1
|
Varodayan FP, Erikson CM, Scroger MV, Roberto M. Noradrenergic Mechanisms and Circuitry of Hyperkatifeia in Alcohol Use Disorder. Biol Psychiatry 2024:S0006-3223(24)01609-3. [PMID: 39304172 DOI: 10.1016/j.biopsych.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Hyperkatifeia, the manifestation of emotional distress or pain, is a conceptual framework gaining traction throughout the alcohol and other substance use fields as an important driver of addiction. It is well known that previous or current negative life experiences can serve as powerful motivators for excessive alcohol consumption and precipitate the development of an alcohol use disorder (AUD). A major hallmark of later stages of AUD is the emergence of hyperkatifeia during withdrawal, which can persist well into protracted abstinence to drive relapse. Given these complex interactions, understanding the specific neuroadaptations that lie at the intersection of hyperkatifeia and AUD can inform ongoing therapeutic development. The monoamine norepinephrine is of particular interest. Noradrenergic dysfunction is implicated in AUD, anxiety, chronic stress, depression, and emotional and physical pain. Importantly, there are key sexual dimorphisms within the noradrenergic system that are thought to differentially impact the development and trajectory of AUD in women and men. In the current review, we discuss past and recent work on noradrenergic influences at each stage of the AUD cycle (binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation) through the lens of hyperkatifeia. Evidence from these studies support the prioritization of norepinephrine-specific drug development to treat AUD and the identification of AUD subpopulations that may benefit the most from these therapies (e.g., women or people with comorbid chronic pain or anxiety/stress disorders).
Collapse
Affiliation(s)
- Florence P Varodayan
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University, SUNY, Binghamton, New York.
| | - Chloe M Erikson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| | - Marcis V Scroger
- Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University, SUNY, Binghamton, New York
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California.
| |
Collapse
|
2
|
Vázquez-Ágredos A, Valero M, Aparicio-Mescua T, García-Rodríguez R, Gámiz F, Gallo M. Adolescent alcohol exposure modifies adult anxiety-like behavior and amygdala sensitivity to alcohol in rats: Increased c-Fos activity and sex-dependent microRNA-182 expression. Pharmacol Biochem Behav 2024; 238:173741. [PMID: 38437922 DOI: 10.1016/j.pbb.2024.173741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/12/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
Adolescent binge alcohol drinking is a serious health concern contributing to adult alcohol abuse often associated with anxiety disorders. We have used adolescent intermittent ethanol (AIE) administration as a model of binge drinking in rats in order to explore its long-term effect on the basolateral amygdala (BLA) responsiveness to alcohol and anxiety-like behavior. AIE increased the number of BLA c-Fos positive cells in adult Wistar rats and anxiety-like behavior assessed by the open field test (OFT). Additionally, in adult female rats receiving AIE BLA over expression of miR-182 was found. Therefore, our results indicate that alcohol consumption during adolescence can lead to enduring changes in anxiety-like behavior and BLA susceptibility to alcohol that may be mediated by sex-dependent epigenetic changes. These results contribute to understanding the mechanisms involved in the development of alcohol use disorders (AUD) and anxiety-related disorders.
Collapse
Affiliation(s)
- Ana Vázquez-Ágredos
- Department of Psychobiology, Institute of Neurosciences (CIBM), University of Granada, Granada, Spain.
| | - Marta Valero
- Department of Psychology, University of Jaén, Jaén, Spain
| | - Teresa Aparicio-Mescua
- Department of Psychobiology and Centre of Investigation of Mind, Brain, and Behavior (CIMCYC), Faculty of Psychology, University of Granada, Granada, Spain
| | - Raquel García-Rodríguez
- Department of Psychobiology, Institute of Neurosciences (CIBM), University of Granada, Granada, Spain
| | - Fernando Gámiz
- Department of Psychobiology, Institute of Neurosciences (CIBM), University of Granada, Granada, Spain
| | - Milagros Gallo
- Department of Psychobiology, Institute of Neurosciences (CIBM), University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria (IBS), University of Granada, Granada, Spain
| |
Collapse
|
3
|
Marron Fernandez de Velasco E, Tipps ME, Haider B, Souders A, Aguado C, Rose TR, Vo BN, DeBaker MC, Luján R, Wickman K. Ethanol-Induced Suppression of G Protein-Gated Inwardly Rectifying K +-Dependent Signaling in the Basal Amygdala. Biol Psychiatry 2023; 94:863-874. [PMID: 37068702 PMCID: PMC10576835 DOI: 10.1016/j.biopsych.2023.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
BACKGROUND The basolateral amygdala (BLA) regulates mood and associative learning and has been linked to the development and persistence of alcohol use disorder. The GABABR (gamma-aminobutyric acid B receptor) is a promising therapeutic target for alcohol use disorder, and previous work suggests that exposure to ethanol and other drugs can alter neuronal GABABR-dependent signaling. The effect of ethanol on GABABR-dependent signaling in the BLA is unknown. METHODS GABABR-dependent signaling in the mouse BLA was examined using slice electrophysiology following repeated ethanol exposure. Neuron-specific viral genetic manipulations were then used to understand the relevance of ethanol-induced neuroadaptations in the basal amygdala subregion (BA) to mood-related behavior. RESULTS The somatodendritic inhibitory effect of GABABR activation on principal neurons in the basal but not the lateral subregion of the BLA was diminished following ethanol exposure. This adaptation was attributable to the suppression of GIRK (G protein-gated inwardly rectifying K+) channel activity and was mirrored by a redistribution of GABABR and GIRK channels from the surface membrane to internal sites. While GIRK1 and GIRK2 subunits are critical for GIRK channel formation in BA principal neurons, GIRK3 is necessary for the ethanol-induced neuroadaptation. Viral suppression of GIRK channel activity in BA principal neurons from ethanol-naïve mice recapitulated some mood-related behaviors observed in C57BL/6J mice during ethanol withdrawal. CONCLUSIONS The ethanol-induced suppression of GIRK-dependent signaling in BA principal neurons contributes to some of the mood-related behaviors associated with ethanol withdrawal in mice. Approaches designed to prevent this neuroadaptation and/or strengthen GIRK-dependent signaling may prove useful for the treatment of alcohol use disorder.
Collapse
Affiliation(s)
| | - Megan E Tipps
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Bushra Haider
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Anna Souders
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Carolina Aguado
- Departmento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla La Mancha, Campus Biosanitario, La Mancha, Albacete, Spain
| | - Timothy R Rose
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Baovi N Vo
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - Margot C DeBaker
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Rafael Luján
- Departmento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla La Mancha, Campus Biosanitario, La Mancha, Albacete, Spain
| | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
4
|
Bach EC, Ewin SE, Heaney CF, Carlson HN, Ortelli OA, Almonte AG, Chappell AM, Raab-Graham KF, Weiner JL. Chemogenetic inhibition of a monosynaptic projection from the basolateral amygdala to the ventral hippocampus selectively reduces appetitive, but not consummatory, alcohol drinking-related behaviours. Eur J Neurosci 2023; 57:1241-1259. [PMID: 36840503 PMCID: PMC10931538 DOI: 10.1111/ejn.15944] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/16/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023]
Abstract
Alcohol use disorder (AUD) and anxiety/stressor disorders frequently co-occur and this dual diagnosis represents a major health and economic problem worldwide. The basolateral amygdala (BLA) is a key brain region that is known to contribute to the aetiology of both disorders. Although many studies have implicated BLA hyperexcitability in the pathogenesis of AUD and comorbid conditions, relatively little is known about the specific efferent projections from this brain region that contribute to these disorders. Recent optogenetic studies have shown that the BLA sends a strong monosynaptic excitatory projection to the ventral hippocampus (vHC) and that this circuit modulates anxiety- and fear-related behaviours. However, it is not known if this pathway influences alcohol drinking-related behaviours. Here, we employed a rodent operant self-administration regimen that procedurally separates appetitive (e.g. seeking) and consummatory (e.g., drinking) behaviours, chemogenetics and brain region-specific microinjections, to determine if BLA-vHC circuitry influences alcohol and sucrose drinking-related measures. We first confirmed prior optogenetic findings that silencing this circuit reduced anxiety-like behaviours on the elevated plus maze. We then demonstrated that inhibiting the BLA-vHC pathway significantly reduced appetitive drinking-related behaviours for both alcohol and sucrose while having no effect on consummatory measures. Taken together, these findings provide the first indication that the BLA-vHC circuit may regulate appetitive reward seeking directed at alcohol and natural rewards and add to a growing body of evidence suggesting that dysregulation of this pathway may contribute to the pathophysiology of AUD and anxiety/stressor-related disorders.
Collapse
Affiliation(s)
- Eva C Bach
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Sarah E Ewin
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Chelcie F Heaney
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Hannah N Carlson
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Olivia A Ortelli
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Antoine G Almonte
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Ann M Chappell
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Kimberly F Raab-Graham
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jeffrey L Weiner
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
5
|
Mineur YS, Garcia-Rivas V, Thomas MA, Soares AR, McKee SA, Picciotto MR. Sex differences in stress-induced alcohol intake: a review of preclinical studies focused on amygdala and inflammatory pathways. Psychopharmacology (Berl) 2022; 239:2041-2061. [PMID: 35359158 PMCID: PMC9704113 DOI: 10.1007/s00213-022-06120-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/14/2022] [Indexed: 02/06/2023]
Abstract
Clinical studies suggest that women are more likely than men to relapse to alcohol drinking in response to stress; however, the mechanisms underlying this sex difference are not well understood. A number of preclinical behavioral models have been used to study stress-induced alcohol intake. Here, we review paradigms used to study effects of stress on alcohol intake in rodents, focusing on findings relevant to sex differences. To date, studies of sex differences in stress-induced alcohol drinking have been somewhat limited; however, there is evidence that amygdala-centered circuits contribute to effects of stress on alcohol seeking. In addition, we present an overview of inflammatory pathways leading to microglial activation that may contribute to alcohol-dependent behaviors. We propose that sex differences in neuronal function and inflammatory signaling in circuits centered on the amygdala are involved in sex-dependent effects on stress-induced alcohol seeking and suggest that this is an important area for future studies.
Collapse
Affiliation(s)
- Yann S Mineur
- Department of Psychiatry, Yale University, 34 Park Street, 3Rd Floor Research, New Haven, CT, 06508, USA
| | - Vernon Garcia-Rivas
- Department of Psychiatry, Yale University, 34 Park Street, 3Rd Floor Research, New Haven, CT, 06508, USA
| | - Merrilee A Thomas
- Department of Psychiatry, Yale University, 34 Park Street, 3Rd Floor Research, New Haven, CT, 06508, USA
| | - Alexa R Soares
- Department of Psychiatry, Yale University, 34 Park Street, 3Rd Floor Research, New Haven, CT, 06508, USA
- Yale Interdepartmental Neuroscience Program, New Haven, CT, USA
| | - Sherry A McKee
- Department of Psychiatry, Yale University, 34 Park Street, 3Rd Floor Research, New Haven, CT, 06508, USA
| | - Marina R Picciotto
- Department of Psychiatry, Yale University, 34 Park Street, 3Rd Floor Research, New Haven, CT, 06508, USA.
- Yale Interdepartmental Neuroscience Program, New Haven, CT, USA.
| |
Collapse
|
6
|
Sizer SE, Parrish BC, McCool BA. Chronic Ethanol Exposure Potentiates Cholinergic Neurotransmission in the Basolateral Amygdala. Neuroscience 2020; 455:165-176. [PMID: 33385490 DOI: 10.1016/j.neuroscience.2020.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 01/10/2023]
Abstract
Chronic intermittent ethanol (CIE) exposure dysregulates glutamatergic and GABAergic neurotransmission, facilitating basolateral amygdala (BLA) pyramidal neuron hyperexcitability and the expression of anxiety during withdrawal. It is unknown whether ethanol-induced alterations in nucleus basalis magnocellularis (NBM) cholinergic projections to the BLA mediate anxiety-related behaviors through direct modulation of GABA and glutamate afferents. Following 10 days of CIE exposure and 24 h of withdrawal, we recorded GABAergic and glutamatergic synaptic responses in BLA pyramidal neurons with electrophysiology, assessed total protein expression of cholinergic markers, and quantified acetylcholine and choline concentrations using a colorimetric assay. We measured α7 nicotinic acetylcholine receptor (nAChR) dependent modulation of presynaptic function at distinct inputs in AIR- and CIE-exposed BLA coronal slices as a functional read-out of cholinergic neurotransmission. CIE/withdrawal upregulates the endogenous activity of α7 nAChRs, facilitating release at both GABAergic' local' interneuron and glutamatergic synaptic responses to stria terminalis (ST) stimulation, with no effect at GABAergic lateral paracapsular cells (LPCs). CIE caused a three-fold increase in BLA acetylcholine concentration, with no changes in α7 nAChR or cholinergic marker expression. These data illustrate that α7 nAChR-dependent changes in presynaptic function serve as a proxy for CIE-dependent alterations in synaptic acetylcholine levels. Thus, cholinergic projections appear to mediate CIE-induced alterations at GABA/glutamate inputs.
Collapse
Affiliation(s)
- Sarah E Sizer
- Department of Physiology and Pharmacology, Piedmont Triad Community Research Center (PTCRC), Wake Forest School of Medicine, 115 S Chestnut Street, Winston-Salem, NC 27101, USA.
| | - Brian C Parrish
- Department of Physiology and Pharmacology, Piedmont Triad Community Research Center (PTCRC), Wake Forest School of Medicine, 115 S Chestnut Street, Winston-Salem, NC 27101, USA.
| | - Brian A McCool
- Department of Physiology and Pharmacology, Piedmont Triad Community Research Center (PTCRC), Wake Forest School of Medicine, 115 S Chestnut Street, Winston-Salem, NC 27101, USA.
| |
Collapse
|
7
|
Scarnati MS, Boreland AJ, Joel M, Hart RP, Pang ZP. Differential sensitivity of human neurons carrying μ opioid receptor (MOR) N40D variants in response to ethanol. Alcohol 2020; 87:97-109. [PMID: 32561311 PMCID: PMC7958146 DOI: 10.1016/j.alcohol.2020.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/15/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022]
Abstract
The acute and chronic effects of alcohol on the brain and behavior are linked to alterations in inhibitory synaptic transmission. Alcohol's most consistent effect at the synaptic level is probably a facilitation of γ-aminobutyric acid (GABA) release, as seen from several rodent studies. The impact of alcohol on GABAergic neurotransmission in human neurons is unknown, due to a lack of a suitable experimental model. Human neurons can also be used to model effects of genetic variants linked with alcohol use disorders (AUDs). The A118G single nucleotide polymorphism (SNP rs1799971) of the OPRM1 gene encoding the N40D (D40 minor allele) mu-opioid receptor (MOR) variant has been linked with individuals who have an AUD. However, while N40D is clearly associated with other drugs of abuse, involvement with AUDs is controversial. In this study, we employed Ascl1-and Dlx2-induced inhibitory neuronal cells (AD-iNs) generated from human iPS cell lines carrying N40D variants, and investigated the impact of ethanol acutely and chronically on GABAergic synaptic transmission. We found that N40 AD-iNs display a stronger facilitation (versus D40) of spontaneous and miniature inhibitory postsynaptic current frequency in response to acute ethanol application. Quantitative immunocytochemistry of Synapsin 1+ synaptic puncta revealed a similar synapse number between N40 and D40 iNs, suggesting an ethanol modulation of presynaptic GABA release without affecting synapse density. Interestingly, D40 iNs exposed to chronic intermittent ethanol application caused a significant increase in mIPSC frequency, with only a modest enhancement observed in N40 iNs. These data suggest that the MOR genotype may confer differential sensitivity to synaptic output, which depends on ethanol exposure time and concentration for AD-iNs and may help explain alcohol dependence in individuals who carry the MOR D40 SNPs. Furthermore, this study supports the use of human neuronal cells carrying risk-associated genetic variants linked to disease, as in vitro models to assay the synaptic actions of alcohol on human neuronal cells.
Collapse
Affiliation(s)
- Matthew S Scarnati
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, 08901, USA; Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Andrew J Boreland
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, 08901, USA; Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Marisa Joel
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, 08901, USA; Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA; Human Genetics Institute of New Jersey, Piscataway, NJ, 08854, USA
| | - Zhiping P Pang
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, 08901, USA; Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
8
|
Deal AL, Bass CE, Grinevich VP, Delbono O, Bonin KD, Weiner JL, Budygin EA. Bidirectional Control of Alcohol-drinking Behaviors Through Locus Coeruleus Optoactivation. Neuroscience 2020; 443:84-92. [PMID: 32707291 DOI: 10.1016/j.neuroscience.2020.07.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 12/17/2022]
Abstract
The relationship between stress and alcohol-drinking behaviors has been intensively explored; however, neuronal substrates and neurotransmitter dynamics responsible for a causal link between these conditions are still unclear. Here, we optogenetically manipulated locus coeruleus (LC) norepinephrine (NE) activity by applying distinct stimulation protocols in order to explore how phasic and tonic NE release dynamics control alcohol-drinking behaviors. Our results clearly demonstrate contrasting behavioral consequences of LC-NE circuitry activation during low and high frequency stimulation. Specifically, applying tonic stimulation during a standard operant drinking session resulted in increased intake, while phasic stimulation decreased this measure. Furthermore, stimulation during extinction probe trials, when the lever press response was not reinforced, did not significantly alter alcohol-seeking behavior if a tonic pattern was applied. However, phasic stimulation substantially suppressed the number of lever presses, indicating decreased alcohol seeking under the same experimental condition. Given the well-established correlative link between stress and increased alcohol consumption, here we provide the first evidence that tonic LC-NE activity plays a causal role in stress-associated increases in drinking.
Collapse
Affiliation(s)
- Alex L Deal
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Caroline E Bass
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Valentina P Grinevich
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Osvaldo Delbono
- Department of Internal Medicine, Gerontology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Keith D Bonin
- Department of Physics, Wake Forest University, Winston-Salem, NC, USA
| | - Jeff L Weiner
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Evgeny A Budygin
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
9
|
Patkar OL, Belmer A, Beecher K, Jacques A, Bartlett SE. Pindolol Rescues Anxiety-Like Behavior and Neurogenic Maladaptations of Long-Term Binge Alcohol Intake in Mice. Front Behav Neurosci 2019; 13:264. [PMID: 31849624 PMCID: PMC6895681 DOI: 10.3389/fnbeh.2019.00264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 11/20/2019] [Indexed: 12/30/2022] Open
Abstract
Long-term binge alcohol consumption alters the signaling of numerous neurotransmitters in the brain including noradrenaline (NE) and serotonin (5-HT). Alterations in the signaling of these neuronal pathways result in dysfunctional emotional states like anxiety and depression which are typically seen during alcohol withdrawal. Interestingly, studies have demonstrated that the development of alcohol-induced negative affective states is linked to disrupted neurogenesis in the dentate gyrus (DG) region of the hippocampus in alcohol-dependent animals. We have previously shown that modulation of NE and 5-HT activity by pharmacological targeting of β-adrenoreceptors (β-ARs) and 5-HT1A/1B receptors with pindolol reduces consumption in long-term alcohol-consuming mice. Since these receptors are also involved in emotional homeostasis and hippocampal neurogenesis, we investigated the effects of pindolol administration on emotional and neurogenic deficits in mice consuming long-term alcohol (18 weeks). We report that acute administration of pindolol (32 mg/kg) reduces anxiety-like behavior in mice at 24 h withdrawal in the marble-burying test (MBT) and the elevated plus-maze (EPM). We also show that chronic (2 weeks) pindolol treatment (32 mg/kg/day) attenuates alcohol-induced impairments in the density of immature neurons (DCX+) but not newborn cells (BrdU+) in the hippocampal DG. Pindolol treatment also restores the normal proportion of newborn proliferating cells (BrdU+/Ki67+/DCX−), newborn proliferating immature neurons (BrdU+/Ki67+/DCX+) and newborn non-proliferating immature neurons (BrdU+/Ki67−/DCX+) following long-term alcohol intake. These results suggest that pindolol, through its unique pharmacology may rescue some but not all deficits of long-term alcohol abuse on the brain, adding further value to its properties as a strong pharmaceutical option for alcohol use disorders (AUDs).
Collapse
Affiliation(s)
- Omkar L Patkar
- Addiction and Obesity Laboratory, Department of Clinical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.,Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, QLD, Australia
| | - Arnauld Belmer
- Addiction and Obesity Laboratory, Department of Clinical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.,Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, QLD, Australia
| | - Kate Beecher
- Addiction and Obesity Laboratory, Department of Clinical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.,Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, QLD, Australia
| | - Angela Jacques
- Addiction and Obesity Laboratory, Department of Clinical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.,Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, QLD, Australia
| | - Selena E Bartlett
- Addiction and Obesity Laboratory, Department of Clinical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.,Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
10
|
Minami S, Kiyokawa Y, Takeuchi Y. The lateral intercalated cell mass of the amygdala is activated during social buffering of conditioned fear responses in male rats. Behav Brain Res 2019; 372:112065. [PMID: 31260719 DOI: 10.1016/j.bbr.2019.112065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/21/2019] [Accepted: 06/27/2019] [Indexed: 01/01/2023]
Abstract
The presence of an affiliative conspecific reduces stress responses to a wide variety of stimuli. This phenomenon is termed "social buffering". We previously found that the presence of another Wistar rat (associate) suppressed activation of the lateral amygdala (LA) and ameliorated stress responses to an auditory conditioned stimulus (CS) in a fear-conditioned Wistar subject rat. Subsequent analyses suggested that activation of the posterior complex of the anterior olfactory nucleus (AOP) is responsible for the suppression of the LA. However, it remains unclear how the AOP suppresses the LA. To clarify this issue, a fear-conditioned Wistar subject was exposed to the CS either alone or with a Wistar associate. We also prepared a fear-conditioned Wistar subject that was tested with a Fischer344 (F344) associate as an additional control because F344 associates do not induce social buffering. We found that the presence of a Wistar associate induced a reduction of behavioral responses and Fos expression in the paraventricular nucleus of the hypothalamus (PVN) of the subject. Although Fos expression in the AOP was increased, the expression was not biased towards the GABAergic cells. In addition, Fos expression in the lateral intercalated cell mass of the amygdala (lITC) was increased. In contrast, the presence of a F344 associate did not affect Fos expression in subjects' PVN or lITC, whereas behavioral responses were slightly reduced. These results suggest that the lITC was activated during social buffering. Based on these findings, we propose that the AOP indirectly suppresses the LA by activating the lITC.
Collapse
Affiliation(s)
- Shota Minami
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasushi Kiyokawa
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Yukari Takeuchi
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
11
|
Darnieder LM, Melón LC, Do T, Walton NL, Miczek KA, Maguire JL. Female-specific decreases in alcohol binge-like drinking resulting from GABA A receptor delta-subunit knockdown in the VTA. Sci Rep 2019; 9:8102. [PMID: 31147611 PMCID: PMC6542821 DOI: 10.1038/s41598-019-44286-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023] Open
Abstract
Binge drinking is short-term drinking that achieves blood alcohol levels of 0.08 g/dl or above. It exhibits well-established sex differences in GABAergic inhibitory neurotransmission, including extrasynaptic δ subunit-containing GABAA receptors (δ-GABAARs) that mediate tonic inhibition, or synaptic γ2-containing GABAARs which underlie fast, synaptic, phasic inhibition have been implicated in sex differences in binge drinking. Ovarian hormones regulate δ-GABAARs, further implicating these receptors in potential sex differences. Here, we explored the contribution of extrasynaptic δ-GABAARs to male and female binge-like drinking in a critical area of mesolimbic circuitry-the ventral tegmental area (VTA). Quantitative PCR revealed higher Gabrd transcript levels and larger tonic currents in the VTA of females compared to males. In contrast, male and female Gabrg2 transcript levels and measures of phasic inhibition were equivalent. Intra-VTA infusion of AAV-Cre-GFP in floxed Gabrd mice downregulated δ-GABAARs and decreased binge-like drinking in females. There was no significant difference in either male or female mice after GABAAR γ2 subunit reduction in the VTA following AAV-Cre-GFP infusion in floxed Gabrg2 mice. Collectively, these findings suggest sex differences and GABAAR subunit specificity in alcohol intake.
Collapse
Affiliation(s)
- L M Darnieder
- Graduate Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
| | - L C Melón
- Tufts University School of Medicine, Department of Neuroscience, Boston, MA, 02111, USA
| | - T Do
- Northeastern University, Bouvé College of Health Sciences, Boston, MA, 02115, USA
| | - N L Walton
- University of Massachusetts Boston, Honors College of Nursing and Health Sciences, Boston, MA, 02125, USA
| | - K A Miczek
- Tufts University School of Medicine, Department of Neuroscience, Boston, MA, 02111, USA
- Tufts University, Psychology Department, Medford, MA, 02155, USA
| | - J L Maguire
- Tufts University School of Medicine, Department of Neuroscience, Boston, MA, 02111, USA.
| |
Collapse
|
12
|
Souza-Braga P, Lorena FB, Nascimento BPP, Marcelino CP, Ravache TT, Ricci E, Bernardi MM, Ribeiro MO. Adrenergic receptor β3 is involved in the memory consolidation process in mice. ACTA ACUST UNITED AC 2018; 51:e7564. [PMID: 30088540 PMCID: PMC6086548 DOI: 10.1590/1414-431x20187564] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 06/04/2018] [Indexed: 02/02/2023]
Abstract
Attention and emotion have a positive impact on memory formation, which is related to the activation of the noradrenergic system in the brain. The hippocampus and amygdala are fundamental structures in memory acquisition, which is modulated by noradrenaline through the noradrenergic receptors. Pharmacological studies suggest that memory acquisition depends on the action of both the β3 (β3-AR) and β2 (β2-AR) receptor subtypes. However, the use of animal models with specific knockout for the β3-AR receptor only (β3-ARKO) allows researchers to more accurately assess its role in memory formation processes. In the present study, we evaluated short- and long-term memory acquisition capacity in β3-ARKO mice and wild-type mice at approximately 60 days of age. The animals were submitted to the open field test, the elevated plus maze, object recognition, and social preference. The results showed that the absence of the β3-AR receptor caused no impairment in locomotion and did not cause anxious behavior, but it caused significant impairment of short- and long-term memory compared to wild-type animals. We also evaluated the expression of genes involved in memory consolidation. The mRNA levels for GLUT3, a glucose transporter expressed in the central nervous system, were significantly reduced in the amygdala, but not in the hippocampus of the β3-ARKO animals. Our results showed that β3-AR was involved in the process of acquisition of declarative memory, and its action may be due to the facilitation of glucose absorption in the amygdala.
Collapse
Affiliation(s)
- P Souza-Braga
- Programa de Pós-Graduação em Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde, Universidade Presbiteriana Mackenzie, São Paulo, SP, Brasil
| | - F B Lorena
- Programa de Pós-Graduação em Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde, Universidade Presbiteriana Mackenzie, São Paulo, SP, Brasil.,Programa de Pós-Graduação em Medicina Translacional, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - B P P Nascimento
- Programa de Pós-Graduação em Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde, Universidade Presbiteriana Mackenzie, São Paulo, SP, Brasil.,Programa de Pós-Graduação em Medicina Translacional, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - C P Marcelino
- Programa de Pós-Graduação em Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde, Universidade Presbiteriana Mackenzie, São Paulo, SP, Brasil.,Programa de Pós-Graduação em Medicina Translacional, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - T T Ravache
- Programa de Pós-Graduação em Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde, Universidade Presbiteriana Mackenzie, São Paulo, SP, Brasil
| | - E Ricci
- Programa de Pós-Graduação em Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde, Universidade Presbiteriana Mackenzie, São Paulo, SP, Brasil
| | - M M Bernardi
- Programa de Pós-Graduação em Patologia Ambiental e Experimental, Universidade Paulista, São Paulo, SP, Brasil
| | - M O Ribeiro
- Programa de Pós-Graduação em Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde, Universidade Presbiteriana Mackenzie, São Paulo, SP, Brasil
| |
Collapse
|
13
|
Moaddab M, Mangone E, Ray MH, McDannald MA. Adolescent Alcohol Drinking Renders Adult Drinking BLA-Dependent: BLA Hyper-Activity as Contributor to Comorbid Alcohol Use Disorder and Anxiety Disorders. Brain Sci 2017; 7:brainsci7110151. [PMID: 29135933 PMCID: PMC5704158 DOI: 10.3390/brainsci7110151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/31/2017] [Accepted: 11/10/2017] [Indexed: 01/01/2023] Open
Abstract
Adolescent alcohol drinking increases the risk for alcohol-use disorder in adulthood. Yet, the changes in adult neural function resulting from adolescent alcohol drinking remain poorly understood. We hypothesized that adolescent alcohol drinking alters basolateral amygdala (BLA) function, making alcohol drinking BLA-dependent in adulthood. Male, Long Evans rats were given voluntary, intermittent access to alcohol (20% ethanol) or a bitter, isocaloric control solution, across adolescence. Half of the rats in each group received neurotoxic BLA lesions. In adulthood, all rats were given voluntary, intermittent access to alcohol. BLA lesions reduced adult alcohol drinking in rats receiving adolescent access to alcohol, but not in rats receiving adolescent access to the control solution. The effect of the BLA lesion was most apparent in high alcohol drinking adolescent rats. The BLA is essential for fear learning and is hyper-active in anxiety disorders. The results are consistent with adolescent heavy alcohol drinking inducing BLA hyper-activity, providing a neural mechanism for comorbid alcohol use disorder and anxiety disorders.
Collapse
Affiliation(s)
- Mahsa Moaddab
- Department of Psychology, Boston College, Chestnut Hill, MA 02467, USA.
| | - Elizabeth Mangone
- Department of Psychology, Boston College, Chestnut Hill, MA 02467, USA.
| | - Madelyn H Ray
- Department of Psychology, Boston College, Chestnut Hill, MA 02467, USA.
| | | |
Collapse
|
14
|
Almonte AG, Ewin SE, Mauterer MI, Morgan JW, Carter ES, Weiner JL. Enhanced ventral hippocampal synaptic transmission and impaired synaptic plasticity in a rodent model of alcohol addiction vulnerability. Sci Rep 2017; 7:12300. [PMID: 28951619 PMCID: PMC5615051 DOI: 10.1038/s41598-017-12531-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/12/2017] [Indexed: 02/06/2023] Open
Abstract
It has long been appreciated that adolescence represents a uniquely vulnerable period when chronic exposure to stressors can precipitate the onset of a broad spectrum of psychiatric disorders and addiction in adulthood. However, the neurobiological substrates and the full repertoire of adaptations within these substrates making adolescence a particularly susceptible developmental stage are not well understood. Prior work has demonstrated that a rodent model of adolescent social isolation (aSI) produces robust and persistent increases in phenotypes relevant to anxiety/stressor disorders and alcohol addiction, including anxiogenesis, deficits in fear extinction, and increased ethanol consumption. Here, we used extracellular field recordings in hippocampal slices to investigate adaptations in synaptic function and synaptic plasticity arising from aSI. We demonstrate that this early life stressor leads to enhanced excitatory synaptic transmission and decreased levels of long-term potentiation at hippocampal Schaffer collateral-CA1 synapses. Further, these changes were largely confined to the ventral hippocampus. As the ventral hippocampus is integral to neurocircuitry that mediates emotional behaviors, our results add to mounting evidence that aSI has profound effects on brain areas that regulate affective states. These studies also lend additional support to our recent proposal of the aSI model as a valid model of alcohol addiction vulnerability.
Collapse
Affiliation(s)
- Antoine G Almonte
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Sarah E Ewin
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Madelyn I Mauterer
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - James W Morgan
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Eugenia S Carter
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Jeffrey L Weiner
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
15
|
Patkar OL, Belmer A, Holgate JY, Tarren JR, Shariff MR, Morgan M, Fogarty MJ, Bellingham MC, Bartlett SE, Klenowski PM. The antihypertensive drug pindolol attenuates long-term but not short-term binge-like ethanol consumption in mice. Addict Biol 2017; 22:679-691. [PMID: 27273539 DOI: 10.1111/adb.12359] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 11/03/2015] [Accepted: 12/02/2015] [Indexed: 12/15/2022]
Abstract
Alcohol dependence is a debilitating disorder with current therapies displaying limited efficacy and/or compliance. Consequently, there is a critical need for improved pharmacotherapeutic strategies to manage alcohol use disorders (AUDs). Previous studies have shown that the development of alcohol dependence involves repeated cycles of binge-like ethanol intake and abstinence. Therefore, we used a model of binge-ethanol consumption (drinking-in-the-dark) in mice to test the effects of compounds known to modify the activity of neurotransmitters implicated in alcohol addiction. From this, we have identified the FDA-approved antihypertensive drug pindolol, as a potential candidate for the management of AUDs. We show that the efficacy of pindolol to reduce ethanol consumption is enhanced following long-term (12 weeks) binge-ethanol intake, compared with short-term (4 weeks) intake. Furthermore, pindolol had no effect on locomotor activity or consumption of the natural reward sucrose. Because pindolol acts as a dual beta-adrenergic antagonist and 5-HT1A/1B partial agonist, we examined its effect on spontaneous synaptic activity in the basolateral amygdala (BLA), a brain region densely innervated by serotonin and norepinephrine-containing fibres. Pindolol increased spontaneous excitatory post-synaptic current frequency of BLA principal neurons from long-term ethanol-consuming mice but not naïve mice. Additionally, this effect was blocked by the 5-HT1A/1B receptor antagonist methiothepin, suggesting that altered serotonergic activity in the BLA may contribute to the efficacy of pindolol to reduce ethanol intake following long-term exposure. Although further mechanistic investigations are required, this study demonstrates the potential of pindolol as a new treatment option for AUDs that can be fast-tracked into human clinical studies.
Collapse
Affiliation(s)
- Omkar L. Patkar
- Translational Research Institute Queensland University of Technology Brisbane Australia
- Institute of Health and Biomedical Innovation (IHBI) Queensland University of Technology Brisbane Australia
| | - Arnauld Belmer
- Translational Research Institute Queensland University of Technology Brisbane Australia
- Institute of Health and Biomedical Innovation (IHBI) Queensland University of Technology Brisbane Australia
| | - Joan Y. Holgate
- Translational Research Institute Queensland University of Technology Brisbane Australia
- Institute of Health and Biomedical Innovation (IHBI) Queensland University of Technology Brisbane Australia
| | - Josephine R. Tarren
- Translational Research Institute Queensland University of Technology Brisbane Australia
- Institute of Health and Biomedical Innovation (IHBI) Queensland University of Technology Brisbane Australia
| | - Masroor R. Shariff
- Translational Research Institute Queensland University of Technology Brisbane Australia
- Institute of Health and Biomedical Innovation (IHBI) Queensland University of Technology Brisbane Australia
| | - Michael Morgan
- Translational Research Institute Queensland University of Technology Brisbane Australia
- Institute of Health and Biomedical Innovation (IHBI) Queensland University of Technology Brisbane Australia
| | - Matthew J. Fogarty
- School of Biomedical Sciences The University of Queensland Brisbane Australia
| | - Mark C. Bellingham
- School of Biomedical Sciences The University of Queensland Brisbane Australia
| | - Selena E. Bartlett
- Translational Research Institute Queensland University of Technology Brisbane Australia
- Institute of Health and Biomedical Innovation (IHBI) Queensland University of Technology Brisbane Australia
| | - Paul M. Klenowski
- Translational Research Institute Queensland University of Technology Brisbane Australia
- Institute of Health and Biomedical Innovation (IHBI) Queensland University of Technology Brisbane Australia
| |
Collapse
|
16
|
Butler TR, Karkhanis AN, Jones SR, Weiner JL. Adolescent Social Isolation as a Model of Heightened Vulnerability to Comorbid Alcoholism and Anxiety Disorders. Alcohol Clin Exp Res 2016; 40:1202-14. [PMID: 27154240 DOI: 10.1111/acer.13075] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/24/2016] [Indexed: 01/01/2023]
Abstract
Individuals diagnosed with anxiety-related illnesses are at increased risk of developing alcoholism, exhibit a telescoped progression of this disease and fare worse in recovery, relative to alcoholics that do not suffer from a comorbid anxiety disorder. Similarly, preclinical evidence supports the notion that stress and anxiety represent major risk factors for the development of alcohol use disorder (AUD). Despite the importance of understanding the link between anxiety and alcoholism, much remains unknown about the neurobiological substrates underlying this relationship. One stumbling block has been the lack of animal models that reliably reproduce the spectrum of behaviors associated with increased vulnerability to these diseases. Here, we review the literature that has examined the behavioral and neurobiological outcomes of a simple rodent adolescent social isolation procedure and discuss its validity as a model of vulnerability to comorbid anxiety disorders and alcoholism. Recent studies have provided strong evidence that adolescent social isolation of male rats leads to the expression of a variety of behaviors linked with increased vulnerability to anxiety and/or AUD, including deficits in sensory gating and fear extinction, and increases in anxiety measures and ethanol drinking. Neurobiological studies are beginning to identify mesolimbic adaptations that may contribute to the behavioral phenotype engendered by this model. Some of these changes include increased excitability of ventral tegmental area dopamine neurons and pyramidal cells in the basolateral amygdala and significant alterations in baseline and stimulated catecholamine signaling. A growing body of evidence suggests that adolescent social isolation may represent a reliable rodent model of heightened vulnerability to anxiety disorders and alcoholism in male rats. These studies provide initial support for the face, construct, and predictive validity of this model and highlight its utility in identifying neurobiological adaptations associated with increased risk of developing these disorders.
Collapse
Affiliation(s)
- Tracy R Butler
- Department of Psychology , University of Dayton, Dayton, Ohio
| | - Anushree N Karkhanis
- Department of Physiology and Pharmacology , Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Sara R Jones
- Department of Physiology and Pharmacology , Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Jeffrey L Weiner
- Department of Physiology and Pharmacology , Wake Forest School of Medicine, Winston Salem, North Carolina
| |
Collapse
|
17
|
Skelly MJ, Chappell AM, Ariwodola OJ, Weiner JL. Behavioral and neurophysiological evidence that lateral paracapsular GABAergic synapses in the basolateral amygdala contribute to the acquisition and extinction of fear learning. Neurobiol Learn Mem 2015; 127:10-6. [PMID: 26593151 DOI: 10.1016/j.nlm.2015.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 10/12/2015] [Accepted: 11/10/2015] [Indexed: 11/29/2022]
Abstract
The lateral/basolateral amygdala (BLA) is crucial to the acquisition and extinction of Pavlovian fear conditioning, and synaptic plasticity in this region is considered to be a neural correlate of learned fear. We recently reported that activation of BLA β3-adrenoreceptors (β3-ARs) selectively enhances lateral paracapsular (LPC) feed-forward GABAergic inhibition onto BLA pyramidal neurons, and that intra-BLA infusion of a β3-AR agonist reduces measures of unconditioned anxiety-like behavior. Here, we utilized a combination of behavioral and electrophysiological approaches to characterize the role of BLA LPCs in the acquisition of fear and extinction learning in adult male Long-Evans rats. We report that intra-BLA microinjection of β3-AR agonists (BRL37344 or SR58611A, 1μg/0.5μL/side) prior to training fear conditioning or extinction blocks the expression of these behaviors 24h later. Furthermore,ex vivo low-frequency stimulation of the external capsule (LFS; 1Hz, 15min), which engages LPC synapses, induces LTP of BLA fEPSPs, while application of a β3-AR agonist (SR58611A, 5μM) induces LTD of fEPSPs when combined with LFS. Interestingly, fEPSP LTP is not observed in recordings from fear conditioned animals, suggesting that fear learning may engage the same mechanisms that induce synaptic plasticity at this input. In support of this, we find that LFS produces LTD of inhibitory postsynaptic currents (iLTD) at LPC GABAergic synapses, and that this effect is also absent following fear conditioning. Taken together, these data provide preliminary evidence that modulation of LPC GABAergic synapses can influence the acquisition and extinction of fear learning and related synaptic plasticity in the BLA.
Collapse
Affiliation(s)
- M J Skelly
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, United States
| | - A M Chappell
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, United States
| | - O J Ariwodola
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, United States
| | - J L Weiner
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, United States.
| |
Collapse
|