1
|
Hart XM, Gründer G, Ansermot N, Conca A, Corruble E, Crettol S, Cumming P, Frajerman A, Hefner G, Howes O, Jukic MM, Kim E, Kim S, Maniscalco I, Moriguchi S, Müller DJ, Nakajima S, Osugo M, Paulzen M, Ruhe HG, Scherf-Clavel M, Schoretsanitis G, Serretti A, Spina E, Spigset O, Steimer W, Süzen SH, Uchida H, Unterecker S, Vandenberghe F, Verstuyft C, Zernig G, Hiemke C, Eap CB. Optimisation of pharmacotherapy in psychiatry through therapeutic drug monitoring, molecular brain imaging and pharmacogenetic tests: Focus on antipsychotics. World J Biol Psychiatry 2024; 25:451-536. [PMID: 38913780 DOI: 10.1080/15622975.2024.2366235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/12/2024] [Accepted: 06/06/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND For psychotic disorders (i.e. schizophrenia), pharmacotherapy plays a key role in controlling acute and long-term symptoms. To find the optimal individual dose and dosage strategy, specialised tools are used. Three tools have been proven useful to personalise drug treatments: therapeutic drug monitoring (TDM) of drug levels, pharmacogenetic testing (PG), and molecular neuroimaging. METHODS In these Guidelines, we provide an in-depth review of pharmacokinetics, pharmacodynamics, and pharmacogenetics for 45 antipsychotics. Over 30 international experts in psychiatry selected studies that have measured drug concentrations in the blood (TDM), gene polymorphisms of enzymes involved in drug metabolism, or receptor/transporter occupancies in the brain (positron emission tomography (PET)). RESULTS Study results strongly support the use of TDM and the cytochrome P450 (CYP) genotyping and/or phenotyping to guide drug therapies. Evidence-based target ranges are available for titrating drug doses that are often supported by PET findings. CONCLUSION All three tools discussed in these Guidelines are essential for drug treatment. TDM goes well beyond typical indications such as unclear compliance and polypharmacy. Despite its enormous potential to optimise treatment effects, minimise side effects and ultimately reduce the global burden of diseases, personalised drug treatment has not yet become the standard of care in psychiatry.
Collapse
Affiliation(s)
- Xenia Marlene Hart
- Department of Molecular Neuroimaging, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Gerhard Gründer
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
- German Center for Mental Health (DZPG), Partner Site Mannheim, Heidelberg, Germany
| | - Nicolas Ansermot
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
| | - Andreas Conca
- Dipartimento di Psichiatria, Comprensorio Sanitario di Bolzano, Bolzano, Italy
| | - Emmanuelle Corruble
- Service Hospitalo-Universitaire de Psychiatrie, Hôpital de Bicêtre, Université Paris-Saclay, AP-HP, Le Kremlin-Bicêtre, France
- Equipe MOODS, Inserm U1018, CESP (Centre de Recherche en Epidémiologie et Sante des Populations), Le Kremlin-Bicêtre, France
| | - Severine Crettol
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland
- School of Psychology and Counseling, Queensland University of Technology, Brisbane, Australia
| | - Ariel Frajerman
- Service Hospitalo-Universitaire de Psychiatrie, Hôpital de Bicêtre, Université Paris-Saclay, AP-HP, Le Kremlin-Bicêtre, France
- Equipe MOODS, Inserm U1018, CESP (Centre de Recherche en Epidémiologie et Sante des Populations), Le Kremlin-Bicêtre, France
| | - Gudrun Hefner
- Forensic Psychiatry, Vitos Clinic for Forensic Psychiatry, Eltville, Germany
| | - Oliver Howes
- Department of Psychosis Studies, IoPPN, King's College London, London, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, London, UK
| | - Marin M Jukic
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
- Pharmacogenetics Section, Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Euitae Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seoyoung Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Ignazio Maniscalco
- Dipartimento di Psichiatria, Comprensorio Sanitario di Bolzano, Bolzano, Italy
| | - Sho Moriguchi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Daniel J Müller
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Martin Osugo
- Department of Psychosis Studies, IoPPN, King's College London, London, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, London, UK
| | - Michael Paulzen
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- JARA - Translational Brain Medicine, Alexianer Center for Mental Health, Aachen, Germany
| | - Henricus Gerardus Ruhe
- Department of Psychiatry, Radboudumc, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| | - Maike Scherf-Clavel
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Georgios Schoretsanitis
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | | | - Edoardo Spina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Olav Spigset
- Department of Clinical Pharmacology, St. Olav University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Werner Steimer
- Institute of Clinical Chemistry and Pathobiochemistry, Technical University Munich, Munich, Germany
| | - Sinan H Süzen
- Department of Pharmaceutic Toxicology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Stefan Unterecker
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Frederik Vandenberghe
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
| | - Celine Verstuyft
- Equipe MOODS, Inserm U1018, CESP (Centre de Recherche en Epidémiologie et Sante des Populations), Le Kremlin-Bicêtre, France
- Department of Molecular Genetics, Pharmacogenetics and Hormonology, Bicêtre University Hospital Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Gerald Zernig
- Department of Pharmacology, Medical University Innsbruck, Hall in Tirol, Austria
- Private Practice for Psychotherapy and Court-Certified Witness, Hall in Tirol, Austria
| | - Christoph Hiemke
- Department of Psychiatry and Psychotherapy and Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of Mainz, Mainz, Germany
| | - Chin B Eap
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
- Center for Research and Innovation in Clinical Pharmaceutical Sciences, University of Lausanne, Lausanne, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Hart XM, Spangemacher M, Uchida H, Gründer G. Update Lessons from Positron Emission Tomography Imaging Part I: A Systematic Critical Review on Therapeutic Plasma Concentrations of Antipsychotics. Ther Drug Monit 2024; 46:16-32. [PMID: 38018857 DOI: 10.1097/ftd.0000000000001131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/06/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Positron emission tomography (PET) and single photon emission tomography (SPECT) of molecular drug targets (neuroreceptors and transporters) provide essential information for therapeutic drug monitoring-guided antipsychotic drug therapy. The optimal therapeutic windows for D 2 antagonists and partial agonists, as well as their proposed target ranges, are discussed based on an up-to-date literature search. METHODS This part I of II presents an overview of molecular neuroimaging studies in humans and primates involving the target engagement of amisulpride, haloperidol, clozapine, aripiprazole, olanzapine, quetiapine, risperidone, cariprazine, and ziprasidone. The systemic review particularly focused on dopamine D 2 -like and 5-HT 2A receptors. Target concentration ranges were estimated based on receptor occupancy ranges that relate to clinical effects or side effects (ie, extrapyramidal side effects). In addition, findings for other relevant receptor systems were included to further enrich the discussion. RESULTS The reported reference ranges for aripiprazole and clozapine align closely with findings from PET studies. Conversely, for haloperidol, risperidone, and olanzapine, the PET studies indicate that a lowering of the previously published upper limits would be necessary to decrease the risk of extrapyramidal side effect. CONCLUSIONS Molecular neuroimaging studies serve as a strong tool for defining target ranges for antipsychotic drug treatment and directing therapeutic drug monitoring.
Collapse
Affiliation(s)
- Xenia M Hart
- Central Institute of Mental Health, Department of Molecular Neuroimaging, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Moritz Spangemacher
- Central Institute of Mental Health, Department of Molecular Neuroimaging, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Central Institute of Mental Health, Department of Psychiatry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; and
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Gerhard Gründer
- Central Institute of Mental Health, Department of Molecular Neuroimaging, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
3
|
Lopresti BJ, Royse SK, Mathis CA, Tollefson SA, Narendran R. Beyond monoamines: I. Novel targets and radiotracers for Positron emission tomography imaging in psychiatric disorders. J Neurochem 2023; 164:364-400. [PMID: 35536762 DOI: 10.1111/jnc.15615] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
Abstract
With the emergence of positron emission tomography (PET) in the late 1970s, psychiatry had access to a tool capable of non-invasive assessment of human brain function. Early applications in psychiatry focused on identifying characteristic brain blood flow and metabolic derangements using radiotracers such as [15 O]H2 O and [18 F]FDG. Despite the success of these techniques, it became apparent that more specific probes were needed to understand the neurochemical bases of psychiatric disorders. The first neurochemical PET imaging probes targeted sites of action of neuroleptic (dopamine D2 receptors) and psychoactive (serotonin receptors) drugs. Based on the centrality of monoamine dysfunction in psychiatric disorders and the measured success of monoamine-enhancing drugs in treating them, the next 30 years witnessed the development of an armamentarium of PET radiopharmaceuticals and imaging methodologies for studying monoamines. Continued development of monoamine-enhancing drugs over this time however was less successful, realizing only modest gains in efficacy and tolerability. As patent protection for many widely prescribed and profitable psychiatric drugs lapsed, drug development pipelines shifted away from monoamines in search of novel targets with the promises of improved efficacy, or abandoned altogether. Over this period, PET radiopharmaceutical development activities closely paralleled drug development priorities resulting in the development of new PET imaging agents for non-monoamine targets. Part one of this review will briefly survey novel PET imaging targets with relevance to the field of psychiatry, which include the metabotropic glutamate receptor type 5 (mGluR5), purinergic P2 X7 receptor, type 1 cannabinoid receptor (CB1 ), phosphodiesterase 10A (PDE10A), and describe radiotracers developed for these and other targets that have matured to human subject investigations. Current limitations of the targets and techniques will also be discussed.
Collapse
Affiliation(s)
- Brian J Lopresti
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sarah K Royse
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Chester A Mathis
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Savannah A Tollefson
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rajesh Narendran
- Departments of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Departments of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Takamura Y, Kakuta H. In Vivo Receptor Visualization and Evaluation of Receptor Occupancy with Positron Emission Tomography. J Med Chem 2021; 64:5226-5251. [PMID: 33905258 DOI: 10.1021/acs.jmedchem.0c01714] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Positron emission tomography (PET) is useful for noninvasive in vivo visualization of disease-related receptors, for evaluation of receptor occupancy to determine an appropriate drug dosage, and for proof-of-concept of drug candidates in translational research. For these purposes, the specificity of the PET tracer for the target receptor is critical. Here, we review work in this area, focusing on the chemical structures of reported PET tracers, their Ki/Kd values, and the physical properties relevant to target receptor selectivity. Among these physical properties, such as cLogP, cLogD, molecular weight, topological polar surface area, number of hydrogen bond donors, and pKa, we focus especially on LogD and LogP as important physical properties that can be easily compared across a range of studies. We discuss the success of PET tracers in evaluating receptor occupancy and consider likely future developments in the field.
Collapse
Affiliation(s)
- Yuta Takamura
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Hiroki Kakuta
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
5
|
Dopamine D2 Receptor Occupancy Estimated From Plasma Concentrations of Four Different Antipsychotics and the Subjective Experience of Physical and Mental Well-Being in Schizophrenia: Results From the Randomized NeSSy Trial. J Clin Psychopharmacol 2020; 39:550-560. [PMID: 31688449 DOI: 10.1097/jcp.0000000000001131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Impaired subjective well-being in schizophrenia patients treated with antipsychotics has often been linked inter alia to the antidopaminergic effects of medication. Thus, it is important to capture the association between striatal dopamine D2 receptor occupancy (D2-RO) and global subjective well-being. We examined this association using data from our multicenter, randomized, double-blind Neuroleptic Strategy Study (NeSSy). METHODS An innovative double randomization process was used for allocation of patients to the specific treatment groups. Plasma drug concentrations were measured after 6 and 24 weeks of treatment to obtain the estimated D2-RO (eD2-RO) relative to literature values. We made an exploratory analysis of associations between eD2-RO and subjective well-being scores. One hundred two blood samples from 69 patients were available for the analysis. Because of the lack of a satisfactory occupancy model for quetiapine, only haloperidol, flupentixol, and olanzapine treatment groups were pooled, whereas aripiprazole data were analyzed separately, because of its partial agonistic properties. RESULTS In the pooled antagonist group, eD2-RO correlated negatively with the summarized well-being score. In a more detailed analysis, this association could be confirmed for all first-generation antipsychotic-treated patients, but not for the separate second-generation antipsychotic groups. In the aripiprazole group, higher eD2-RO was associated with impaired physical well-being, but had no association with mental well-being. CONCLUSIONS Our results suggest that high plasma levels and consequently high occupancy at D2 receptors are disadvantageous for subjective well-being, as distinct from the objective extrapyramidal side effects. To minimize patients' malaise, which disfavors adherence, implementation of therapeutic drug monitoring in the clinical routine may be useful.
Collapse
|
6
|
Huang J, Chen M, Chen C, Lin X, Jiang D, Zhang Y, Wang L, Zhuo C, Tian H, Du C. Efficacy and acceptability of three prolactin-sparing antipsychotics in patient with schizophrenia: a network meta-analysis. PSYCHIAT CLIN PSYCH 2019. [DOI: 10.1080/24750573.2019.1662629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Jianjie Huang
- Department of Psychiatry, Wenzhou Seventh People’s Hospital, Wenzhou, People’s Republic of China
| | - Min Chen
- Department of Psychiatry, Institute of Mental Healthy, Genetic Lab, Jining Medical University, Jining, People’s Republic of China
| | - Ce Chen
- Department of Psychiatry, Wenzhou Seventh People’s Hospital, Wenzhou, People’s Republic of China
| | - Xiaodong Lin
- Department of Psychiatry, Wenzhou Seventh People’s Hospital, Wenzhou, People’s Republic of China
| | - Deguo Jiang
- Department of Psychiatry, Wenzhou Seventh People’s Hospital, Wenzhou, People’s Republic of China
| | - Yonghui Zhang
- Department of Psychiatric-Neuroimaging-Genetics and Comorbidity Laboratory(PNGC-lab), Tianjin Mental Health Canter, Tianjin Anding Hospital, Mental Health Teaching Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Lina Wang
- Department of Psychiatric-Neuroimaging-Genetics and Comorbidity Laboratory(PNGC-lab), Tianjin Mental Health Canter, Tianjin Anding Hospital, Mental Health Teaching Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Chuanjun Zhuo
- Department of Psychiatry, Wenzhou Seventh People’s Hospital, Wenzhou, People’s Republic of China
- Department of Psychiatry, Institute of Mental Healthy, Genetic Lab, Jining Medical University, Jining, People’s Republic of China
- Department of Psychiatric-Neuroimaging-Genetics and Comorbidity Laboratory(PNGC-lab), Tianjin Mental Health Canter, Tianjin Anding Hospital, Mental Health Teaching Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Hongjun Tian
- Department of Psychiatric-Neuroimaging-Genetics and Comorbidity Laboratory(PNGC-lab), Tianjin Mental Health Canter, Tianjin Anding Hospital, Mental Health Teaching Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Chenyuan Du
- Department of Psychiatry, Wenzhou Seventh People’s Hospital, Wenzhou, People’s Republic of China
| |
Collapse
|
7
|
Bogers JPAM, Schulte PFJ, Broekman TG, Moleman P, de Haan L. Dose reduction of high-dose first-generation antipsychotics or switch to ziprasidone in long-stay patients with schizophrenia: A 1-year double-blind randomized clinical trial. Eur Neuropsychopharmacol 2018; 28:1024-1034. [PMID: 30025751 DOI: 10.1016/j.euroneuro.2018.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 06/05/2018] [Accepted: 06/25/2018] [Indexed: 12/22/2022]
Abstract
Long-stay patients with severe schizophrenia are frequently treated with high doses of first-generation antipsychotics (FGA). Dose reduction or switching to ziprasidone may reduce the severity of negative symptoms and side effects. We investigated in a randomized double-blind trial whether a dose-reduction strategy to achieve an adequate dose of a FGA (5 mg/day haloperidol equivalents, n = 24) or switching to ziprasidone (160 mg/day, n = 24) in treatment resistant patients would decrease negative symptoms after 1 year of treatment. We found that negative symptoms did not change significantly in either condition. Positive symptoms, excited symptoms, and emotional distress worsened over time with ziprasidone, resulting in a significant difference between conditions in favour of FGA dose reduction. Relapse and treatment failure, defined as a prolonged or repeated relapse, occurred more often with ziprasidone than with FGA (45.8% versus 20.8%, and 25.0% versus 16.7%, respectively). Treatment with ziprasidone was superior for extrapyramidal symptoms. Our study establishes that lowering high FGA doses to an equivalent of 5 mg/day haloperidol or switching to ziprasidone is feasible in the vast majority of patients but does not improve negative or other symptoms. Neither FGA dose reduction nor switching to ziprasidone is an adequate alternative to clozapine for long-stay patients with severe treatment resistant schizophrenia.
Collapse
Affiliation(s)
- Jan P A M Bogers
- High Care Clinics, Mental Health Services Rivierduinen, Valklaan 3, Oegstgeest, 2342EB Leiden, The Netherlands.
| | - Peter F J Schulte
- Mental Health Services North-Holland North, Alkmaar, The Netherlands
| | | | - Peter Moleman
- Moleman Research and formerly Radboud University, Nijmegen, The Netherlands
| | | |
Collapse
|
8
|
Caravaggio F, Fervaha G, Iwata Y, Plitman E, Chung JK, Nakajima S, Mar W, Gerretsen P, Kim J, Chakravarty MM, Mulsant B, Pollock B, Mamo D, Remington G, Graff-Guerrero A. Amotivation is associated with smaller ventral striatum volumes in older patients with schizophrenia. Int J Geriatr Psychiatry 2018; 33:523-530. [PMID: 29110353 PMCID: PMC5807115 DOI: 10.1002/gps.4818] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/08/2017] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Motivational deficits are prevalent in patients with schizophrenia, persist despite antipsychotic treatment, and predict long-term outcomes. Evidence suggests that patients with greater amotivation have smaller ventral striatum (VS) volumes. We wished to replicate this finding in a sample of older, chronically medicated patients with schizophrenia. Using structural imaging and positron emission tomography, we examined whether amotivation uniquely predicted VS volumes beyond the effects of striatal dopamine D2/3 receptor (D2/3 R) blockade by antipsychotics. METHODS Data from 41 older schizophrenia patients (mean age: 60.2 ± 6.7; 11 female) were reanalysed from previously published imaging data. We constructed multivariate linear stepwise regression models with VS volumes as the dependent variable and various sociodemographic and clinical variables as the initial predictors: age, gender, total brain volume, and antipsychotic striatal D2/3 R occupancy. Amotivation was included as a subsequent step to determine any unique relationships with VS volumes beyond the contribution of the covariates. In a reduced sample (n = 36), general cognition was also included as a covariate. RESULTS Amotivation uniquely explained 8% and 6% of the variance in right and left VS volumes, respectively (right: β = -.38, t = -2.48, P = .01; left: β = -.31, t = -2.17, P = .03). Considering cognition, amotivation levels uniquely explained 9% of the variance in right VS volumes (β = -.43, t = -0.26, P = .03). CONCLUSION We replicate and extend the finding of reduced VS volumes with greater amotivation. We demonstrate this relationship uniquely beyond the potential contributions of striatal D2/3 R blockade by antipsychotics. Elucidating the structural correlates of amotivation in schizophrenia may help develop treatments for this presently irremediable deficit.
Collapse
Affiliation(s)
- Fernando Caravaggio
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada. M5T 1R8
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, Canada. M5T 1R8
| | - Gagan Fervaha
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada. M5T 1R8
| | - Yusuke Iwata
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada. M5T 1R8
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, Canada. M5T 1R8
| | - Eric Plitman
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada. M5T 1R8
| | - Jun Ku Chung
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada. M5T 1R8
| | - Shinichiro Nakajima
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada. M5T 1R8
| | - Wanna Mar
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada. M5T 1R8
| | - Philip Gerretsen
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada. M5T 1R8
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, Canada. M5T 1R8
| | - Julia Kim
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada. M5T 1R8
| | - M. Mallar Chakravarty
- Department of Biological & Biomedical Engineering, McGill University, Montreal, Quebec, Canada. H4H 1R3
- Cerebral Imaging Centre, Douglas Mental Health Institute, McGill University, Montreal, Quebec, Canada. H4H 1R3
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada. H4H 1R3
| | - Benoit Mulsant
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, Canada. M5T 1R8
| | - Bruce Pollock
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, Canada. M5T 1R8
| | - David Mamo
- Department of Psychiatry, University of Malta, Malta
| | - Gary Remington
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada. M5T 1R8
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, Canada. M5T 1R8
| | - Ariel Graff-Guerrero
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada. M5T 1R8
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, Canada. M5T 1R8
| |
Collapse
|
9
|
Representativeness of clinical PET study participants with schizophrenia: A systematic review. J Psychiatr Res 2017; 88:72-79. [PMID: 28088727 DOI: 10.1016/j.jpsychires.2016.12.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/25/2016] [Accepted: 12/31/2016] [Indexed: 01/23/2023]
Abstract
While positron emission tomography (PET) studies have provided invaluable data on antipsychotic effects, selection bias remains a serious concern. A systematic review of PET studies that measured dopamine D2 receptor blockade with antipsychotics was conducted to examine their inclusion/exclusion criteria, using PubMed, EMBASE, and ClinicalTrials.gov (last search, September 2016). PET studies were included if they measured D2 receptor occupancy in patients with schizophrenia and included introduction of antipsychotic treatment or antipsychotic regimen change in a systematic manner. Twenty-six studies were identified. Age limit was included in 13 studies; one study solely included geriatric patients while others targeted younger adults. Eleven, 6, and 3 studies specifically targeted clinically stable patients, patients with severe psychopathology, and antipsychotic-free patients, respectively. Nineteen and 18 studies excluded patients with physical comorbidity and substance abuse, respectively. As a result, the mean age of subjects ranged from 23 to 42 years when one study that targeted geriatric patients was excluded. Mean Positive and Negative Syndrome Scale total scores ranged from 54 to 95. No comparison active-drug or placebo arm was employed in 24 studies. Blind assessment of symptomatology was performed in 5 studies. In general, subjects participating in clinical PET studies were relatively young, presented with mild symptomatology, and were free from substance abuse or physical comorbidities. These characteristics need to be taken into account when clinical PET data are interpreted. On the other hand, it should also be noted that this study was only qualitative and conservative interpretation is necessary for possibility of subjective bias.
Collapse
|
10
|
Abstract
Imaging has played an important part in the diagnosis of disease and development of the understanding of the underlying disease mechanisms and is now poised to make an impact in the development of new pharmaceuticals. This chapter discusses the underlying technologies that make the field ready for this challenge. In particular, the potentials of magnetic resonance imaging and functional magnetic resonance imaging are outlined, including the new methods developed to provide additional information from the scans carried out. The field of nuclear medicine has seen a rapid increase in interest as advances in radiochemistry have enabled a wide range of new radiotracers to be synthesised.
Collapse
Affiliation(s)
- James Nairne
- GE Healthcare, The Grove Centre, Amersham, Buckinghamshire, United Kingdom
| | - Peter B Iveson
- GE Healthcare, The Grove Centre, Amersham, Buckinghamshire, United Kingdom
| | | |
Collapse
|
11
|
Peuskens J, Pani L, Detraux J, De Hert M. The effects of novel and newly approved antipsychotics on serum prolactin levels: a comprehensive review. CNS Drugs 2014; 28:421-53. [PMID: 24677189 PMCID: PMC4022988 DOI: 10.1007/s40263-014-0157-3] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Since the 1970s, clinicians have increasingly become more familiar with hyperprolactinemia (HPRL) as a common adverse effect of antipsychotic medication, which remains the cornerstone of pharmacological treatment for patients with schizophrenia. Although treatment with second-generation antipsychotics (SGAs) as a group is, compared with use of the first-generation antipsychotics, associated with lower prolactin (PRL) plasma levels, the detailed effects on plasma PRL levels for each of these compounds in reports often remain incomplete or inaccurate. Moreover, at this moment, no review has been published about the effect of the newly approved antipsychotics asenapine, iloperidone and lurasidone on PRL levels. The objective of this review is to describe PRL physiology; PRL measurement; diagnosis, causes, consequences and mechanisms of HPRL; incidence figures of (new-onset) HPRL with SGAs and newly approved antipsychotics in adolescent and adult patients; and revisit lingering questions regarding this hormone. A literature search, using the MEDLINE database (1966-December 2013), was conducted to identify relevant publications to report on the state of the art of HPRL and to summarize the available evidence with respect to the propensity of the SGAs and the newly approved antipsychotics to elevate PRL levels. Our review shows that although HPRL usually is defined as a sustained level of PRL above the laboratory upper limit of normal, limit values show some degree of variability in clinical reports, making the interpretation and comparison of data across studies difficult. Moreover, many reports do not provide much or any data detailing the measurement of PRL. Although the highest rates of HPRL are consistently reported in association with amisulpride, risperidone and paliperidone, while aripiprazole and quetiapine have the most favorable profile with respect to this outcome, all SGAs can induce PRL elevations, especially at the beginning of treatment, and have the potential to cause new-onset HPRL. Considering the PRL-elevating propensity of the newly approved antipsychotics, evidence seems to indicate these agents have a PRL profile comparable to that of clozapine (asenapine and iloperidone), ziprasidone and olanzapine (lurasidone). PRL elevations with antipsychotic medication generally are dose dependant. However, antipsychotics having a high potential for PRL elevation (amisulpride, risperidone and paliperidone) can have a profound impact on PRL levels even at relatively low doses, while PRL levels with antipsychotics having a minimal effect on PRL, in most cases, can remain unchanged (quetiapine) or reduce (aripiprazole) over all dosages. Although tolerance and decreases in PRL values after long-term administration of PRL-elevating antipsychotics can occur, the elevations, in most cases, remain above the upper limit of normal. PRL profiles of antipsychotics in children and adolescents seem to be the same as in adults. The hyperprolactinemic effects of antipsychotic medication are mostly correlated with their affinity for dopamine D2 receptors at the level of the anterior pituitary lactotrophs (and probably other neurotransmitter mechanisms) and their blood-brain barrier penetrating capability. Even though antipsychotics are the most common cause of pharmacologically induced HPRL, recent research has shown that HPRL can be pre-existing in a substantial portion of antipsychotic-naïve patients with first-episode psychosis or at-risk mental state.
Collapse
Affiliation(s)
- J. Peuskens
- Department of Neurosciences, KU Leuven, University Psychiatric Centre, Catholic University Leuven, Kortenberg, Belgium
| | - L. Pani
- Italian Medicines Agency (AIFA), Rome, Italy
| | - J. Detraux
- Department of Neurosciences, KU Leuven, University Psychiatric Centre, Catholic University Leuven, Kortenberg, Belgium
| | - M. De Hert
- Department of Neurosciences, KU Leuven, University Psychiatric Centre, Catholic University Leuven, Kortenberg, Belgium
| |
Collapse
|
12
|
Estimated dopamine D2 receptor occupancy from plasma concentrations of atypical antipsychotics and subjective experience/drug attitude in schizophrenia: an analysis of the CATIE data. Schizophr Res 2013; 150:373-9. [PMID: 24028745 DOI: 10.1016/j.schres.2013.08.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/19/2013] [Accepted: 08/21/2013] [Indexed: 11/21/2022]
Abstract
OBJECTIVE The objective of this analysis was to evaluate both cross-sectional and longitudinal relationships between estimated dopamine D2 receptor occupancy from plasma concentrations of atypical antipsychotics and subjective experience/drug attitude in patients with schizophrenia. METHOD The data from the Clinical Antipsychotic Trials in Intervention Effectiveness (CATIE) were used in this analysis. The cross-sectional data included 371 patients receiving risperidone, olanzapine, or ziprasidone, who had completed the Drug Attitude Inventory (DAI-10) at six months and provided plasma antipsychotic concentrations. Samples were analyzed to examine the relationship between DAI-10 total scores and estimated D2 occupancy using Spearman's rank correlations, followed by multiple regression analysis. In addition, to elucidate the relationship between changes in DAI-10 scores and estimated D2 occupancy, the longitudinal data from 45 patients who experienced an increase in antipsychotic dosage between six and 12months were analyzed. Mean peak and trough D2 occupancy levels were estimated from plasma antipsychotic concentrations using a population pharmacokinetic approach. RESULTS A positive association was found between estimated D2 occupancy and DAI-10 total scores in patients receiving ziprasidone in the cross-sectional dataset (rs=0.395, P=0.001). In contrast, a negative association was found in changes in estimated D2 occupancy and DAI-10 scores among patients receiving olanzapine in the longitudinal dataset (rs=-0.534, P=0.010). No significant associations were found in patients receiving risperidone, or in the whole sample regarding both cross-sectional and longitudinal datasets. CONCLUSION Dopamine D2 receptor occupancy may mediate subjective experience/drug attitude in patients with schizophrenia. The directionality may however differ between antipsychotics, which warrants further investigation.
Collapse
|
13
|
Tsuboi T, Bies RR, Suzuki T, Mamo DC, Pollock BG, Graff-Guerrero A, Mimura M, Uchida H. Hyperprolactinemia and estimated dopamine D2 receptor occupancy in patients with schizophrenia: analysis of the CATIE data. Prog Neuropsychopharmacol Biol Psychiatry 2013; 45:178-82. [PMID: 23727135 DOI: 10.1016/j.pnpbp.2013.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/18/2013] [Accepted: 05/22/2013] [Indexed: 11/18/2022]
Abstract
BACKGROUND Large-scale data are still lacking on the relationship between serum prolactin concentration and dopamine D2 receptor occupancy in patients with schizophrenia treated with antipsychotics. METHODS The dataset from 481 subjects (risperidone, N = 172, olanzapine, N = 211, and ziprasidone, N = 98) who participated in Phase 1 of the Clinical Antipsychotic Trials in Intervention Effectiveness (CATIE) was used in the present analysis. Dopamine D2 receptor occupancy levels on the day of the measurement of serum prolactin level were estimated from plasma antipsychotic concentrations. A multivariate general linear model was used to examine effects of clinical and demographic characteristics, including estimated D2 occupancy levels, on serum prolactin concentrations. Individual subjects were divided into two groups, stratified by the presence of hyperprolactinemia. To evaluate the performance of this binary classification, sensitivity, specificity, and accuracy of consecutive cut-off points in the D2 occupancy were calculated. RESULTS The multivariate general linear model revealed that estimated D2 occupancy levels had significant effects on serum prolactin concentrations while any other variables failed to show significant effects. The cut-off point associated with 0.5 or greater, in both sensitivity and specificity with the greatest accuracy, was 73% (sensitivity, 0.58; specificity, 0.68; accuracy = 0.64) (68-70% for risperidone, 77% for olanzapine, and 55% for ziprasidone.). CONCLUSION The threshold for hyperprolactinemia in D2 occupancy may lie somewhat on a lower side of the established therapeutic window with antipsychotics (i.e. 65-80%). This finding highlights the need for the use of the lowest possible dose to avoid this hormonal side effect in the treatment of schizophrenia.
Collapse
Affiliation(s)
- Takashi Tsuboi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|