1
|
Piel I, Constantinescu CC, de la Puente Bethencourt D, Bonsall DR, Rabiner EA, Zasadny KR, Llopis Amenta A, Wells LA, Poethko T, Prange W, Delbeck M. Preclinical in vitro and in vivo evaluation of [ 11C]ORM-13070 as PET ligand for alpha-2C adrenergic receptor occupancy using PET imaging in non-human primates. J Cereb Blood Flow Metab 2024:271678X241291949. [PMID: 39479946 PMCID: PMC11563544 DOI: 10.1177/0271678x241291949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/30/2024] [Accepted: 09/26/2024] [Indexed: 11/02/2024]
Abstract
This paper describes the preclinical validation of the radioligand [11C]ORM-13070 and its tritiated analog for addressing selectivity and occupancy of the selective alpha-2C adrenergic receptor (α2CR) antagonist BAY 292 in the cynomolgus brain. BAY 292 is a novel drug candidate being developed for the treatment of obstructive sleep apnea (OSA) via binding to central α2CR. In vitro autoradiography studies with sections from non-diseased post-mortem human caudate revealed an excellent specific binding window (>80%) using [3H]ORM-13070. BAY 292 bound to the same binding site as [3H]ORM-13070 and generated a good specific binding signal, with greater selectivity for α2CR. In non-human primates in vivo, [11C]ORM-13070 demonstrated a reversible behavior, with uptake at baseline highest in striatum (putamen, caudate, ventral striatum, and pallidum) and low in the cerebellar cortex, consistent with the known distribution of the α2CR. A dose dependent increase in receptor occupancy after BAY 292 administration was observed, confirming BBB penetration and target engagement. The estimated EC50 for BAY 292 is 33.39 ± 11.91 ng/mL. This study aimed to demonstrate the suitability of [11C]ORM-13070 as a PET-radioligand for the study of α2CR in the non-human primate brain, and to pave the way for future clinical PET tracer studies with BAY 292.
Collapse
|
2
|
Xu X, Zhao H, Song Y, Cai H, Zhao W, Tang J, Zhu J, Yu Y. Molecular mechanisms underlying the neural correlates of working memory. BMC Biol 2024; 22:238. [PMID: 39428484 PMCID: PMC11492763 DOI: 10.1186/s12915-024-02039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 10/11/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Working memory (WM), a core component of executive functions, relies on a dedicated brain system that maintains and stores information in the short term. While extensive neuroimaging research has identified a distributed set of neural substrates relevant to WM, their underlying molecular mechanisms remain enigmatic. This study investigated the neural correlates of WM as well as their underlying molecular mechanisms. RESULTS Our voxel-wise analyses of resting-state functional MRI data from 502 healthy young adults showed that better WM performance (higher accuracy and shorter reaction time of the 3-back task) was associated with lower functional connectivity density (FCD) in the left inferior temporal gyrus and higher FCD in the left anterior cingulate cortex. A combination of transcriptome-neuroimaging spatial correlation and the ensemble-based gene category enrichment analysis revealed that the identified neural correlates of WM were associated with expression of diverse gene categories involving important cortical components and their biological processes as well as sodium channels. Cross-region spatial correlation analyses demonstrated significant associations between the neural correlates of WM and a range of neurotransmitters including dopamine, glutamate, serotonin, and acetylcholine. CONCLUSIONS These findings may help to shed light on the molecular mechanisms underlying the neural correlates of WM.
Collapse
Affiliation(s)
- Xiaotao Xu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, 230032, China
| | - Han Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, 230032, China
| | - Yu Song
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, 230032, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, 230032, China
| | - Wenming Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, 230032, China
| | - Jin Tang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230026, China.
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China.
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China.
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, 230032, China.
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China.
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China.
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, 230032, China.
| |
Collapse
|
3
|
Huang W, Sun X, Zhang X, Xu R, Qian Y, Zhu J. Neural Correlates of Early-Life Urbanization and Their Spatial Relationships with Gene Expression, Neurotransmitter, and Behavioral Domain Atlases. Mol Neurobiol 2024; 61:6407-6422. [PMID: 38308665 DOI: 10.1007/s12035-024-03962-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/15/2024] [Indexed: 02/05/2024]
Abstract
Previous neuroimaging research has established associations between urban exposure during early life and alterations in brain function and structure. However, the molecular mechanisms and behavioral relevance of these associations remain largely unknown. Here, we aimed to address this question using a combined analysis of multimodal data. Initially, we calculated amplitude of low-frequency fluctuations (ALFF) and gray matter volume (GMV) using resting-state functional and structural MRI to investigate their associations with early-life urbanization in a large sample of 511 healthy young adults. Then, we examined the spatial relationships of the identified neural correlates of early-life urbanization with gene expression, neurotransmitter, and behavioral domain atlases. Results showed that higher early-life urbanization scores were correlated with increased ALFF of the right fusiform gyrus and decreased GMV of the left dorsal medial prefrontal cortex and left precuneus. Remarkably, the identified neural correlates of early-life urbanization were spatially correlated with expression of gene categories primarily involving immune system process, signal transduction, and cellular metabolic process. Concurrently, there were significant associations between the neural correlates and specific neurotransmitter systems including dopamine, acetylcholine, and serotonin. Finally, we found that the ALFF correlates were associated with behavioral terms including "perception," "sensory," "cognitive control," and "reasoning." Apart from expanding existing knowledge of early-life urban environmental risk for mental disorders and health in general, our findings may contribute to an emerging framework for integrating social science, neuroscience, genetics, and public policy to respond to the major health challenge of world urbanization.
Collapse
Affiliation(s)
- Weisheng Huang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, 230032, China
| | - Xuetian Sun
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, 230032, China
| | - Xiaohan Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, 230032, China
| | - Ruoxuan Xu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, 230032, China
| | - Yinfeng Qian
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China.
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China.
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, 230032, China.
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China.
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China.
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, 230032, China.
| |
Collapse
|
4
|
Landau AM, Jakobsen S, Thomsen MB, Alstrup AKO, Orlowski D, Jacobsen J, Wegener G, Mørk A, Sørensen JCH, Doudet DJ. Combined In Vivo Microdialysis and PET Studies to Validate [ 11C]Yohimbine Binding as a Marker of Noradrenaline Release. Biomolecules 2023; 13:674. [PMID: 37189421 PMCID: PMC10136072 DOI: 10.3390/biom13040674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
The noradrenaline system attracts attention for its role in mood disorders and neurodegenerative diseases but the lack of well-validated methods impairs our understanding when assessing its function and release in vivo. This study combines simultaneous positron emission tomography (PET) and microdialysis to explore if [11C]yohimbine, a selective antagonist radioligand of the α2 adrenoceptors, may be used to assess in vivo changes in synaptic noradrenaline during acute pharmacological challenges. Anesthetised Göttingen minipigs were positioned in a head holder in a PET/CT device. Microdialysis probes were placed in the thalamus, striatum and cortex and dialysis samples were collected every 10 min. Three 90 min [11C]yohimbine scans were acquired: at baseline and at two timepoints after the administration of amphetamine (1-10 mg/kg), a non-specific releaser of dopamine and noradrenaline, or nisoxetine (1 mg/kg), a specific noradrenaline transporter inhibitor. [11C]yohimbine volumes of distribution (VT) were obtained using the Logan kinetic model. Both challenges induced a significant decrease in yohimbine VT, with time courses reflecting their different mechanisms of action. Dialysis samples revealed a significant increase in noradrenaline extracellular concentrations after challenge and an inverse correlation with changes in yohimbine VT. These data suggest that [11C]yohimbine can be used to evaluate acute variations in synaptic noradrenaline concentrations after pharmacological challenges.
Collapse
Affiliation(s)
- Anne Marlene Landau
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, A701, Palle Juul Jensens Boulevard 99, 8200 Aarhus, Denmark
- Department of Nuclear Medicine & PET-Center, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Steen Jakobsen
- Department of Nuclear Medicine & PET-Center, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Majken Borup Thomsen
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, A701, Palle Juul Jensens Boulevard 99, 8200 Aarhus, Denmark
- Department of Nuclear Medicine & PET-Center, Aarhus University Hospital, 8200 Aarhus, Denmark
| | | | - Dariusz Orlowski
- Center for Experimental Neuroscience (CENSE), Department of Neurosurgery, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Jan Jacobsen
- Department of Nuclear Medicine & PET-Center, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, A701, Palle Juul Jensens Boulevard 99, 8200 Aarhus, Denmark
| | - Arne Mørk
- Synaptic Transmission, H. Lundbeck A/S, Ottiliavej 9, Valby, 2500 Copenhagen, Denmark
| | | | - Doris J. Doudet
- Department of Medicine/Neurology, University of British Columbia, 2221 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada;
| |
Collapse
|
5
|
Tang C, Ren P, Ma K, Li S, Wang X, Guan Y, Zhou J, Li T, Liang X, Luan G. The correspondence between morphometric MRI and metabolic profile in Rasmussen's encephalitis. Neuroimage Clin 2022; 33:102918. [PMID: 34952352 PMCID: PMC8713113 DOI: 10.1016/j.nicl.2021.102918] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/01/2021] [Accepted: 12/14/2021] [Indexed: 01/07/2023]
Abstract
The GM atrophy located in the insular and temporal cortices of the affected side. Positive correlation was found in the brain region featuring MRI atrophy and FDG-PET. GM atrophy was spatially correlated with dopaminergic and serotonergic mapping in RE.
Volumetric magnetic resonance imaging (MRI) atrophy is a hallmark of Rasmussen’s encephalitis (RE). Here, we aim to investigate voxel-wise gray matter (GM) atrophy in RE, and its associations with glucose hypometabolism and neurotransmitter distribution utilizing MRI and PET data. In this study, fifteen RE patients and fourteen MRI normal subjects were included in this study. Voxel-wise GM volume and glucose metabolic uptake were evaluated using structural MRI and FDG-PET images, respectively. Spatial Spearman’s correlation was performed between GM atrophy of RE with FDG uptake alterations, and neurotransmitter distributions provided in the JuSpace toolbox. Compared with the control group, RE patients displayed extensive GM volume loss not only in the ipsilateral hemisphere, but also in the frontal lobe, basal ganglia, and cerebellum in the contralateral hemisphere. Within the RE group, the insular and temporal cortices exhibited significantly more GM atrophy on the ipsilesional than the contralesional side. FDG-PET data revealed significant hypometabolism in areas surrounding the insular cortices in the ipsilesional hemisphere. RE-related GM volumetric atrophy was spatially correlated with hypomebolism in FDG uptake, and with spatial distribution of the dopaminergic and serotonergic neurotransmitter systems. The spatial concordance of morphological changes with metabolic abnormalities suggest FDG-PET offers potential value for RE diagnosis. The GM alterations associated with neurotransmitter distribution map could provide novel insight in understanding the neuropathological mechanisms and clinical feature of RE.
Collapse
Affiliation(s)
- Chongyang Tang
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Peng Ren
- Laboratory for Space Environment and Physical Science, Harbin Institute of Technology, Harbin 150001, China; School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Kaiqiang Ma
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Siyang Li
- Laboratory for Space Environment and Physical Science, Harbin Institute of Technology, Harbin 150001, China; School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiongfei Wang
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Yuguang Guan
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Jian Zhou
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Tianfu Li
- Department of Neurology, SanBo Brain Hospital, Capital Medical University, Beijing 100093, China; Key Laboratory of Epilepsy, Beijing 100093, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing 100093, China
| | - Xia Liang
- Laboratory for Space Environment and Physical Science, Harbin Institute of Technology, Harbin 150001, China.
| | - Guoming Luan
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing 100093, China; Key Laboratory of Epilepsy, Beijing 100093, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing 100093, China.
| |
Collapse
|
6
|
Shahid M, Rinne JO, Scheinin M, Virta J, Marjamäki P, Solin O, Arponen E, Sallinen J, Kuokkanen K, Rouru J. Application of the PET ligand [ 11C]ORM-13070 to examine receptor occupancy by the α 2C-adrenoceptor antagonist ORM-12741: translational validation of target engagement in rat and human brain. EJNMMI Res 2020; 10:152. [PMID: 33296042 PMCID: PMC7726058 DOI: 10.1186/s13550-020-00741-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/25/2020] [Indexed: 12/31/2022] Open
Abstract
Background Availability of the α2C-adrenoceptor (α2C-AR) positron emission tomography (PET) tracer, [11C]ORM-13070, and the α2C-AR antagonist ORM-12741 allows probing of the roles of this G-protein coupled receptor subtype in brain function, both in healthy humans and in patients with various brain disorders. This translational study employed [11C]ORM-13070 autoradiography and PET to determine α2C-AR occupancy by ORM-12741 in rat and human brain, respectively. Results ORM-12741 has high affinity (Ki: 0.08 nM) and potent antagonist activity (Kb: 0.04 nM) as well as selectivity (Ki estimates for the human α2A-AR and α2B-AR were 8.3 nM and 0.8 nM, respectively) for the human α2C-AR subtype. [11C]ORM-13070 had highest uptake in the basal ganglia of rat and human brain. Pretreatment with ORM-12741 inhibited [11C]ORM-13070 binding in rat striatum in a time- and dose-dependent manner at 10 and 50 µg/kg (s.c.) with an EC50 estimate of 1.42 ng/mL in rat plasma, corresponding to protein-free drug concentration of 0.23 nM. In the living human brain, time- and dose-related α2C-AR occupancy was detected with EC50 estimates of 24 ng/mL and 31 ng/mL for the caudate nucleus and putamen, respectively, corresponding to protein-free concentrations in plasma of 0.07 nM and 0.1 nM. Modelling-based maximum α2C-AR occupancy estimates were 63% and 52% in the caudate nucleus and the putamen, respectively. Conclusions ORM-12741 is a selective α2C-AR antagonist which penetrates the rat and human brain to occupy α2C-ARs in a manner consistent with its receptor pharmacology. Trialregistrationnumberanddateofregistration: ClinicalTrial.cov NCT00829907. Registered 11 December 2008. https://clinicaltrials.gov/.
Collapse
Affiliation(s)
- Mohammed Shahid
- Orion Corporation, Orion Pharma, Research and Development, Tengströminkatu 8, 20380, Espoo, Finland.,Orion Corporation, Orion Pharma, Research and Development, Nottingham, UK
| | - Juha O Rinne
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland.,Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland
| | - Mika Scheinin
- CRST, Turku, Finland.,Institute of Biomedicine, University of Turku, Turku, Finland.,Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| | - Jere Virta
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland.,Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland
| | - Päivi Marjamäki
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Olof Solin
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland.,Department of Chemistry, University of Turku, Turku, Finland.,Accelerator Laboratory, Åbo Akademi University, Turku, Finland
| | - Eveliina Arponen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Jukka Sallinen
- Orion Corporation, Orion Pharma, Research and Development, Tengströminkatu 8, 20380, Espoo, Finland
| | - Katja Kuokkanen
- Orion Corporation, Orion Pharma, Research and Development, Tengströminkatu 8, 20380, Espoo, Finland
| | - Juha Rouru
- Orion Corporation, Orion Pharma, Research and Development, Tengströminkatu 8, 20380, Espoo, Finland.
| |
Collapse
|
7
|
Dukart J, Holiga S, Rullmann M, Lanzenberger R, Hawkins PCT, Mehta MA, Hesse S, Barthel H, Sabri O, Jech R, Eickhoff SB. JuSpace: A tool for spatial correlation analyses of magnetic resonance imaging data with nuclear imaging derived neurotransmitter maps. Hum Brain Mapp 2020; 42:555-566. [PMID: 33079453 PMCID: PMC7814756 DOI: 10.1002/hbm.25244] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/31/2022] Open
Abstract
Recent studies have shown that drug‐induced spatial alteration patterns in resting state functional activity as measured using magnetic resonance imaging (rsfMRI) are associated with the distribution of specific receptor systems targeted by respective compounds. Based on this approach, we introduce a toolbox (JuSpace) allowing for cross‐modal correlation of MRI‐based measures with nuclear imaging derived estimates covering various neurotransmitter systems including dopaminergic, serotonergic, noradrenergic, and GABAergic (gamma‐aminobutric acid) neurotransmission. We apply JuSpace to two datasets covering Parkinson's disease patients (PD) and risperidone‐induced changes in rsfMRI and cerebral blood flow (CBF). Consistently with the predominant neurodegeneration of dopaminergic and serotonergic system in PD, we find significant spatial associations between rsfMRI activity alterations in PD and dopaminergic (D2) and serotonergic systems (5‐HT1b). Risperidone induced CBF alterations were correlated with its main targets in serotonergic and dopaminergic systems. JuSpace provides a biologically meaningful framework for linking neuroimaging to underlying neurotransmitter information.
Collapse
Affiliation(s)
- Juergen Dukart
- Institute of Neuroscience and MedicineBrain & Behaviour (INM‐7), Research Centre JülichJülichGermany
- Institute of Systems NeuroscienceMedical Faculty, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Stefan Holiga
- Roche Pharma Research and Early DevelopmentRoche Innovation Center Basel, F. Hoffmann‐La Roche Ltd.BaselSwitzerland
| | - Michael Rullmann
- Department of Nuclear MedicineUniversity Hospital of LeipzigLeipzigGermany
| | - Rupert Lanzenberger
- Department of Psychiatry and PsychotherapyMedical University of ViennaViennaAustria
| | - Peter C. T. Hawkins
- Department of NeuroimagingInstitute of Psychiatry, Psychology & Neuroscience, King's College LondonLondonUK
| | - Mitul A. Mehta
- Department of NeuroimagingInstitute of Psychiatry, Psychology & Neuroscience, King's College LondonLondonUK
| | - Swen Hesse
- Department of Nuclear MedicineUniversity Hospital of LeipzigLeipzigGermany
| | - Henryk Barthel
- Department of Nuclear MedicineUniversity Hospital of LeipzigLeipzigGermany
| | - Osama Sabri
- Department of Nuclear MedicineUniversity Hospital of LeipzigLeipzigGermany
| | - Robert Jech
- Department of Neurology and Center of Clinical NeuroscienceCharles University, 1st Faculty of Medicine and General University HospitalPragueCzech Republic
| | - Simon B. Eickhoff
- Institute of Neuroscience and MedicineBrain & Behaviour (INM‐7), Research Centre JülichJülichGermany
- Institute of Systems NeuroscienceMedical Faculty, Heinrich Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|
8
|
Selective adrenergic alpha2C receptor antagonist ameliorates acute phencyclidine-induced schizophrenia-like social interaction deficits in rats. Psychopharmacology (Berl) 2019; 236:1245-1253. [PMID: 30535904 PMCID: PMC6591184 DOI: 10.1007/s00213-018-5130-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/21/2018] [Indexed: 11/05/2022]
Abstract
RATIONALE Social withdrawal is a core feature of the negative symptoms of schizophrenia. Currently available pharmacotherapies have only limited efficacy towards the negative symptoms, i.e., there is a significant unmet medical need in the treatment of these symptoms. OBJECTIVE We wanted to confirm whether selective adrenergic α2C receptor (AR) antagonist therapy could ameliorate acute phencyclidine (PCP)-induced schizophrenia-like social interaction deficits in rats, and to compare the effects of an α2C AR antagonist to another putative therapeutic alternative, an α7 nicotinic acetylcholine receptor (nAChR) partial agonist, as well against three commonly used atypical antipsychotics. METHODS Here, we used acute PCP administration and modified a protocol for testing social interaction deficits in male Wistar rats and then used this model to compare the effects of an α2C AR antagonist (ORM-13070 0.3 and 1.0 mg/kg s.c.) with an α7 nAChR partial agonist (EVP-6124 0.3 mg/kg s.c.) and three atypical antipsychotics (clozapine 2.5 mg/kg i.p., risperidone 0.04 and 0.08 mg/kg s.c., olanzapine 0.125 and 0.5 mg/kg s.c.) on social interaction behavior. RESULTS Acute PCP (1.5 mg/kg s.c.) produced robust and reproducible deficits in social interaction behavior without affecting locomotor activity. The selective α2C AR antagonist significantly ameliorated PCP-induced social interaction deficits. In contrast, neither the partial α7 nAChR agonist nor any of the three atypical antipsychotics were able to reverse the behavioral deficits at the selected doses. CONCLUSION Our findings confirm that α2C AR antagonism is a potential mechanism for the treatment of the negative symptoms of schizophrenia.
Collapse
|
9
|
Braun DJ, Van Eldik LJ. In vivo Brainstem Imaging in Alzheimer's Disease: Potential for Biomarker Development. Front Aging Neurosci 2018; 10:266. [PMID: 30254583 PMCID: PMC6141632 DOI: 10.3389/fnagi.2018.00266] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/17/2018] [Indexed: 12/25/2022] Open
Abstract
The dearth of effective treatments for Alzheimer's disease (AD) is one of the largest public health issues worldwide, costing hundreds of billions of dollars per year. From a therapeutic standpoint, research efforts to date have met with strikingly little clinical success. One major issue is that trials begin after substantial pathological change has occurred, and it is increasingly clear that the most effective treatment regimens will need to be administered earlier in the disease process. In order to identify individuals within the long preclinical phase of AD who are likely to progress to dementia, improvements are required in biomarker development. One potential area of research that might prove fruitful in this regard is the in vivo detection of brainstem pathology. The brainstem is known to undergo pathological changes very early and progressively in AD. With an updated and harmonized AD research framework, and emerging advances in neuroimaging technology, the potential to leverage knowledge of brainstem pathology into biomarkers for AD will be discussed.
Collapse
Affiliation(s)
- David J Braun
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States.,Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States.,Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
10
|
Sander CY, Hesse S. News and views on in-vivo imaging of neurotransmission using PET and MRI. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2017; 61:414-428. [PMID: 28750497 PMCID: PMC5916779 DOI: 10.23736/s1824-4785.17.03019-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Molecular neuroimaging with PET is an integrated tool in psychiatry research and drug-development for as long as this modality has been available, in particular for studying neurotransmission and endogenous neurotransmitter release. Pharmacologic, behavioral and other types of challenges are currently applied to induce changes in neurochemical levels that can be inferred through their effects on changes in receptor binding and related outcome measures. Based on the availability of tracers that are sensitive for measuring neurotransmitter release these experiments have focused on the brain's dopamine system, while recent developments have extended those studies to other targets such as the serotonin or choline system. With the introduction of hybrid, truly simultaneous PET/MRI systems, in-vivo imaging of the dynamics of neuroreceptor signal transmission in the brain using PET and functional MRI (fMRI) has become possible. fMRI has the ability to provide information about the effects of receptor function that are complementary to the PET measurement. Dynamic acquisition of both PET and fMRI signals enables not only an in-vivo real-time assessment of neurotransmitter or drug binding to receptors but also dynamic receptor adaptations and receptor-specific neurotransmission. While fMRI temporal resolution is comparatively fast in relation to PET, the timescale of observable biological processes is highly dependent on the kinetics of radiotracers and study design. Overall, the combination of the specificity of PET radiotracers to neuroreceptors, fMRI signal as a functional readout and integrated study design promises to expand our understanding of the location, propagation and connections of brain activity in health and disease.
Collapse
Affiliation(s)
- Christin Y Sander
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA -
- Harvard Medical School, Boston, MA, USA -
| | - Swen Hesse
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
- Integrated Treatment and Research Center (IFB) Adiposity Diseases, Leipzig University Medical Center, Leipzig, Germany
| |
Collapse
|
11
|
Jenkins PO, Mehta MA, Sharp DJ. Catecholamines and cognition after traumatic brain injury. Brain 2016; 139:2345-71. [PMID: 27256296 PMCID: PMC4995357 DOI: 10.1093/brain/aww128] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/20/2016] [Indexed: 01/11/2023] Open
Abstract
Cognitive problems are one of the main causes of ongoing disability after traumatic brain injury. The heterogeneity of the injuries sustained and the variability of the resulting cognitive deficits makes treating these problems difficult. Identifying the underlying pathology allows a targeted treatment approach aimed at cognitive enhancement. For example, damage to neuromodulatory neurotransmitter systems is common after traumatic brain injury and is an important cause of cognitive impairment. Here, we discuss the evidence implicating disruption of the catecholamines (dopamine and noradrenaline) and review the efficacy of catecholaminergic drugs in treating post-traumatic brain injury cognitive impairments. The response to these therapies is often variable, a likely consequence of the heterogeneous patterns of injury as well as a non-linear relationship between catecholamine levels and cognitive functions. This individual variability means that measuring the structure and function of a person’s catecholaminergic systems is likely to allow more refined therapy. Advanced structural and molecular imaging techniques offer the potential to identify disruption to the catecholaminergic systems and to provide a direct measure of catecholamine levels. In addition, measures of structural and functional connectivity can be used to identify common patterns of injury and to measure the functioning of brain ‘networks’ that are important for normal cognitive functioning. As the catecholamine systems modulate these cognitive networks, these measures could potentially be used to stratify treatment selection and monitor response to treatment in a more sophisticated manner.
Collapse
Affiliation(s)
- Peter O Jenkins
- 1 The Division of Brain Sciences, The Department of Medicine, Imperial College London, UK
| | - Mitul A Mehta
- 2 Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - David J Sharp
- 1 The Division of Brain Sciences, The Department of Medicine, Imperial College London, UK
| |
Collapse
|
12
|
Lehto J, Scheinin A, Johansson J, Marjamäki P, Arponen E, Scheinin H, Scheinin M. Detecting a dexmedetomidine-evoked reduction of noradrenaline release in the human brain with the alpha2C-adrenoceptor PET ligand [11C]ORM-13070. Synapse 2015; 70:57-65. [DOI: 10.1002/syn.21872] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/21/2015] [Accepted: 11/01/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Jussi Lehto
- Department of Pharmacology; Drug Development and Therapeutics, University of Turku; Turku Finland
- Clinical Research Services Turku CRST; Turku Finland
- Unit of Clinical Pharmacology, Turku University Hospital; Turku Finland
| | - Annalotta Scheinin
- Turku PET Centre; University of Turku, Turku University Hospital; Turku Finland
| | - Jarkko Johansson
- Turku PET Centre; University of Turku, Turku University Hospital; Turku Finland
| | - Päivi Marjamäki
- Turku PET Centre; University of Turku, Turku University Hospital; Turku Finland
| | - Eveliina Arponen
- Turku PET Centre; University of Turku, Turku University Hospital; Turku Finland
| | - Harry Scheinin
- Department of Pharmacology; Drug Development and Therapeutics, University of Turku; Turku Finland
- Turku PET Centre; University of Turku, Turku University Hospital; Turku Finland
| | - Mika Scheinin
- Department of Pharmacology; Drug Development and Therapeutics, University of Turku; Turku Finland
- Clinical Research Services Turku CRST; Turku Finland
- Unit of Clinical Pharmacology, Turku University Hospital; Turku Finland
| |
Collapse
|
13
|
Finnema SJ, Scheinin M, Shahid M, Lehto J, Borroni E, Bang-Andersen B, Sallinen J, Wong E, Farde L, Halldin C, Grimwood S. Application of cross-species PET imaging to assess neurotransmitter release in brain. Psychopharmacology (Berl) 2015; 232:4129-57. [PMID: 25921033 PMCID: PMC4600473 DOI: 10.1007/s00213-015-3938-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/09/2015] [Indexed: 01/03/2023]
Abstract
RATIONALE This review attempts to summarize the current status in relation to the use of positron emission tomography (PET) imaging in the assessment of synaptic concentrations of endogenous mediators in the living brain. OBJECTIVES Although PET radioligands are now available for more than 40 CNS targets, at the initiation of the Innovative Medicines Initiative (IMI) "Novel Methods leading to New Medications in Depression and Schizophrenia" (NEWMEDS) in 2009, PET radioligands sensitive to an endogenous neurotransmitter were only validated for dopamine. NEWMEDS work-package 5, "Cross-species and neurochemical imaging (PET) methods for drug discovery", commenced with a focus on developing methods enabling assessment of changes in extracellular concentrations of serotonin and noradrenaline in the brain. RESULTS Sharing the workload across institutions, we utilized in vitro techniques with cells and tissues, in vivo receptor binding and microdialysis techniques in rodents, and in vivo PET imaging in non-human primates and humans. Here, we discuss these efforts and review other recently published reports on the use of radioligands to assess changes in endogenous levels of dopamine, serotonin, noradrenaline, γ-aminobutyric acid, glutamate, acetylcholine, and opioid peptides. The emphasis is on assessment of the availability of appropriate translational tools (PET radioligands, pharmacological challenge agents) and on studies in non-human primates and human subjects, as well as current challenges and future directions. CONCLUSIONS PET imaging directed at investigating changes in endogenous neurochemicals, including the work done in NEWMEDS, have highlighted an opportunity to further extend the capability and application of this technology in drug development.
Collapse
Affiliation(s)
- Sjoerd J. Finnema
- />Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Mika Scheinin
- />Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Turku, Finland , />Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| | - Mohammed Shahid
- />Research and Development, Orion Corporation, Orion Pharma, Turku, Finland
| | - Jussi Lehto
- />Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Turku, Finland
| | - Edilio Borroni
- />Neuroscience Department, Hoffman-La Roche, Basel, Switzerland
| | | | - Jukka Sallinen
- />Research and Development, Orion Corporation, Orion Pharma, Turku, Finland
| | - Erik Wong
- />Neuroscience Innovative Medicine Unit, AstraZeneca, Wilmington, DE USA
| | - Lars Farde
- />Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden , />Translational Science Center at Karolinska Institutet, AstraZeneca, Stockholm, Sweden
| | - Christer Halldin
- />Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Sarah Grimwood
- Neuroscience Research Unit, Pfizer Inc, Cambridge, MA, USA. .,, 610 Main Street, Cambridge, MA, 02139, USA.
| |
Collapse
|