1
|
Girolamo T, Butler L, Canale R, Aslin RN, Eigsti IM. fNIRS Studies of Individuals with Speech and Language Impairment Underreport Sociodemographics: A Systematic Review. Neuropsychol Rev 2024; 34:860-881. [PMID: 37747652 PMCID: PMC10961255 DOI: 10.1007/s11065-023-09618-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 09/08/2023] [Indexed: 09/26/2023]
Abstract
Functional near-infrared spectroscopy (fNIRS) is a promising tool for scientific discovery and clinical application. However, its utility depends upon replicable reporting. We evaluate reporting of sociodemographics in fNIRS studies of speech and language impairment and asked the following: (1) Do refereed fNIRS publications report participant sociodemographics? (2) For what reasons are participants excluded from analysis? This systematic review was preregistered with PROSPERO (CRD42022342959) and followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses protocol. Searches in August 2022 included the terms: (a) fNIRS or functional near-infrared spectroscopy or NIRS or near-infrared spectroscopy, (b) speech or language, and (c) disorder or impairment or delay. Searches yielded 38 qualifying studies from 1997 to present. Eight studies (5%) reported at least partial information on race or ethnicity. Few studies reported SES (26%) or language background (47%). Most studies reported geographic location (100%) and gender/sex (89%). Underreporting of sociodemographics in fNIRS studies of speech and language impairment hinders the generalizability of findings. Replicable reporting is imperative for advancing the utility of fNIRS.
Collapse
Affiliation(s)
- Teresa Girolamo
- School of Speech, Language, and Hearing Sciences, San Diego State University, San Diego, CA, USA.
- Institute for the Brain and Cognitive Sciences, Storrs, CT, USA.
| | - Lindsay Butler
- Institute for the Brain and Cognitive Sciences, Storrs, CT, USA
- Department of Speech, Language, and Hearing Sciences, University of Connecticut, Storrs, CT, USA
| | - Rebecca Canale
- Institute for the Brain and Cognitive Sciences, Storrs, CT, USA
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Richard N Aslin
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
- Child Study Center and Department of Psychology, Yale University, New Haven, CT, USA
| | - Inge-Marie Eigsti
- Institute for the Brain and Cognitive Sciences, Storrs, CT, USA
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
2
|
Bonilauri A, Sangiuliano Intra F, Pugnetti L, Baselli G, Baglio F. A Systematic Review of Cerebral Functional Near-Infrared Spectroscopy in Chronic Neurological Diseases-Actual Applications and Future Perspectives. Diagnostics (Basel) 2020; 10:E581. [PMID: 32806516 PMCID: PMC7459924 DOI: 10.3390/diagnostics10080581] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The management of people affected by age-related neurological disorders requires the adoption of targeted and cost-effective interventions to cope with chronicity. Therapy adaptation and rehabilitation represent major targets requiring long-term follow-up of neurodegeneration or, conversely, the promotion of neuroplasticity mechanisms. However, affordable and reliable neurophysiological correlates of cerebral activity to be used throughout treatment stages are often lacking. The aim of this systematic review is to highlight actual applications of functional Near-Infrared Spectroscopy (fNIRS) as a versatile optical neuroimaging technology for investigating cortical hemodynamic activity in the most common chronic neurological conditions. METHODS We reviewed studies investigating fNIRS applications in Parkinson's Disease (PD), Alzheimer's Disease (AD) and Mild Cognitive Impairment (MCI) as those focusing on motor and cognitive impairment in ageing and Multiple Sclerosis (MS) as the most common chronic neurological disease in young adults. The literature search was conducted on NCBI PubMed and Web of Science databases by PRISMA guidelines. RESULTS We identified a total of 63 peer-reviewed articles. The AD spectrum is the most investigated pathology with 40 articles ranging from the traditional monitoring of tissue oxygenation to the analysis of functional resting-state conditions or cognitive functions by means of memory and verbal fluency tasks. Conversely, applications in PD (12 articles) and MS (11 articles) are mainly focused on the characterization of motor functions and their association with dual-task conditions. The most investigated cortical area is the prefrontal cortex, since reported to play an important role in age-related compensatory mechanism and neurofunctional changes associated to these chronic neurological conditions. Interestingly, only 9 articles applied a longitudinal approach. CONCLUSION The results indicate that fNIRS is mainly employed for the cross-sectional characterization of the clinical phenotypes of these pathologies, whereas data on its utility for longitudinal monitoring as surrogate biomarkers of disease progression and rehabilitation effects are promising but still lacking.
Collapse
Affiliation(s)
- Augusto Bonilauri
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy; (A.B.); (G.B.)
| | - Francesca Sangiuliano Intra
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, CADITER, 20148 Milan, Italy; (L.P.); (F.B.)
- Faculty of Education, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
| | - Luigi Pugnetti
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, CADITER, 20148 Milan, Italy; (L.P.); (F.B.)
| | - Giuseppe Baselli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy; (A.B.); (G.B.)
| | - Francesca Baglio
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, CADITER, 20148 Milan, Italy; (L.P.); (F.B.)
| |
Collapse
|
3
|
Butler LK, Kiran S, Tager-Flusberg H. Functional Near-Infrared Spectroscopy in the Study of Speech and Language Impairment Across the Life Span: A Systematic Review. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2020; 29:1674-1701. [PMID: 32640168 PMCID: PMC7893520 DOI: 10.1044/2020_ajslp-19-00050] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Purpose Functional brain imaging is playing an increasingly important role in the diagnosis and treatment of communication disorders, yet many populations and settings are incompatible with functional magnetic resonance imaging and other commonly used techniques. We conducted a systematic review of neuroimaging studies using functional near-infrared spectroscopy (fNIRS) with individuals with speech or language impairment across the life span. We aimed to answer the following question: To what extent has fNIRS been used to investigate the neural correlates of speech-language impairment? Method This systematic review was preregistered with PROSPERO, the international prospective register of systematic reviews (CRD42019136464). We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol for preferred reporting items for systematic reviews. The database searches were conducted between February and March of 2019 with the following search terms: (a) fNIRS or functional near-infrared spectroscopy or NIRS or near-infrared spectroscopy, (b) speech or language, and (c) disorder or impairment or delay. Results We found 34 fNIRS studies that involved individuals with speech or language impairment across nine categories: (a) autism spectrum disorders; (b) developmental speech and language disorders; (c) cochlear implantation and deafness; (d) dementia, dementia of the Alzheimer's type, and mild cognitive impairment; (e) locked-in syndrome; (f) neurologic speech disorders/dysarthria; (g) stroke/aphasia; (h) stuttering; and (i) traumatic brain injury. Conclusions Though it is not without inherent challenges, fNIRS may have advantages over other neuroimaging techniques in the areas of speech and language impairment. fNIRS has clinical applications that may lead to improved early and differential diagnosis, increase our understanding of response to treatment, improve neuroprosthetic functioning, and advance neurofeedback.
Collapse
Affiliation(s)
- Lindsay K. Butler
- Sargent College of Health and Rehabilitation Sciences, Boston University, MA
| | - Swathi Kiran
- Sargent College of Health and Rehabilitation Sciences, Boston University, MA
| | | |
Collapse
|
4
|
Chang F, Li H, Zhang S, Chen C, Liu C, Cai W. Research progress of functional near-infrared spectroscopy in patients with psychiatric disorders. Forensic Sci Res 2020; 6:141-147. [PMID: 34377571 PMCID: PMC8330753 DOI: 10.1080/20961790.2020.1720901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) is a technique of detecting cerebral cortical function by using near-infrared light, which is a multifunctional neuroimaging technique and provides a convenient and efficient detection method in neuroscience. In consideration of acceptability, safety, high spatial and temporal resolutions compared with electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI), fNIRS is widely used to study different psychiatric disorders, most prominently affective disorders, schizophrenic illnesses, brain organic mental disorders and neurodevelopmental disorders, etc. The article focuses on the latest research progress and practical application of fNIRS in psychiatric disorders, especially traumatic brain, including studies on the characterization of phenomenology, treatment effects and descriptions of neuroimaging data.
Collapse
Affiliation(s)
- Fan Chang
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China.,School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Haozhe Li
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
| | - Shengyu Zhang
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
| | - Chen Chen
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
| | - Chao Liu
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
| | - Weixiong Cai
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China.,School of Mental Health, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Yeung MK, Chan AS. Functional near-infrared spectroscopy reveals decreased resting oxygenation levels and task-related oxygenation changes in mild cognitive impairment and dementia: A systematic review. J Psychiatr Res 2020; 124:58-76. [PMID: 32120065 DOI: 10.1016/j.jpsychires.2020.02.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 02/06/2023]
Abstract
Nuclear medicine and functional magnetic resonance imaging studies have shown that mild cognitive impairment (MCI) and dementia, including Alzheimer's disease (AD), are characterized by changes in cerebral blood flow. This article reviews the application of an alternative method, functional near-infrared spectroscopy (fNIRS), to the study of cerebral oxygenation changes in MCI and dementia. We synthesized 36 fNIRS studies that examined hemodynamic changes during both the resting state and the execution of tasks of word retrieval, memory, motor control, and visuospatial perception in MCI and dementia. This qualitative review reveals that (amnestic) MCI and AD patients have disrupted frontal and long-range connectivity in the resting state compared to individuals with normal cognition (NC). These patients also exhibit reduced frontal oxygenation changes in various cognitive domains. The review also shows that disrupted connectivity and decreased frontal oxygenation levels/changes are more severe in AD than in (amnestic) MCI, confirming that MCI is an intermediate stage between NC and dementia. Thus, there is reduced resting frontal perfusion, which is greater than expected for age, and a lack of frontal compensatory responses to functional decline across cognitive operations (i.e., word retrieval and memory functioning) in MCI and AD. These indices might potentially serve as perfusion- or oxygenation-based biomarkers for MCI/dementia. To expand the utility of fNIRS for MCI and dementia, further studies that measure tissue oxygenation in a wider range of brain regions and cognitive domains, compare different MCI and dementia types, and correlate changes in cerebral oxygenation over time with disease progression are needed.
Collapse
Affiliation(s)
- Michael K Yeung
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Agnes S Chan
- Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, Hong Kong SAR, China; Chanwuyi Research Center for Neuropsychological Well-being, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
6
|
Perpetuini D, Bucco R, Zito M, Merla A. Study of memory deficit in Alzheimer's disease by means of complexity analysis of fNIRS signal. NEUROPHOTONICS 2018; 5:011010. [PMID: 28983489 PMCID: PMC5613221 DOI: 10.1117/1.nph.5.1.011010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
Working memory deficit is a signature of Alzheimer's disease (AD). The free and cued selective reminding test (FCSRT) is a clinical test that quantifies memory deficit for AD diagnosis. However, the diagnostic accuracy of FCSRT may be increased by accompanying it with neuroimaging. Since the test requires doctor-patient interaction, brain monitoring is challenging. Functional near-infrared spectroscopy (fNIRS) could be suited for such a purpose because of the fNIRS flexibility. We investigated whether the complexity, based on sample entropy and multiscale entropy metrics, of the fNIRS signal during FCSRT was correlated with memory deficit in early AD. fNIRS signals were recorded over the prefrontal cortex of healthy and early AD participants. Group differences were tested through Wilcoxon-Mann-Whitney test ([Formula: see text]). At group level, we found significant differences for Brodmann areas 9 and 46. The results, although preliminary, demonstrate the feasibility of performing ecological studies on early AD with fNIRS. This approach may provide a potential neuroimaging-based method for diagnosis of early AD, viable at the doctor's office level, improving test-based diagnosis. The increased entropy of the fNIRS signal in early AD suggests the opportunity for further research on the neurophysiological status in AD and its relevance for clinical symptoms.
Collapse
Affiliation(s)
- David Perpetuini
- University G. d’Annunzio, Infrared Imaging Lab, Centro Institute for Advanced Biomedical Technologies, Chieti, Italy
- University G. d’Annunzio, Department of Neurosciences, Imaging and Clinical Sciences, Chieti-Pescara, Italy
| | - Roberta Bucco
- University G. d’Annunzio, Department of Medicine and Science of Ageing, Chieti-Pescara, Italy
| | - Michele Zito
- University G. d’Annunzio, Department of Medicine and Science of Ageing, Chieti-Pescara, Italy
| | - Arcangelo Merla
- University G. d’Annunzio, Infrared Imaging Lab, Centro Institute for Advanced Biomedical Technologies, Chieti, Italy
- University G. d’Annunzio, Department of Neurosciences, Imaging and Clinical Sciences, Chieti-Pescara, Italy
| |
Collapse
|
7
|
Metzger FG, Schopp B, Haeussinger FB, Dehnen K, Synofzik M, Fallgatter AJ, Ehlis AC. Brain activation in frontotemporal and Alzheimer's dementia: a functional near-infrared spectroscopy study. ALZHEIMERS RESEARCH & THERAPY 2016; 8:56. [PMID: 27931245 PMCID: PMC5146884 DOI: 10.1186/s13195-016-0224-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/16/2016] [Indexed: 12/12/2022]
Abstract
Background Frontotemporal dementia is an increasingly studied disease, the underlying functional impairments on a neurobiological level of which have not been fully understood. Patients with the behavioral-subtype frontotemporal dementia (bvFTD) are particularly challenging for clinical measurements such as functional imaging due to their behavioral symptoms. Here, an alternative imaging method, functional near-infrared spectroscopy (fNIRS), is introduced to measure task-related cortical brain activation based on blood oxygenation. The current study investigated differences in cortical activation patterns of patients with bvFTD, Alzheimer’s dementia (AD), and healthy elderly subjects measured by fNIRS. Method Eight probable bvFTD patients completed the semantic, phonological, and control conditions of a verbal fluency task. Eight AD patients and eight healthy controls were compared on the same task. Simultaneously, an fNIRS measurement was conducted and analyzed using a correction method based on the expected negative correlation between oxygenated and deoxygenated hemoglobin. Results Healthy controls show an increase in cortical activation measured in frontoparietal areas such as the dorsolateral prefrontal cortex. The activation pattern of patients with AD is similar, but weaker. In contrast, bvFTD patients show a more frontopolar pattern, with activation of Broca’s area, instead of the dorsolateral prefrontal cortex and the superior temporal gyrus. The frontoparietal compensation mechanisms, seen in the healthy elderly, were missing in bvFTD patients. Conclusion Different frontoparietal cortical activation patterns may indicate a correlate of diverse pathophysiological mechanisms of AD and bvFTD during verbal fluency processing. The AD pattern is weaker and more similar to the healthy pattern, whereas the bvFTD pattern is qualitatively different, namely more frontopolar and without frontoparietal compensation activation. It adheres to a change of cortical activation during the course of the disease. Electronic supplementary material The online version of this article (doi:10.1186/s13195-016-0224-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Florian G Metzger
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Calwerstraße 14, 72076, Tuebingen, Germany. .,Geriatric Center at the University Hospital of Tuebingen, Calwerstraße 14, 72076, Tuebingen, Germany.
| | - Betti Schopp
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Calwerstraße 14, 72076, Tuebingen, Germany
| | - Florian B Haeussinger
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Calwerstraße 14, 72076, Tuebingen, Germany
| | - Katja Dehnen
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Calwerstraße 14, 72076, Tuebingen, Germany
| | - Matthis Synofzik
- Center of Neurology, Department of Neurodegeneration and Hertie Institute for Clinical Brain Research, University Hospital of Tuebingen, Hoppe-Seyler-Straße 3, 72076, Tuebingen, Germany.,German Center of Neurodegenerative Disorders (DZNE), University Hospital of Tuebingen, Otfried-Müller-Straße 23, 72076, Tuebingen, Germany
| | - Andreas J Fallgatter
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Calwerstraße 14, 72076, Tuebingen, Germany.,German Center of Neurodegenerative Disorders (DZNE), University Hospital of Tuebingen, Otfried-Müller-Straße 23, 72076, Tuebingen, Germany
| | - Ann-Christine Ehlis
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Calwerstraße 14, 72076, Tuebingen, Germany
| |
Collapse
|
8
|
Metzger FG, Ehlis AC, Haeussinger FB, Schneeweiss P, Hudak J, Fallgatter AJ, Schneider S. Functional brain imaging of walking while talking - An fNIRS study. Neuroscience 2016; 343:85-93. [PMID: 27915210 DOI: 10.1016/j.neuroscience.2016.11.032] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 11/02/2016] [Accepted: 11/21/2016] [Indexed: 11/24/2022]
Abstract
Since functional imaging of whole body movements is not feasible with functional magnetic resonance imaging (fMRI), the present study presents in vivo functional near-infrared spectroscopy (fNIRS) as a suitable technique to measure body movement effects on fronto-temporo-parietal cortical activation in single- and dual-task paradigms. Previous fNIRS applications in studies addressing whole body movements were typically limited to the assessment of prefrontal brain areas. The current study investigated brain activation in the frontal, temporal and parietal cortex of both hemispheres using functional near-infrared spectroscopy (fNIRS) with two large 4×4 probe-sets with 24 channels each during single and dual gait tasks. 12 young healthy adults were measured using fNIRS walking on a treadmill: the participants performed two single-task (ST) paradigms (walking at different speeds, i.e. 3 and 5km/h) and a dual task (DT) paradigm where a verbal fluency task (VFT) had to be executed while walking at 3km/h. The results show an increase of activation in Broca's area during the more advanced conditions (ST 5km/h vs. ST 3km/h, DT vs. ST 3km/h, DT vs. 5km/h), while the corresponding area on the right hemisphere was also activated. DT paradigms including a cognitive task in conjunction with whole body movements elicit wide-spread cortical activation patterns across fronto-temporo-parietal areas. An elaborate assessment of these activation patterns requires more extensive fNIRS assessments than the traditional prefrontal investigations, e.g. as performed with portable fNIRS devices.
Collapse
Affiliation(s)
- Florian G Metzger
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Calwerstraße 14, 72076 Tuebingen, Germany; Geriatric Center, University Hospital of Tuebingen, Calwerstraße 14, 72076 Tuebingen, Germany.
| | - Ann-Christine Ehlis
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Calwerstraße 14, 72076 Tuebingen, Germany.
| | - Florian B Haeussinger
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Calwerstraße 14, 72076 Tuebingen, Germany.
| | - Patrick Schneeweiss
- Department of Sports Medicine, University Hospital of Tuebingen, Hoppe-Seyler-Straße 6, 72076 Tübingen, Germany.
| | - Justin Hudak
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Calwerstraße 14, 72076 Tuebingen, Germany.
| | - Andreas J Fallgatter
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Calwerstraße 14, 72076 Tuebingen, Germany; Center of Integrative Neuroscience (CIN), Cluster of Excellence, University of Tuebingen, Otfried-Müller-Straße 25, 72076 Tübingen, Germany.
| | - Sabrina Schneider
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Calwerstraße 14, 72076 Tuebingen, Germany; Department of Psychology, HELP University Kuala Lumpur, Persiaran Cakerawala, Subang Bestari, Seksyen U4, 40150 Shah Alam, Selangor, Malaysia.
| |
Collapse
|