into three groups: Naïve group (non-sensitized, challenged, or treated rats), Control group (rats sensitized with ovalbumin (OVA) to induce lung inflammation), and Saline group (rats treated for five days with saline before OVA sensitization). Inhalation challenges were performed one week after the booster with aerosolized OVA. On day 18, the effect of saline injections on total and differential leukocytes in bronchoalveolar lavage (BAL), femoral marrow lavage (FML), and blood was evaluated. The percentage of mucus, serum corticosterone, collagen, cytokines in lung explants, and norepinephrine levels were also measured. Results OVA sensitization increased the circulating leukocytes and their migration to the lung, decreasing the bone marrow leukocytes. The repeated saline injections prevented this migration by decreasing the number of leukocytes in BAL and blood in the control group. Cytokine Interleukin-4 (IL-4) was higher in the control group than in the naive and saline groups; cytokines Interleukin-6 (IL-6), Interleukin-10 (IL-10), and tumor necrosis factor-alpha (TNFα) were higher in the control and saline groups than in the naïve group; Interferon gamma (IFNγ) was higher in the saline group than in the naive and control groups; norepinephrine increased in animals sensitized with OVA and was higher only in the saline group relative to the naïve group. Conclusions These results suggest that short-term stress could contribute to the anti-allergic airway inflammation effects of a given treatment.
Collapse
Affiliation(s)
- Julieta Esperanza Ochoa-Amaya
- University of the Llanos, Faculty of Agricultural Sciences and Natural Resources, School of Animal Sciences, Colombia
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Ligeiro de Oliveira Ana Paula
- Post-Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Freitas Felicio Luciano
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Maria Martha Bernardi
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, Rua Dr. Bacelar 1212, 04026-002, São Paulo, SP, Brazil
| |
Collapse
|
3
|
Goffin E, Fraikin P, Abboud D, de Tullio P, Beaufour C, Botez I, Hanson J, Danober L, Francotte P, Pirotte B. New insights in the development of positive allosteric modulators of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors belonging to 3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxides: Introduction of (mono/difluoro)methyl groups at the 2-position of the thiadiazine ring. Eur J Med Chem 2023; 250:115221. [PMID: 36863228 DOI: 10.1016/j.ejmech.2023.115221] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023]
Abstract
Positive allosteric modulators of the AMPA receptors (AMPAR PAMs) have been proposed as new drugs for the management of various neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, attention deficit hyperactivity disorder, depression, and schizophrenia. The present study explored new AMPAR PAMs belonging to 3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxides (BTDs) characterized by the presence of a short alkyl substituent at the 2-position of the heterocycle and by the presence or absence of a methyl group at the 3-position. The introduction of a monofluoromethyl or a difluoromethyl side chain at the 2-position instead of the methyl group was examined. 7-Chloro-4-cyclopropyl-2-fluoromethyl-3,4-dihydro-4H-1,2,4-benzothiadiazine 1,1-dioxide (15e) emerged as the most promising compound associating high in vitro potency on AMPA receptors, a favorable safety profile in vivo and a marked efficacy as a cognitive enhancer after oral administration in mice. Stability studies in aqueous medium suggested that 15e could be considered, at least in part, as a precursor of the corresponding 2-hydroxymethyl-substituted analogue and the known AMPAR modulator 7-chloro-4-cyclopropyl-3,4-dihydro-4H-1,2,4-benzothiadiazine 1,1-dioxide (3) devoid of an alkyl group at the 2-position.
Collapse
Affiliation(s)
- Eric Goffin
- Center for Interdisciplinary Research on Medicines (CIRM) - Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium
| | - Pierre Fraikin
- Center for Interdisciplinary Research on Medicines (CIRM) - Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium
| | - Dayana Abboud
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Avenue Hippocrate 1/11 (B34), B-4000, Liège, Belgium
| | - Pascal de Tullio
- Center for Interdisciplinary Research on Medicines (CIRM) - Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium
| | - Caroline Beaufour
- Institut de Recherches Servier, 125 Chemin de Ronde, F-78290, Croissy-sur-Seine, France
| | - Iuliana Botez
- Institut de Recherches Servier, 125 Chemin de Ronde, F-78290, Croissy-sur-Seine, France
| | - Julien Hanson
- Center for Interdisciplinary Research on Medicines (CIRM) - Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium; Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Avenue Hippocrate 1/11 (B34), B-4000, Liège, Belgium
| | - Laurence Danober
- Institut de Recherches Servier, 125 Chemin de Ronde, F-78290, Croissy-sur-Seine, France
| | - Pierre Francotte
- Center for Interdisciplinary Research on Medicines (CIRM) - Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium
| | - Bernard Pirotte
- Center for Interdisciplinary Research on Medicines (CIRM) - Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium.
| |
Collapse
|
4
|
Design optimisation and characterisation of an amperometric glutamate oxidase-based composite biosensor for neurotransmitter l-glutamic acid. Anal Chim Acta 2022; 1224:340205. [DOI: 10.1016/j.aca.2022.340205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/15/2022] [Accepted: 07/24/2022] [Indexed: 11/22/2022]
|
5
|
Asimakopoulos LO, Koureta A, Benetou V, Lagiou P, Samoli E. Investigating the association between temperature and hospital admissions for major psychiatric diseases: A study in Greece. J Psychiatr Res 2021; 144:278-284. [PMID: 34710664 DOI: 10.1016/j.jpsychires.2021.10.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/13/2021] [Accepted: 10/19/2021] [Indexed: 02/07/2023]
Abstract
Evidence has emerged regarding the role of seasonality and several meteorological parameters on bipolar disorder, schizophrenia and depression. We investigated the relationship between ambient and apparent temperature and hospital admissions of major psychiatric diseases in a psychiatric clinic of a General Hospital situated in Northern Greece during 2013-19. Temperature data was provided by the National Observatory of Athens and diagnosis for psychotic, schizophrenic, manic and bipolar and unipolar depression were retrieved from medical records. A total of 783 admissions were recorded. Poisson regression models adjusted for time trends were applied to analyze the impact of temperature on monthly admissions. A summer peak was observed for the bipolar disorder, irrespectively of substance/alcohol use status. Seasonality emerged also for psychotic and schizophrenic patients with a through in winter. An increase of 1 °C in either ambient or apparent temperature was associated with an increase 1-2% in the monthly admissions in most outcomes under investigation. Alcohol and drug abuse did not modify this effect. Although our results indicate effects of temperature on psychiatric admissions, they are not consistent across subgroups populations and need to be replicated by other methodologically superior studies.
Collapse
Affiliation(s)
- Lampros Orion Asimakopoulos
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Athens, 115 27, Greece; General Hospital of Katerini, Katerini, 60100, Central Macedonia, Greece.
| | - Anastasia Koureta
- General Hospital of Katerini, Katerini, 60100, Central Macedonia, Greece
| | - Vassiliki Benetou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Athens, 115 27, Greece
| | - Pagona Lagiou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Athens, 115 27, Greece
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Athens, 115 27, Greece
| |
Collapse
|
6
|
Effect of temperature on 3,4-Methylenedioxypyrovalerone (MDPV)-induced metabolome disruption in primary mouse hepatic cells. Toxicology 2020; 441:152503. [PMID: 32470494 DOI: 10.1016/j.tox.2020.152503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/19/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
3,4-Methylenedioxypyrovalerone (MDPV) is one of the most popular cathinone derivatives worldwide and has recently been associated with several intoxications and deaths, in which, similarly to amphetamines, hyperthermia appears to play a prominent role. However, there remains a huge information gap underlying the mechanisms associated with its hepatotoxicity, namely under hyperthermic conditions. Here, we use a sensitive untargeted metabolomic approach based on gas chromatography-mass spectrometry (GC-MS) to investigate the effect of subtoxic and toxic concentrations of MDPV on the metabolic profile of primary mouse hepatocytes (PMH), under normothermic and hyperthermic conditions. For this purpose, hepatocytes were exposed to increasing concentrations of MDPV (LC01, LC10 and LC30) for 24 h, at 37 °C or 40.5 °C, and alterations on both intracellular metabolome and extracellular volatilome were evaluated. Multivariate analysis showed a clear separation between MDPV exposed cells and control cells in normothermic conditions, even at subtoxic concentrations (LC01 and LC10). In normothermia, there was a significant dysregulation of pathways associated with ascorbate metabolism, tricarboxylic acid (TCA) cycle and pyruvate metabolism. These metabolic changes were significantly increased at 40.5 °C, and several other pathways appear to be affected with the evolution of toxicity caused by MDPV under hyperthermic conditions, namely aspartate and glutamate metabolism, phenylalanine and tyrosine biosynthesis, aminoacyl-tRNA biosynthesis, butanoate metabolism, among others. Overall, our findings provide novel insights into the mechanism of hepatotoxicity triggered by MDPV and highlight the higher risks that may occur under hyperthermic conditions.
Collapse
|
7
|
Zwartsen A, Hondebrink L, de Lange DW, Westerink RHS. Hyperthermia exacerbates the acute effects of psychoactive substances on neuronal activity measured using microelectrode arrays (MEAs) in rat primary cortical cultures in vitro. Toxicol Appl Pharmacol 2020; 397:115015. [PMID: 32320794 DOI: 10.1016/j.taap.2020.115015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 11/21/2022]
Abstract
Hyperthermia is a well-known, potentially life-threatening, side effect of stimulant psychoactive substances that worsens the neurological outcome of hospitalized patients. However, current in vitro methods to assess the hazard of psychoactive substances do not account for hyperthermia. Therefore, this study determined the potency of five psychoactive substances (cocaine, MDMA (3,4-methylenedioxymethamphetamine), methamphetamine, 3-MMC (3-methylmethcathinone) and TFMPP (3-trifluoromethylphenylpiperazine)) to affect neuronal activity at physiological and hyperthermic conditions. Neuronal activity of rat cortical cultures grown on microelectrode arrays (MEAs) was recorded at 37 °C before exposure. Following 30 min and 4.5 h drug exposure (1-1000 μM) at 37 °C or 41 °C, neuronal activity was measured at either 37 °C or 41 °C. Without drug exposure, hyperthermia induced a modest decrease in neuronal activity. Following acute (30 min) exposure at 37 °C, all drugs concentration-dependently inhibited neuronal activity. Increasing the temperature to 41 °C significantly exacerbated the reduction of neuronal activity ~ 2-fold for all drugs compared to 37 °C. Prolonged (4.5 h) exposure at 41 °C decreased neuronal activity comparable to 37 °C. Neuronal activity (partly) recovered following drug exposure at both temperatures, although recovery from exposure at 41 °C was less pronounced for most drugs. None of the exposure conditions affected viability. Since acute exposure at hyperthermic conditions exacerbates the decrease in neuronal activity induced by psychoactive substances, effects of hyperthermia should be included in future hazard assessment of illicit drugs and new psychoactive substances (NPS).
Collapse
Affiliation(s)
- Anne Zwartsen
- Neurotoxicology Research Group, Division Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Dutch Poisons Information Center (DPIC), University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Laura Hondebrink
- Dutch Poisons Information Center (DPIC), University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Dylan W de Lange
- Dutch Poisons Information Center (DPIC), University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Remco H S Westerink
- Neurotoxicology Research Group, Division Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
8
|
Kovach CR, Putz M, Guslek B, McInnes R. Do Warmed Blankets Change Pain, Agitation, Mood or Analgesic Use Among Nursing Home Residents? Pain Manag Nurs 2019; 20:526-531. [PMID: 31526591 DOI: 10.1016/j.pmn.2019.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/02/2019] [Accepted: 07/03/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND Pain, agitation, and thermal discomfort are common symptoms of older adults residing in nursing homes. Nonpharmacologic interventions are recognized as a best practice strategy for people living in nursing homes because of their low adverse effect profile and increased evidence of effectiveness. Warmed blankets have not been empirically tested for use in long-term care. AIMS The purpose of this quality improvement project was to describe the use of warmed blankets in a nursing home setting and determine if use was associated with changes in pain, agitation, mood, or analgesic use. DESIGN A pretest posttest design was used along with a comparison of intact groups. SETTINGS The setting was one 160-bed skilled long-term care facility. PARTICIPANTS/SUBJECTS There were 141 residents eligible since they did not have a condition that could be worsened by superficial heat. METHODS Warmed blankets were unfolded and placed over residents with pain, agitation, or thermal discomfort. Short-term pain measures included use of the Revised FACES Pain Scale, the PAINAD (Pain Assessment in Advanced Dementia) scale, and the Brief Agitation Rating Scale. Long-term measures were taken from the electronic medical record. RESULTS Of the 141 eligible residents, 24.1% (n = 34) received a warmed blanket over the 1- month study period. There were statistically significant decreases in both pain level and agitation among baseline, 20 minutes after application, and the subsequent shift assessments (p < .001). There were also long-term changes in the number of pain complaints (p = .040), severity of pain complaints (p = .009), and as-needed analgesic use (p = .011). There were no statistically significant differences between the treated group and comparison group on any long-term measures. CONCLUSIONS Warmed blankets are a low-cost intervention with a high potential for bringing comfort to nursing home residents.
Collapse
Affiliation(s)
| | - Michelle Putz
- Research Office, Ovation Communities, Milwaukee, Wisconsin
| | - Barbara Guslek
- Research Office, Ovation Communities, Milwaukee, Wisconsin
| | - Robert McInnes
- Research Office, Ovation Communities, Milwaukee, Wisconsin
| |
Collapse
|
9
|
Kim NJ, Ryu Y, Lee BH, Chang S, Fan Y, Gwak YS, Yang CH, Bills KB, Steffensen SC, Koo JS, Jang EY, Kim HY. Acupuncture inhibition of methamphetamine-induced behaviors, dopamine release and hyperthermia in the nucleus accumbens: mediation of group II mGluR. Addict Biol 2019; 24:206-217. [PMID: 29363229 DOI: 10.1111/adb.12587] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/22/2017] [Accepted: 11/20/2017] [Indexed: 01/19/2023]
Abstract
Methamphetamine (METH) increases metabolic neuronal activity in the mesolimbic dopamine (DA) system and mediates the reinforcing effect. To explore the underlying mechanism of acupuncture intervention in reducing METH-induced behaviors, we investigated the effect of acupuncture on locomotor activity, ultrasonic vocalizations, extracellular DA release in the nucleus accumbens (NAcs) using fast-scan cyclic voltammetry and alterations of brain temperature (an indicator of local brain metabolic activity) produced by METH administration. When acupuncture was applied to HT7, but not TE4, both locomotor activity and 50-kHz ultrasonic vocalizations were suppressed in METH-treated rats. Acupuncture at HT7 attenuated the enhancement of electrically stimulated DA release in the NAc of METH-treated rats. Systemic injection of METH produced a sustained increase in NAc temperature, which was reversed by the DA D1 receptor antagonist SCH 23390 or acupuncture at HT7. Acupuncture inhibition of METH-induced NAc temperature was prevented by pre-treatment with a group II metabotropic glutamate receptors (mGluR2/3) antagonist EGLU into the NAc or mimicked by injection of an mGluR2/3 agonist DCG-IV into the NAc. These results suggest that acupuncture reduces extracellular DA release and metabolic neuronal activity in the NAc through activation of mGluR2/3 and suppresses METH-induced affective states and locomotor behavior.
Collapse
Affiliation(s)
- Nam Jun Kim
- College of Korean Medicine; Daegu Haany University; Daegu Korea
| | - Yeonhee Ryu
- Acupuncture, Moxibustion & Meridian Research Center, Division of Standard Research; Korea Institute of Oriental Medicine; Daejeon Korea
| | - Bong Hyo Lee
- College of Korean Medicine; Daegu Haany University; Daegu Korea
| | - Suchan Chang
- College of Korean Medicine; Daegu Haany University; Daegu Korea
| | - Yu Fan
- College of Korean Medicine; Daegu Haany University; Daegu Korea
| | - Young S. Gwak
- College of Korean Medicine; Daegu Haany University; Daegu Korea
| | - Chae Ha Yang
- College of Korean Medicine; Daegu Haany University; Daegu Korea
| | - Kyle B. Bills
- Department of Psychology and Neuroscience; Brigham Young University; Provo UT USA
| | - Scott C. Steffensen
- Department of Psychology and Neuroscience; Brigham Young University; Provo UT USA
| | - Jin Suk Koo
- Department of Bioresource Science; Andong National University; Andong Korea
| | - Eun Young Jang
- College of Korean Medicine; Daegu Haany University; Daegu Korea
| | - Hee Young Kim
- College of Korean Medicine; Daegu Haany University; Daegu Korea
| |
Collapse
|
10
|
Quiñones DR, Fernández-Mollá LM, Pacheco-Torres J, Caramés JM, Canals S, Moratal D. TherMouseDuino: An affordable Open-Source temperature control system for functional magnetic resonance imaging experimentation with mice. Magn Reson Imaging 2019; 58:67-75. [PMID: 30660705 DOI: 10.1016/j.mri.2019.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/12/2018] [Accepted: 01/11/2019] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Functional magnetic resonance imaging (fMRI) is one of the most highly regarded techniques in the neuroimaging field. This technique is based on vascular responses to neuronal activation and is extensively used in clinical and animal research studies. In preclinical settings, fMRI is usually applied to anesthetized animals. However, anesthetics cause alterations, e.g. hypothermia, in the physiology of the animals and this has the potential to disrupt fMRI signals. The current temperature control method involves a technician, as well as monitoring the acquisition MRI sequences, also controlling the temperature of the animal; this is inefficient. METHODS In order to avoid hypothermia in anesthetized rodents an Open-Source automatic temperature control device is presented. It takes signals from an intrarectal temperature sensor, as well as signals from a thermal bath, which warms up the body of the animal under study, in order to determine the mathematical model of the thermal response of the animal. RESULTS A Proportional-Integral-Derivative (PID) algorithm, which was discretized in an Arduino microcontroller, was developed to automatically keep stable the body temperature of the animal under study. The PID algorithm has been shown to be accurate in preserving the body temperature of the animal. CONCLUSION This work presents the TherMouseDuino. It is an Open-Source automatic temperature control system and reduces temperature fluctuations, thus providing robust conditions in which to perform fMRI experiments. Furthermore, our device frees up the technician to focus solely on monitoring the MRI sequences.
Collapse
Affiliation(s)
- Darío R Quiñones
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain
| | - Luis Miguel Fernández-Mollá
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain
| | - Jesús Pacheco-Torres
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Santiago Ramón y Cajal s/n, 03550 Sant Joan d'Alacant, Alicante, Spain
| | - José M Caramés
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Santiago Ramón y Cajal s/n, 03550 Sant Joan d'Alacant, Alicante, Spain
| | - Santiago Canals
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Santiago Ramón y Cajal s/n, 03550 Sant Joan d'Alacant, Alicante, Spain
| | - David Moratal
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain.
| |
Collapse
|
11
|
Colizzi M, Bhattacharyya S. Cannabis use and the development of tolerance: a systematic review of human evidence. Neurosci Biobehav Rev 2018; 93:1-25. [DOI: 10.1016/j.neubiorev.2018.07.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/21/2018] [Accepted: 07/24/2018] [Indexed: 01/15/2023]
|
12
|
Khalkhali M, Golshahi M, Hasandokht T, Kafie M, Zare R. Cognitive Functioning in Schizophrenia, Methamphetamine-induced Psychotic Disorder, and Healthy People: A Comparative Study. Adv Biomed Res 2018; 7:123. [PMID: 30211136 PMCID: PMC6124221 DOI: 10.4103/abr.abr_14_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background: Methamphetamine-induced psychotic disorder (MIP) cannot be easily differentiated from other psychotic disorders. Some studies have reported that patients with MIP and schizophrenia have differences in their cognitive functioning. We hypothesized that their performance would be different on neuropsychological tests which assess executive functions and visual memory. Materials and Methods: In a cross-sectional study, 30 patients with MIP, 31 patients with schizophrenia, and 31 healthy controls were assessed by Rey–Osterrieth complex figure (ROCF) test and visual search and attention test (VSAT). One-way analysis of variance was performed to compare the mean scores of tests. Tukey's HSD test was used for post hoc analysis. Results: Three groups had significant differences according to ROCF test (F = 15.76, P < 0.0001), VSAT (F = 39.78, P < 0.0001), left VSAT (F = 37.96, P < 0.0001), right VSAT (F = 40.40, P < 0.0001), and the time of the test administration (F = 3.26, P = 0.04). The post hoc analysis showed that the mean score of ROCF test and VSAT (total, right, and left) was significantly higher in the control group than in the other two groups. The time of administering the test in the control group was significantly shorter than in the MIP group (P < 0.03) and nonsignificantly shorter than in the schizophrenia group (P = 0.54). The mean score of right side VSAT was significantly higher in the MIP group than in the schizophrenia group. Conclusion: ROCF could not differentiate MIP from schizophrenia. The better performance of patients with MIP on right side VSAT that is reported in this and in the previous study needs to be reevaluated in more controlled studies.
Collapse
Affiliation(s)
- Mohammadrasoul Khalkhali
- Department of Psychiatry, Shafa Psychiatry Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Mahboobeh Golshahi
- Department of Psychiatry, Shafa Psychiatry Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Moosa Kafie
- Department of Psychology, University of Guilan, Rasht, Iran
| | - Roghaye Zare
- Department of Epidemiology and Biostatistics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Solis E, Afzal A, Kiyatkin EA. Changes in brain oxygen and glucose induced by oxycodone: Relationships with brain temperature and peripheral vascular tone. Neuropharmacology 2018; 133:481-490. [PMID: 29476778 PMCID: PMC5858998 DOI: 10.1016/j.neuropharm.2018.02.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/13/2018] [Accepted: 02/19/2018] [Indexed: 12/31/2022]
Abstract
Oxycodone is a semi-synthetic opioid drug that is used to alleviate acute and chronic pain. However, oxycodone is often abused and, when taken at high doses, can induce powerful CNS depression that manifests in respiratory abnormalities, hypotension, coma, and death. Here, we employed several techniques to examine the effects of intravenous oxycodone at a wide range of doses on various metabolism-related parameters in awake, freely-moving rats. High-speed amperometry was used to assess how oxycodone affects oxygen and glucose levels in the nucleus accumbens (NAc). These measurements were supplemented by recordings of locomotor activity and temperature in the NAc, temporal muscle, and skin. At low doses, which are known to maintain self-administration behavior (0.15-0.3 mg/kg), oxycodone transiently decreased locomotor activity, induced modest brain and body hyperthermia, and monotonically increased NAc oxygen and glucose levels. While locomotor inhibition became stronger with higher oxycodone doses (0.6-1.2 mg/kg), NAc oxygen and glucose transiently decreased and subsequently increased. High-dose oxycodone induced similar biphasic down-up changes in brain and body temperature, with the initial decreases followed by increases. While cerebral vasodilation induced by neural activation appears to be the underlying mechanism for the correlative increases in brain oxygen and glucose levels, respiratory depression and the subsequent drop in blood oxygen likely mediate the brain hypoxia induced by large-dose oxycodone injections. The initial inhibitory effects induced by large-dose oxycodone injections could be attributed to rapid and profound CNS depression-the most dangerous health complication linked to opioid overdose in humans.
Collapse
Affiliation(s)
- Ernesto Solis
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, DHHS, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Anum Afzal
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, DHHS, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Eugene A Kiyatkin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, DHHS, 333 Cassell Drive, Baltimore, MD 21224, USA.
| |
Collapse
|
14
|
Bola RA, Kiyatkin EA. Inflow of oxygen and glucose in brain tissue induced by intravenous norepinephrine: relationships with central metabolic and peripheral vascular responses. J Neurophysiol 2017; 119:499-508. [PMID: 29118201 DOI: 10.1152/jn.00692.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
As an essential part of sympathetic activation that prepares the organism for "fight or flight," peripheral norepinephrine (NE) plays an important role in regulating cardiac activity and the tone of blood vessels, increasing blood flow to the heart and the brain and decreasing blood flow to the organs not as necessary for immediate survival. To assess whether this effect is applicable to the brain, we used high-speed amperometry to measure the changes in nucleus accumbens (NAc) levels of oxygen and glucose induced by intravenous injections of NE in awake freely moving rats. We found that NE at low doses (2-18 μg/kg) induces correlative increases in NAc oxygen and glucose, suggesting local vasodilation and enhanced entry of these substances in brain tissue from the arterial blood. By using temperature recordings from the NAc, temporal muscle, and skin, we show that this central effect is associated with strong skin vasoconstriction and phasic increases in intrabrain heat production, indicative of metabolic neural activation. A tight direct correlation between NE-induced changes in metabolic activity and NAc levels of oxygen and glucose levels suggests that local cerebral vasodilation is triggered via a neurovascular coupling mechanism. Our data suggest that NE, by changing vascular tone and cardiac activity, triggers a visceral sensory signal that rapidly reaches the central nervous system via sensory nerves and induces neural activation. This neural activation leads to a chain of neurovascular events that promote entry of oxygen and glucose in brain tissue, thus preventing any possible metabolic deficit during functional activation. NEW & NOTEWORTHY Using high-speed amperometry and thermorecording in freely moving rats, we demonstrate that intravenous norepinephrine at physiological doses induces rapid correlative increases in nucleus accumbens oxygen and glucose levels coupled with increased intrabrain heat production. Although norepinephrine cannot cross the blood-brain barrier, by changing cardiac activity and vascular tone, it creates a sensory signal that reaches the central nervous system via sensory nerves, induces neural activation, and triggers a chain of neurovascular events that promotes intrabrain entry of oxygen and glucose.
Collapse
Affiliation(s)
- R Aaron Bola
- Behavioral Neuroscience Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Eugene A Kiyatkin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
15
|
Bola RA, Kiyatkin EA. Brain temperature effects of intravenous heroin: State dependency, environmental modulation, and the effects of dose. Neuropharmacology 2017; 126:271-280. [PMID: 28755887 DOI: 10.1016/j.neuropharm.2017.07.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/30/2017] [Accepted: 07/25/2017] [Indexed: 11/25/2022]
Abstract
Here we examined how intravenous heroin at a dose that maintains self-administration (0.1 mg/kg) affects brain temperature homeostasis in freely moving rats under conditions that seek to mimic some aspects of human drug use. When administered under standard laboratory conditions (quiet rest at 22 °C ambient temperature), heroin induced moderate temperature increases (1.0-1.5 °C) in the nucleus accumbens (NAc), a critical structure of the brain motivation-reinforcement circuit. By simultaneously recording temperatures in the temporal muscle and skin, we demonstrate that the hyperthermic effects of heroin results primarily from inhibition of heat loss due to strong and prolonged skin vasoconstriction. Heroin-induced brain temperature increases were enhanced during behavioral activation (i.e., social interaction) and in a moderately warm environment (29 °C). By calculating the "net" effects of the drug in these two conditions, we found that this enhancement results from the summation of the hyperthermic effects of heroin with similar effects induced by either social interaction or a warmer environment. When the dose of heroin was increased (to 0.2, 0.4, 0.8, 1.6, 3.2, and 6.4 mg/kg), brain temperature showed a biphasic down-up response. The initial temperature decrease was dose-dependent and resulted from a transient inhibition of intra-brain heat production coupled with increased heat loss via skin surfaces-the effects typically induced by general anesthetics. These initial inhibitory effects induced by large-dose heroin injections could be related to profound CNS depression-the most serious health complications typical of heroin overdose in humans.
Collapse
Affiliation(s)
- R Aaron Bola
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, DHHS, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Eugene A Kiyatkin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, DHHS, 333 Cassell Drive, Baltimore, MD 21224, USA.
| |
Collapse
|
16
|
Tarahovsky YS, Fadeeva IS, Komelina NP, Khrenov MO, Zakharova NM. Antipsychotic inductors of brain hypothermia and torpor-like states: perspectives of application. Psychopharmacology (Berl) 2017; 234:173-184. [PMID: 27933367 DOI: 10.1007/s00213-016-4496-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/26/2016] [Indexed: 12/12/2022]
Abstract
Hypothermia and hypometabolism (hypometabothermia) normally observed during natural hibernation and torpor, allow animals to protect their body and brain against the damaging effects of adverse environment. A similar state of hypothermia can be achieved under artificial conditions through physical cooling or pharmacological effects directed at suppression of metabolism and the processes of thermoregulation. In these conditions called torpor-like states, the mammalian ability to recover from stroke, heart attack, and traumatic injuries greatly increases. Therefore, the development of therapeutic methods for different pathologies is a matter of great concern. With the discovery of the antipsychotic drug chlorpromazine in the 1950s of the last century, the first attempts to create a pharmacologically induced state of hibernation for therapeutic purposes were made. That was the beginning of numerous studies in animals and the broad use of therapeutic hypothermia in medicine. Over the last years, many new agents have been discovered which were capable of lowering the body temperature and inhibiting the metabolism. The psychotropic agents occupy a significant place among them, which, in our opinion, is not sufficiently recognized in the contemporary literature. In this review, we summarized the latest achievements related to the ability of modern antipsychotics to target specific receptors in the brain, responsible for the initiation of hypometabothermia.
Collapse
Affiliation(s)
- Yury S Tarahovsky
- Institute of Cell Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290. .,Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290.
| | - Irina S Fadeeva
- Institute of Cell Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290.,Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290
| | - Natalia P Komelina
- Institute of Cell Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290
| | - Maxim O Khrenov
- Institute of Cell Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290
| | - Nadezhda M Zakharova
- Institute of Cell Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290
| |
Collapse
|
17
|
Blessing W, McAllen R, McKinley M. Control of the Cutaneous Circulation by the Central Nervous System. Compr Physiol 2016; 6:1161-97. [PMID: 27347889 DOI: 10.1002/cphy.c150034] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The central nervous system (CNS), via its control of sympathetic outflow, regulates blood flow to the acral cutaneous beds (containing arteriovenous anastomoses) as part of the homeostatic thermoregulatory process, as part of the febrile response, and as part of cognitive-emotional processes associated with purposeful interactions with the external environment, including those initiated by salient or threatening events (we go pale with fright). Inputs to the CNS for the thermoregulatory process include cutaneous sensory neurons, and neurons in the preoptic area sensitive to the temperature of the blood in the internal carotid artery. Inputs for cognitive-emotional control from the exteroceptive sense organs (touch, vision, sound, smell, etc.) are integrated in forebrain centers including the amygdala. Psychoactive drugs have major effects on the acral cutaneous circulation. Interoceptors, chemoreceptors more than baroreceptors, also influence cutaneous sympathetic outflow. A major advance has been the discovery of a lower brainstem control center in the rostral medullary raphé, regulating outflow to both brown adipose tissue (BAT) and to the acral cutaneous beds. Neurons in the medullary raphé, via their descending axonal projections, increase the discharge of spinal sympathetic preganglionic neurons controlling the cutaneous vasculature, utilizing glutamate, and serotonin as neurotransmitters. Present evidence suggests that both thermoregulatory and cognitive-emotional control of the cutaneous beds from preoptic, hypothalamic, and forebrain centers is channeled via the medullary raphé. Future studies will no doubt further unravel the details of neurotransmitter pathways connecting these rostral control centers with the medullary raphé, and those operative within the raphé itself. © 2016 American Physiological Society. Compr Physiol 6:1161-1197, 2016.
Collapse
Affiliation(s)
- William Blessing
- Human Physiology, Centre for Neuroscience, Flinders University, Adelaide, S.A., Australia
| | - Robin McAllen
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Vic., Australia
| | - Michael McKinley
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Vic., Australia
| |
Collapse
|
18
|
Singh U, Kumar S, Shelkar GP, Yadav M, Kokare DM, Goswami C, Lechan RM, Singru PS. Transient receptor potential vanilloid 3 (TRPV3) in the ventral tegmental area of rat: Role in modulation of the mesolimbic-dopamine reward pathway. Neuropharmacology 2016; 110:198-210. [PMID: 27084697 DOI: 10.1016/j.neuropharm.2016.04.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/04/2016] [Accepted: 04/10/2016] [Indexed: 12/29/2022]
Abstract
While dopamine (DA) neurons in the ventral tegmental area (VTA) drive the mesolimbic-reward pathway, confluent lines of evidence underscore the importance of transient receptor potential vanilloid (TRPV) channels as novel regulators of these neurons. Among the TRPV-subfamily, TRPV3 is of particular interest in reward, since active ingredients of flavour-enhancing spices in food serve as TRPV3 agonists and modulate DAergic neurotransmission. The nature of TRPV3 elements in the VTA and their role in driving the mesolimbic-DA-reward pathway has however, remained unexplored. We observed TRPV3 mRNA as well as TRPV3-immunoreactive neurons in the VTA of Wistar rats. We therefore explored whether these ion channels participate in modulating mesolimbic-DA reward pathway. In the posterior VTA (pVTA), 82 ± 2.6% of the TRPV3 neurons co-express tyrosine hydroxylase and 68 ± 5.5% of these neurons project to the nucleus accumbens shell (Acb shell). While ex vivo treatment of midbrain slices with TRPV3-agonist, thymol increased [Ca(2+)]i-activity in pVTA neurons, intra-pVTA injections of thymol in freely-moving, satiated rats enhanced positive reinforcement for active lever pressings in an operant chamber to self-administer sweet pellets. This behavior was attenuated by prior treatment with intra-Acb shell DA D1- and D2-like receptor antagonists. These results demonstrate a role for TRPV3 in driving mesolimbic-DA food-reward pathway, and underscores the importance of these channels in the VTA as key components processing reward.
Collapse
Affiliation(s)
- Uday Singh
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, 752050, Odisha, India
| | - Santosh Kumar
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, 752050, Odisha, India
| | - Gajanan P Shelkar
- Department of Pharmaceutical Sciences, R.T.M. Nagpur University, Nagpur, 440033, Maharashtra, India
| | - Manoj Yadav
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, 752050, Odisha, India
| | - Dadasaheb M Kokare
- Department of Pharmaceutical Sciences, R.T.M. Nagpur University, Nagpur, 440033, Maharashtra, India
| | - Chandan Goswami
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, 752050, Odisha, India
| | - Ronald M Lechan
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Tupper Research Institute, Tufts Medical Center, Boston, MA, USA; Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Praful S Singru
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, 752050, Odisha, India.
| |
Collapse
|
19
|
Cheshire WP. Thermoregulatory disorders and illness related to heat and cold stress. Auton Neurosci 2016; 196:91-104. [DOI: 10.1016/j.autneu.2016.01.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/17/2015] [Accepted: 01/05/2016] [Indexed: 01/22/2023]
|
20
|
Parrott AC. Why all stimulant drugs are damaging to recreational users: an empirical overview and psychobiological explanation. Hum Psychopharmacol 2015. [PMID: 26216554 DOI: 10.1002/hup.2468] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AIMS Stimulant drugs such as nicotine and Ecstasy/3, 4-methylenedioxymethamphetamine (MDMA) are taken for positive reasons, yet their regular use leads to deficits rather than gains. This article outlines the psychobiological rationale for this paradox. METHODS The empirical literature on nicotine, cocaine, amphetamine, Ecstasy/MDMA, and mephedrone are reviewed. A theoretical explanation for why they are problematic to humans is then described. RESULTS The acute effects of central nervous system (CNS) stimulants are typically positive, with greater alertness and emotional intensity. However, in the post-drug recovery period, the opposite feelings develop, with lethargy and low moods. All recreational stimulants cause mood fluctuation, although it is most pronounced in drugs with rapid onset and comedown (e.g. nicotine and cocaine), explaining why they are the most addictive. Parallel fluctuations occur across many psychological and neurocognitive functions, with users suffering various off-drug deficits. CNS stimulants also affect the hypothalamic-pituitary-adrenal axis, impairing sleep, disrupting homeostasis, and exacerbating psychiatric distress. Neuroimaging studies reveal altered brain activity patterns in regular users. These problems are related to lifetime usage but commence in novice users. CONCLUSIONS Repetitive CNS stimulation is potentially damaging to the organism, both acutely and chronically. The review describes the various psychobiological systems through which recreational stimulant drugs impair human well-being.
Collapse
Affiliation(s)
- Andrew C Parrott
- Department of Psychology, Swansea University, Swansea, South Wales, UK
| |
Collapse
|
21
|
Santin JM, Hartzler LK. Activation state of the hyperpolarization-activated current modulates temperature-sensitivity of firing in locus coeruleus neurons from bullfrogs. Am J Physiol Regul Integr Comp Physiol 2015; 308:R1045-61. [PMID: 25833936 DOI: 10.1152/ajpregu.00036.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/30/2015] [Indexed: 12/18/2022]
Abstract
Locus coeruleus neurons of anuran amphibians contribute to breathing control and have spontaneous firing frequencies that, paradoxically, increase with cooling. We previously showed that cooling inhibits a depolarizing membrane current, the hyperpolarization-activated current (I h) in locus coeruleus neurons from bullfrogs, Lithobates catesbeianus (Santin JM, Watters KC, Putnam RW, Hartzler LK. Am J Physiol Regul Integr Comp Physiol 305: R1451-R1464, 2013). This suggests an unlikely role for I h in generating cold activation, but led us to hypothesize that inhibition of I h by cooling functions as a physiological brake to limit the cold-activated response. Using whole cell electrophysiology in brain slices, we employed 2 mM Cs(+) (an I h antagonist) to isolate the role of I h in spontaneous firing and cold activation in neurons recorded with either control or I h agonist (cyclic AMP)-containing artificial intracellular fluid. I h did not contribute to the membrane potential (V m) and spontaneous firing at 20°C. Although voltage-clamp analysis confirmed that cooling inhibits I h, its lack of involvement in setting baseline firing and V m precluded its ability to regulate cold activation as hypothesized. In contrast, neurons dialyzed with cAMP exhibited greater baseline firing frequencies at 20°C due to I h activation. Our hypothesis was supported when the starting level of I h was enhanced by elevating cAMP because cold activation was converted to more ordinary cold inhibition. These findings indicate that situations leading to enhancement of I h facilitate firing at 20°C, yet the hyperpolarization associated with inhibiting a depolarizing cation current by cooling blunts the net V m response to cooling to oppose normal cold-depolarizing factors. This suggests that the influence of I h activation state on neuronal firing varies in the poikilothermic neuronal environment.
Collapse
Affiliation(s)
- Joseph M Santin
- Department of Biological Sciences, Wright State University, Dayton, Ohio
| | - Lynn K Hartzler
- Department of Biological Sciences, Wright State University, Dayton, Ohio
| |
Collapse
|
22
|
Kiyatkin EA, Kim AH, Wakabayashi KT, Baumann MH, Shaham Y. Effects of social interaction and warm ambient temperature on brain hyperthermia induced by the designer drugs methylone and MDPV. Neuropsychopharmacology 2015; 40:436-45. [PMID: 25074640 PMCID: PMC4443958 DOI: 10.1038/npp.2014.191] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 11/09/2022]
Abstract
3,4-Methylenedioxymethcathinone (methylone) and 3,4-methylenedioxypyrovalerone (MDPV) are new drugs of abuse that have gained worldwide popularity. These drugs are structurally similar to 3,4-methylenedioxymethamphetamine (MDMA) and share many of its physiological and behavioral effects in humans, including the development of hyperthermia during acute intoxication. Here, we examined the effects of methylone (1-9 mg/kg, s.c.) or MDPV (0.1-1.0 mg/kg, s.c.) on brain temperature homeostasis in rats maintained in a standard laboratory environment (single-housed in a quiet rest at 22 °C) and under conditions that model human drug use (social interaction and 29 °C ambient temperature). By simultaneously monitoring temperatures in the nucleus accumbens, temporal muscle, and facial skin, we assessed the effects of methylone and MDPV on intra-brain heat production and cutaneous vascular tone, two critical factors that control brain temperature responses. Both methylone and MDPV dose-dependently increased brain temperature, but even at high doses that induced robust locomotor activation, hyperthermia was modest in magnitude (up to ∼2 °C). Both drugs also induced dose-dependent peripheral vasoconstriction, which appears to be a primary mechanism determining the brain hyperthermic responses. In contrast to the powerful potentiation of MDMA-induced hyperthermia by social interaction and warm ambient temperature, such potentiation was absent for methylone and minimal for MDPV. Taken together, despite structural similarities to MDMA, exposure to methylone or MDPV under conditions commonly associated with human drug use does not lead to profound elevations in brain temperature and sustained vasoconstriction, two critical factors associated with MDMA toxicity.
Collapse
Affiliation(s)
- Eugene A Kiyatkin
- Intramural Research Program, NIDA-NIH, Baltimore, MD, USA,Behavioral Neuroscience, NIDA-IRP, 333 Cassell Drive, Baltimore, MD 21224, USA, Tel: +443 740 2844, Fax: +443 740 2155, E-mail:
| | - Albert H Kim
- Intramural Research Program, NIDA-NIH, Baltimore, MD, USA
| | | | | | - Yavin Shaham
- Intramural Research Program, NIDA-NIH, Baltimore, MD, USA
| |
Collapse
|
23
|
Parrott AC, Young L. Saturday night fever in ecstasy/MDMA dance clubbers: Heightened body temperature and associated psychobiological changes. Temperature (Austin) 2014; 1:214-9. [PMID: 27626048 PMCID: PMC5008707 DOI: 10.4161/23328940.2014.977182] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 09/30/2014] [Accepted: 09/30/2014] [Indexed: 11/19/2022] Open
Abstract
UNLABELLED Aims and rationale: to investigate body temperature and thermal self-ratings of Ecstasy/MDMA users at a Saturday night dance club. METHODS 68 dance clubbers (mean age 21.6 years, 30 females and 38 males), were assessed at a Saturday night dance club, then 2-3 d later. Three subgroups were compared: 32 current Ecstasy users who had taken Ecstasy/MDMA that evening, 10 abstinent Ecstasy/MDMA users on other psychoactive drugs, and 26 non-user controls (predominantly alcohol drinkers). In a comparatively quiet area of the dance club, each unpaid volunteer had their ear temperature recorded, and completed a questionnaire on thermal feelings and mood states. A similar questionnaire was repeated 2-3 d later by mobile telephone. RESULTS Ecstasy/MDMA users had a mean body temperature 1.2°C higher than non-user controls (P < 0.001), and felt significantly hotter and thirstier. The abstinent Ecstasy/MDMA polydrug user group had a mean body temperature intermediate between the other 2 groups, significantly higher than controls, and significantly lower than current Ecstasy/MDMA users. After 2-3 d of recovery, the Ecstasy/MDMA users remained significantly 'thirstier'. Higher body temperature while clubbing was associated with greater Ecstasy/MDMA usage at the club, and younger age of first use. Higher temperature also correlated with lower elation and poor memory 2-3 d later. It also correlated positively with nicotine, and negatively with cannabis. CONCLUSIONS Ecstasy/MDMA using dance clubbers had significantly higher body temperature than non-user controls. This heightened body temperature was associated with a number of adverse psychobiological consequences, including poor memory.
Collapse
Affiliation(s)
| | - Lucy Young
- University of Wales Swansea ; Swansea, UK
| |
Collapse
|
24
|
Liechti ME. Effects of MDMA on body temperature in humans. Temperature (Austin) 2014; 1:192-200. [PMID: 27626046 PMCID: PMC5008716 DOI: 10.4161/23328940.2014.955433] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 07/12/2014] [Accepted: 07/28/2014] [Indexed: 01/05/2023] Open
Abstract
Hyperthermia is a severe complication associated with the recreational use of 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy). In this review, the clinical laboratory studies that tested the effects of MDMA on body temperature are summarized. The mechanisms that underlie the hyperthermic effects of MDMA in humans and treatment of severe hyperthermia are presented. The data show that MDMA produces an acute and dose-dependent rise in core body temperature in healthy subjects. The increase in body temperature is in the range of 0.2-0.8°C and does not result in hyperpyrexia (>40°C) in a controlled laboratory setting. However, moderately hyperthermic body temperatures >38.0°C occur frequently at higher doses, even in the absence of physical activity and at room temperature. MDMA primarily releases serotonin and norepinephrine. Mechanistic clinical studies indicate that the MDMA-induced elevations in body temperature in humans partially depend on the MDMA-induced release of norepinephrine and involve enhanced metabolic heat generation and cutaneous vasoconstriction, resulting in impaired heat dissipation. The mediating role of serotonin is unclear. The management of sympathomimetic toxicity and associated hyperthermia mainly includes sedation with benzodiazepines and intravenous fluid replacement. Severe hyperthermia should primarily be treated with additional cooling and mechanical ventilation.
Collapse
Affiliation(s)
- Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology; Department of Biomedicine and Department of Clinical Research; University Hospital and University of Basel ; Switzerland
| |
Collapse
|
25
|
Critical role of peripheral vasoconstriction in fatal brain hyperthermia induced by MDMA (Ecstasy) under conditions that mimic human drug use. J Neurosci 2014; 34:7754-62. [PMID: 24899699 DOI: 10.1523/jneurosci.0506-14.2014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
MDMA (Ecstasy) is an illicit drug used by young adults at hot, crowed "rave" parties, yet the data on potential health hazards of its abuse remain controversial. Here, we examined the effect of MDMA on temperature homeostasis in male rats under standard laboratory conditions and under conditions that simulate drug use in humans. We chronically implanted thermocouple microsensors in the nucleus accumbens (a brain reward area), temporal muscle, and facial skin to measure temperature continuously from freely moving rats. While focusing on brain hyperthermia, temperature monitoring from the two peripheral locations allowed us to evaluate the physiological mechanisms (i.e., intracerebral heat production and heat loss via skin surfaces) that underlie MDMA-induced brain temperature responses. Our data confirm previous reports on high individual variability and relatively weak brain hyperthermic effects of MDMA under standard control conditions (quiet rest, 22-23°C), but demonstrate dramatic enhancements of drug-induced brain hyperthermia during social interaction (exposure to male conspecific) and in warm environments (29°C). Importantly, we identified peripheral vasoconstriction as a critical mechanism underlying the activity- and state-dependent potentiation of MDMA-induced brain hyperthermia. Through this mechanism, which prevents proper heat dissipation to the external environment, MDMA at a moderate nontoxic dose (9 mg/kg or ~1/5 of LD50 in rats) can cause fatal hyperthermia under environmental conditions commonly encountered by humans. Our results demonstrate that doses of MDMA that are nontoxic under cool, quiet conditions can become highly dangerous under conditions that mimic recreational use of MDMA at rave parties or other hot, crowded venues.
Collapse
|
26
|
Dopamine D(3) receptors contribute to methamphetamine-induced alterations in dopaminergic neuronal function: role of hyperthermia. Eur J Pharmacol 2014; 732:105-10. [PMID: 24685638 DOI: 10.1016/j.ejphar.2014.03.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/11/2014] [Accepted: 03/20/2014] [Indexed: 11/21/2022]
Abstract
Methamphetamine administration causes long-term deficits to dopaminergic systems that, in humans, are thought to be associated with motor slowing and memory impairment. Methamphetamine interacts with the dopamine transporter (DAT) and increases extracellular concentrations of dopamine that, in turn, binds to a number of dopamine receptor subtypes. Although the relative contribution of each receptor subtype to the effects of methamphetamine is not fully known, non-selective dopamine D2/D3 receptor antagonists can attenuate methamphetamine-induced changes to dopamine systems. The present study extended these findings by testing the role of the dopamine D3 receptor subtype in mediating the long-term dopaminergic, and for comparison serotonergic, deficits caused by methamphetamine. Results indicate that the dopamine D3 receptor selective antagonist, PG01037, attenuated methamphetamine-induced decreases in striatal DAT, but not hippocampal serotonin (5HT) transporter (SERT), function, as assessed 7 days after treatment. However, PG01037 also attenuated methamphetamine-induced hyperthermia. When methamphetamine-induced hyperthermia was maintained by treating rats in a warm ambient environment, PG01037 failed to attenuate the effects of methamphetamine on DAT uptake. Furthermore, PG01037 did not attenuate methamphetamine-induced decreases in dopamine and 5HT content. Taken together, the present study demonstrates that dopamine D3 receptors mediate, in part, the long-term deficits in DAT function caused by methamphetamine, and that this effect likely involves an attenuation of methamphetamine-induced hyperthermia.
Collapse
|
27
|
Horváth C. Alterations in brain temperatures as a possible cause of migraine headache. Med Hypotheses 2014; 82:529-34. [PMID: 24581675 DOI: 10.1016/j.mehy.2014.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/24/2014] [Accepted: 02/03/2014] [Indexed: 12/12/2022]
Abstract
Migraine is a debilitating disease with a recurring generally unilateral headache and concomitant symptoms of nausea, vomiting and photo- and/or phonophobia that affects some 11-18% of the population. Most of the mechanisms previously put forward to explain the attacks have been questioned or give an explanation only some of the symptoms. Moreover, the best drugs for treatment are still the 20-year-old triptans, which have serious limitations as regards both efficacy and tolerability. As the dura and some cranial vessels are the only intracranial structures capable of pain sensations, a vascular theory of migraine emerged, but has been debated. Recent theories identified the hyperexcitability of structures involved in pain transmission, such as the trigeminal system or the cortex, or an abnormal modulatory function of the brainstem. However, there is ongoing scientific debate concerning these theories, neither of which is fully capable of explaining the occurrence of a migraine attack. The present article puts forward a hypothesis of the possibility of abnormal temperature regulation in certain regions or the overall brain in migraineurs, the attack being a defense mechanism to prevent neuronal damage. Few examinations have been made of temperature regulation in the human brain. It lacks the carotid rete, a vascular heat exchanger that serves in many animals to provide constant brain temperature. The human brain contains a high density of neurons with a considerable energy demand that is converted to heat. The human brain has a higher temperature than other parts of the body and needs continuous cooling. Recent studies revealed unexpectedly great variations in temperature of various structures of the brain and considerable changes in response to functional activation. There is various evidence in support of the hypothesis that accumulated heat in some structure or the overall brain may be behind the symptoms observed, such as a platelet abnormality, a decreased serotonin content, and dural "inflammation" including vasodilation and brainstem activation. The hypothesis postulates that a migraine attack serves to restore the brain temperature. Abnormally low temperatures in the brain can also result in headache. Surprisingly, no systematic examination of brain temperature changes in migraineurs has been published. Certain case reports support the present hypothesis. Various noninvasive technologies (e.g. MR) capable of monitoring brain temperature are available. If a systematic examination of local brain temperature revealed abnormalities in structures presumed to be involved in migraine, that would increase our understanding of the disease and trigger the development of improved treatment.
Collapse
Affiliation(s)
- Csilla Horváth
- Gedeon Richter Plc., 19-21 Gyömrői út, H-1103 Budapest, Hungary.
| |
Collapse
|
28
|
Kiyatkin EA. Critical role of peripheral sensory systems in mediating the neural effects of nicotine following its acute and repeated exposure. Rev Neurosci 2014; 25:207-21. [PMID: 24535300 DOI: 10.1515/revneuro-2013-0067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 01/17/2014] [Indexed: 11/15/2022]
Abstract
It is well established that the reinforcing properties of nicotine (NIC) depend on its action on nicotinic acetylcholine receptors expressed by brain neurons. However, when administered systemically, NIC first phasically activates nicotinic receptors located on the afferents of sensory nerves at the sites of drug administration before reaching the brain and directly interacting with central neurons. While this peripheral action of NIC has been known for years, it is usually neglected in any consideration of the drug's reinforcing properties and experience-dependent changes of its behavioral and physiological effects. The goal of this work was to review our recent behavioral, electrophysiological, and physiological data suggesting the critical importance of peripheral actions of NIC in mediating its neural effects following acute drug exposure and their involvement in alterations of NIC effects consistently occurring following repeated drug exposure. Because NIC, by acting peripherally, produces a rapid sensory signal to the central nervous system that is followed by slower, more prolonged direct drug actions in the brain, these two pharmacological actions interact in the central nervous system during repeated drug use with the development of Pavlovian conditioned association. This within-drug conditioning mechanism could explain the experience-dependent changes in the physiological, behavioral, and human psychoemotional effects of NIC, which, in drug-experienced individuals, always represent a combination of pharmacological and learning variables.
Collapse
|
29
|
Kiyatkin EA. Brain temperature could affect neurochemical evaluations. Temperature (Austin) 2014; 1:12-3. [PMID: 27581156 PMCID: PMC4972517 DOI: 10.4161/temp.27831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 12/23/2013] [Indexed: 11/30/2022] Open
Abstract
This article demonstrates the importance of natural brain temperature fluctuations as a critical factor affecting electrochemical detection of extracellular glutamate in awake rats and proposes a viable strategy to exclude this inescapable influence, thereby increasing the reliability of electrochemical measurements of glutamate in behaving animals.
Collapse
Affiliation(s)
- Eugene A Kiyatkin
- In-Vivo Electrophysiology Unit; Behavioral Neuroscience Branch; National Institute on Drug Abuse - Intramural Research Program; National Institutes of Health; Baltimore, MD USA
| |
Collapse
|
30
|
Howes OD, Beck K. Mind the mortality gap: the importance of metabolic function in mental illnesses. Psychopharmacology (Berl) 2013; 230:1-2. [PMID: 24005530 DOI: 10.1007/s00213-013-3259-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Oliver D Howes
- Institute of Psychiatry and Clinical Sciences Centre, London, UK,
| | | |
Collapse
|
31
|
Cocaine potentiates MDMA-induced oxidative stress but not dopaminergic neurotoxicity in mice: implications for the pathogenesis of free radical-induced neurodegenerative disorders. Psychopharmacology (Berl) 2013; 230:125-35. [PMID: 23681166 DOI: 10.1007/s00213-013-3142-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/30/2013] [Indexed: 10/26/2022]
Abstract
RATIONALE The drugs of abuse 3,4-methylenedioxymethamphetamine (MDMA; "ecstasy") and cocaine both increase the generation of free radicals, and in the case of MDMA, this increase in oxidative stress is involved in the dopaminergic neurotoxicity produced by the drug in mice. Oxidative stress processes are also involved in the pathogenesis of several neurodegenerative diseases. OBJECTIVES We aimed to determine the consequences of the combined administration of MDMA and cocaine on oxidative stress and dopaminergic neurotoxicity. METHODS Mice received MDMA (20 mg/kg, i.p.; two doses separated by 3 h) followed by cocaine 1, 3, 6, or 24 h after the second MDMA dose. Mice were killed between 1 h and 7 days after cocaine injection. RESULTS MDMA decreased dopamine transporter density and dopamine concentration 7 days later. Cocaine did not alter this neurotoxicity. MDMA produced an increase in the concentration of 2,3-dihydroxybenzoic acid in striatal microdialysis samples and an increase in lipid peroxidation in the striatum which were potentiated by cocaine. MDMA and cocaine given together also increased nitrate and 3-nitrotyrosine levels compared with either drug given alone. On the other hand, MDMA increased superoxide dismutase activity and decreased catalase activity, changes which were prevented by cocaine administration. In addition, cocaine administration produced an increase in glutathione peroxidase (GPx) activity in both saline-treated and MDMA-treated mice. CONCLUSIONS Cocaine potentiates MDMA-induced oxidative stress but does not produce an increase in the neurotoxicity produced by MDMA, and this lack of potentiation may involve an increase in GPx activity.
Collapse
|
32
|
Connors NJ, Hoffman RS. Experimental Treatments for Cocaine Toxicity: A Difficult Transition to the Bedside. J Pharmacol Exp Ther 2013; 347:251-7. [DOI: 10.1124/jpet.113.206383] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
33
|
Kiyatkin EA, Wakabayashi KT, Lenoir M. Physiological fluctuations in brain temperature as a factor affecting electrochemical evaluations of extracellular glutamate and glucose in behavioral experiments. ACS Chem Neurosci 2013; 4:652-65. [PMID: 23448428 DOI: 10.1021/cn300232m] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The rate of any chemical reaction or process occurring in the brain depends on temperature. While it is commonly believed that brain temperature is a stable, tightly regulated homeostatic parameter, it fluctuates within 1-4 °C following exposure to salient arousing stimuli and neuroactive drugs, and during different behaviors. These temperature fluctuations should affect neural activity and neural functions, but the extent of this influence on neurochemical measurements in brain tissue of freely moving animals remains unclear. In this Review, we present the results of amperometric evaluations of extracellular glutamate and glucose in awake, behaving rats and discuss how naturally occurring fluctuations in brain temperature affect these measurements. While this temperature contribution appears to be insignificant for glucose because its extracellular concentrations are large, it is a serious factor for electrochemical evaluations of glutamate, which is present in brain tissue at much lower levels, showing smaller phasic fluctuations. We further discuss experimental strategies for controlling the nonspecific chemical and physical contributions to electrochemical currents detected by enzyme-based biosensors to provide greater selectivity and reliability of neurochemical measurements in behaving animals.
Collapse
Affiliation(s)
- Eugene A. Kiyatkin
- In-Vivo Electrophysiology Unit, Behavioral Neuroscience
Branch, National Institute on Drug Abuse − Intramural Research
Program, National Institutes of Health,
DHHS, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Ken T. Wakabayashi
- In-Vivo Electrophysiology Unit, Behavioral Neuroscience
Branch, National Institute on Drug Abuse − Intramural Research
Program, National Institutes of Health,
DHHS, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Magalie Lenoir
- In-Vivo Electrophysiology Unit, Behavioral Neuroscience
Branch, National Institute on Drug Abuse − Intramural Research
Program, National Institutes of Health,
DHHS, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| |
Collapse
|