1
|
Bahi A, Dreyer JL. Hippocampal Viral-Mediated Urokinase Plasminogen Activator (uPA) Overexpression Mitigates Stress-Induced Anxiety and Depression in Rats by Increasing Brain-Derived Neurotrophic Factor (BDNF) Levels. Biomolecules 2024; 14:1603. [PMID: 39766310 PMCID: PMC11674468 DOI: 10.3390/biom14121603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Emerging evidence suggests the serine protease, urokinase plasminogen activator (uPA), may play an important role in the modulation of mood and cognitive functions. Also, preliminary evidence indicates that uPA modulates BDNF activity that is known to be involved in the pathogenesis of mood disorders. However, the physiological functions of uPA in specific brain regions for mediating stress-related emotional behaviors remain to be elucidated. Therefore, the aim of this study was to assess the role of ectopic uPA expression on anxiety- and depression-like behaviors following social defeat stress in rats. For this purpose, we inspected the behavioral outcomes following bilateral stereotaxic delivery of uPA-overexpressing lentiviral vectors in the hippocampus using a series of behavioral tests. Results show that hippocampal uPA gain-of-function prevented stress-elicited anxiogenic-like effects, as determined in the marble burying, open field, and elevated plus maze tests, with no alterations in spontaneous locomotor activity. Also, ectopic uPA overexpression resulted in anti-depressant-like effects in the sucrose splash, tail suspension, and forced swim tests. Most importantly, uPA overexpression increased hippocampal BDNF levels, and a strong positive correlation was found using the Pearson test. Moreover, the same correlation analysis revealed a strong negative relationship between uPA mRNA and parameters of anxiety- and depression-like behaviors. Taken together, this work highlights the importance of considering uPA activation and provides new insights into the mechanisms involved in the pathophysiology of stress-elicited mood illnesses, which should help in the development of new approaches to tackle depression and anxiety disorders.
Collapse
Affiliation(s)
- Amine Bahi
- Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Jean-Luc Dreyer
- Division of Biochemistry, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
2
|
García-Cabrerizo R, Cryan JF. A gut (microbiome) feeling about addiction: Interactions with stress and social systems. Neurobiol Stress 2024; 30:100629. [PMID: 38584880 PMCID: PMC10995916 DOI: 10.1016/j.ynstr.2024.100629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/29/2024] [Accepted: 03/17/2024] [Indexed: 04/09/2024] Open
Abstract
In recent years, an increasing attention has given to the intricate and diverse connection of microorganisms residing in our gut and their impact on brain health and central nervous system disease. There has been a shift in mindset to understand that drug addiction is not merely a condition that affects the brain, it is now being recognized as a disorder that also involves external factors such as the intestinal microbiota, which could influence vulnerability and the development of addictive behaviors. Furthermore, stress and social interactions, which are closely linked to the intestinal microbiota, are powerful modulators of addiction. This review delves into the mechanisms through which the microbiota-stress-immune axis may shape drug addiction and social behaviors. This work integrates preclinical and clinical evidence that demonstrate the bidirectional communication between stress, social behaviors, substance use disorders and the gut microbiota, suggesting that gut microbes might modulate social stress having a significance in drug addiction.
Collapse
Affiliation(s)
- Rubén García-Cabrerizo
- IUNICS, University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Department of Medicine, University of the Balearic Islands, Palma, Spain
| | - John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
3
|
Pantoja-Urbán AH, Richer S, Mittermaier A, Giroux M, Nouel D, Hernandez G, Flores C. Gains and Losses: Resilience to Social Defeat Stress in Adolescent Female Mice. Biol Psychiatry 2024; 95:37-47. [PMID: 37355003 PMCID: PMC10996362 DOI: 10.1016/j.biopsych.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/29/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Adolescence is a unique period of psychosocial growth during which social adversity can negatively influence mental health trajectories. Understanding how adolescent social stress impacts males and females and why some individuals are particularly affected is becoming increasingly urgent. Social defeat stress models for adolescent male mice have been effective in reproducing some physical/psychological aspects of bullying. Designing a model suitable for females has proven challenging. METHODS We report a version of the adolescent male accelerated social defeat stress (AcSD) paradigm adapted for females. Early adolescent C57BL/6J female mice (N = 107) were exposed to our modified AcSD procedure twice a day for 4 days and categorized as resilient or susceptible based on a social interaction test 24 hours later. Mice were then assessed for changes in Netrin-1/DCC guidance cue expression in dopamine systems, for inhibitory control in adulthood using the Go/No-Go task, or for alterations in dopamine connectivity organization in the matured prefrontal cortex. RESULTS Most adolescent females showed protection against stress-induced social avoidance, but in adulthood, these resilient females developed inhibitory control deficits and showed diminution of prefrontal cortex presynaptic dopamine sites. Female mice classified as susceptible were protected against cognitive and dopaminergic alterations. AcSD did not alter Netrin-1/DCC in early adolescent females, contrary to previous findings with males. CONCLUSIONS Preserving prosocial behavior in adolescent females may be important for survival advantage but seems to come at the price of developing persistent cognitive and dopamine deficiencies. The female AcSD paradigm produced findings comparable to those found in males, allowing mechanistic investigation in both sexes.
Collapse
Affiliation(s)
- Andrea Harée Pantoja-Urbán
- Integrated Program in Neuroscience, McGill University, Montreal, Québec, Canada; Douglas Mental Health University Institute, Montreal, Québec, Canada
| | - Samuel Richer
- Integrated Program in Neuroscience, McGill University, Montreal, Québec, Canada; Douglas Mental Health University Institute, Montreal, Québec, Canada
| | | | - Michel Giroux
- Douglas Mental Health University Institute, Montreal, Québec, Canada
| | - Dominique Nouel
- Douglas Mental Health University Institute, Montreal, Québec, Canada
| | | | - Cecilia Flores
- Douglas Mental Health University Institute, Montreal, Québec, Canada; Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Montreal, Québec, Canada.
| |
Collapse
|
4
|
Bagosi Z, Megyesi K, Ayman J, Rudersdorf H, Ayaz MK, Csabafi K. The Role of Corticotropin-Releasing Factor (CRF) and CRF-Related Peptides in the Social Behavior of Rodents. Biomedicines 2023; 11:2217. [PMID: 37626714 PMCID: PMC10452353 DOI: 10.3390/biomedicines11082217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Since the corticotropin-releasing factor (CRF) was isolated from an ovine brain, a growing family of CRF-related peptides has been discovered. Today, the mammalian CRF system consists of four ligands (CRF, urocortin 1 (Ucn1), urocortin 2 (Ucn2), and urocortin 3 (Ucn3)); two receptors (CRF receptor type 1 (CRF1) and CRF receptor type 2 (CRF2)); and a CRF-binding protein (CRF-BP). Besides the regulation of the neuroendocrine, autonomic, and behavioral responses to stress, CRF and CRF-related peptides are also involved in different aspects of social behavior. In the present study, we review the experiments that investigated the role of CRF and the urocortins involved in the social behavior of rats, mice, and voles, with a special focus on sociability and preference for social novelty, as well as the ability for social recognition, discrimination, and memory. In general, these experiments demonstrate that CRF, Ucn1, Ucn2, and Ucn3 play important, but distinct roles in the social behavior of rodents, and that they are mediated by CRF1 and/or CRF2. In addition, we suggest the possible brain regions and pathways that express CRF and CRF-related peptides and that might be involved in social interactions. Furthermore, we also emphasize the differences between the species, strains, and sexes that make translation of these roles from rodents to humans difficult.
Collapse
Affiliation(s)
- Zsolt Bagosi
- Department of Pathophysiology, Albert Szent-Györgyi School of Medicine, University of Szeged, 6720 Szeged, Hungary; (H.R.); (M.K.A.); (K.C.)
| | - Kíra Megyesi
- Interdisciplinary Center for Excellence, Clinical Research Competence Center, Albert Szent-Györgyi School of Medicine, University of Szeged, 6720 Szeged, Hungary;
| | - Jázmin Ayman
- Department of Obstetrics and Gynecology, Albert Szent-Györgyi Albert School of Medicine, University of Szeged, 6720 Szeged, Hungary;
| | - Hanna Rudersdorf
- Department of Pathophysiology, Albert Szent-Györgyi School of Medicine, University of Szeged, 6720 Szeged, Hungary; (H.R.); (M.K.A.); (K.C.)
| | - Maieda Khan Ayaz
- Department of Pathophysiology, Albert Szent-Györgyi School of Medicine, University of Szeged, 6720 Szeged, Hungary; (H.R.); (M.K.A.); (K.C.)
| | - Krisztina Csabafi
- Department of Pathophysiology, Albert Szent-Györgyi School of Medicine, University of Szeged, 6720 Szeged, Hungary; (H.R.); (M.K.A.); (K.C.)
| |
Collapse
|
5
|
Mantsch JR. Corticotropin releasing factor and drug seeking in substance use disorders: Preclinical evidence and translational limitations. ADDICTION NEUROSCIENCE 2022; 4:100038. [PMID: 36531188 PMCID: PMC9757758 DOI: 10.1016/j.addicn.2022.100038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The neuropeptide, corticotropin releasing factor (CRF), has been an enigmatic target for the development of medications aimed at treating stress-related disorders. Despite a large body of evidence from preclinical studies in rodents demonstrating that CRF receptor antagonists prevent stressor-induced drug seeking, medications targeting the CRF-R1 have failed in clinical trials. Here, we provide an overview of the abundant findings from preclinical rodent studies suggesting that CRF signaling is involved in stressor-induced relapse. The scientific literature that has defined the receptors, mechanisms and neurocircuits through which CRF contributes to stressor-induced reinstatement of drug seeking following self-administration and conditioned place preference in rodents is reviewed. Evidence that CRF signaling is recruited with repeated drug use in a manner that heightens susceptibility to stressor-induced drug seeking in rodents is presented. Factors that may determine the influence of CRF signaling in substance use disorders, including developmental windows, biological sex, and genetics are examined. Finally, we discuss the translational failure of medications targeting CRF signaling as interventions for substance use disorders and other stress-related conditions. We conclude that new perspectives and research directions are needed to unravel the mysterious role of CRF in substance use disorders.
Collapse
Affiliation(s)
- John R Mantsch
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, United States
| |
Collapse
|
6
|
Ferrer-Pérez C, Reguilón MD, Miñarro J, Rodríguez-Arias M. Effect of Voluntary Wheel-Running Exercise on the Endocrine and Inflammatory Response to Social Stress: Conditioned Rewarding Effects of Cocaine. Biomedicines 2022; 10:biomedicines10102373. [PMID: 36289635 PMCID: PMC9598819 DOI: 10.3390/biomedicines10102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/08/2022] [Accepted: 09/17/2022] [Indexed: 11/21/2022] Open
Abstract
The present paper evaluates the effect of physical activity on the increase of the conditioned rewarding effects of cocaine induced by intermittent social stress and on the neuroinflammatory response that contributes to the enhancement of drug response. For that purpose, three studies were designed in which social stress was induced in different samples of mice through a social-defeat protocol; the mice underwent an increase of physical activity by different modalities of voluntary wheel running (continuous and intermittent access). The results showed that continuous access to running wheels prior to stress enhanced the establishment of cocaine place preference, whereas an intermittent access exerted a protective effect. Wheel running contingent to cocaine administration prevented the development of conditioned preference, and if applied during the extinction of drug memories, it exerted a dual effect depending on the stress background of the animal. Our biological analysis revealed that increased sensitivity to cocaine may be related to the fact that wheel running promotes inflammation though the increase of IL-6 and BDNF levels. Together, these results highlight that physical exercise deeply impacts the organism’s response to stress and cocaine, and these effects should be taken into consideration in the design of a physical intervention.
Collapse
Affiliation(s)
- Carmen Ferrer-Pérez
- Department of Psychology and Sociology, Faculty of Humanities and Social Sciences, University of Zaragoza, 44003 Teruel, Spain
| | - Marina D. Reguilón
- Department of Psychobiology, Faculty of Psychology, Universitat de València, 46010 Valencia, Spain
| | - José Miñarro
- Department of Psychobiology, Faculty of Psychology, Universitat de València, 46010 Valencia, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Faculty of Psychology, Universitat de València, 46010 Valencia, Spain
- Correspondence:
| |
Collapse
|
7
|
Pomrenze MB, Paliarin F, Maiya R. Friend of the Devil: Negative Social Influences Driving Substance Use Disorders. Front Behav Neurosci 2022; 16:836996. [PMID: 35221948 PMCID: PMC8866771 DOI: 10.3389/fnbeh.2022.836996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/13/2022] [Indexed: 11/20/2022] Open
Abstract
Substance use disorders in humans have significant social influences, both positive and negative. While prosocial behaviors promote group cooperation and are naturally rewarding, distressing social encounters, such as aggression exhibited by a conspecific, are aversive and can enhance the sensitivity to rewarding substances, promote the acquisition of drug-taking, and reinstate drug-seeking. On the other hand, withdrawal and prolonged abstinence from drugs of abuse can promote social avoidance and suppress social motivation, accentuating drug cravings and facilitating relapse. Understanding how complex social states and experiences modulate drug-seeking behaviors as well as the underlying circuit dynamics, such as those interacting with mesolimbic reward systems, will greatly facilitate progress on understanding triggers of drug use, drug relapse and the chronicity of substance use disorders. Here we discuss some of the common circuit mechanisms underlying social and addictive behaviors that may underlie their antagonistic functions. We also highlight key neurochemicals involved in social influences over addiction that are frequently identified in comorbid psychiatric conditions. Finally, we integrate these data with recent findings on (±)3,4-methylenedioxymethamphetamine (MDMA) that suggest functional segregation and convergence of social and reward circuits that may be relevant to substance use disorder treatment through the competitive nature of these two types of reward. More studies focused on the relationship between social behavior and addictive behavior we hope will spur the development of treatment strategies aimed at breaking vicious addiction cycles.
Collapse
Affiliation(s)
- Matthew B. Pomrenze
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
- *Correspondence: Matthew B. Pomrenze Rajani Maiya
| | - Franciely Paliarin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Rajani Maiya
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- *Correspondence: Matthew B. Pomrenze Rajani Maiya
| |
Collapse
|
8
|
Bardo MT, Hammerslag LR, Malone SG. Effect of early life social adversity on drug abuse vulnerability: Focus on corticotropin-releasing factor and oxytocin. Neuropharmacology 2021; 191:108567. [PMID: 33862030 DOI: 10.1016/j.neuropharm.2021.108567] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/16/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022]
Abstract
Early life adversity can set the trajectory for later psychiatric disorders, including substance use disorders. There are a host of neurobiological factors that may play a role in the negative trajectory. The current review examines preclinical evidence suggesting that early life adversity specifically involving social factors (maternal separation, adolescent social isolation and adolescent social defeat) may influence drug abuse vulnerability by strengthening corticotropin-releasing factor (CRF) systems and weakening oxytocin (OT) systems. In adulthood, pharmacological and genetic evidence indicates that both CRF and OT systems are directly involved in drug reward processes. With early life adversity, numerous studies show an increase in drug abuse vulnerability measured in adulthood, along a concomitant strengthening of CRF systems and a weakening of OT systems. Mechanistic studies, while relatively few in number, are generally consistent with the theme that strengthened CRF systems and weakened OT systems mediate, at least in part, the link between early life adversity and drug abuse vulnerability. Establishing a direct role of CRF and OT in mediating the relation between early life social stressors and drug abuse vulnerability will inform clinical researchers and practitioners toward the development of intervention strategies to reduce risk among those suffering from early life adversities. This article is part of the special issue on 'Vulnerabilities to Substance Abuse'.
Collapse
Affiliation(s)
- Michael T Bardo
- Department of Psychology, University of Kentucky, Lexington, KY, 40536-0509, USA.
| | - Lindsey R Hammerslag
- Department of Psychology, University of Kentucky, Lexington, KY, 40536-0509, USA
| | - Samantha G Malone
- Department of Psychology, University of Kentucky, Lexington, KY, 40536-0509, USA
| |
Collapse
|
9
|
Critical role of TLR4 in uncovering the increased rewarding effects of cocaine and ethanol induced by social defeat in male mice. Neuropharmacology 2020; 182:108368. [PMID: 33132187 DOI: 10.1016/j.neuropharm.2020.108368] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Substance use disorders and social stress are currently associated with changes in the immune system response by which they induce a proinflammatory state in neurons and glial cells that eventually modulates the reward system. AIMS The aim of the present work was to assess the role of the immune TLR4 (Toll-like receptors 4) and its signaling response in the increased contextual reinforcing effects of cocaine and reinforcing effects of ethanol (EtOH) induced by social defeat (SD) stress. METHODS Adult male C57BL/6 J wild-type (WT) mice and mice deficient in TLR4 (TLR4-KO) were assigned to experimental groups according to stress condition (exploration or SD). Three weeks after the last SD, conditioned place preference (CPP) was induced by a subthreshold cocaine dose (1 mg/kg), while another set underwent EtOH 6% operant self-administration (SA). Several inflammatory molecules were analyzed in the hippocampus and the striatum. RESULTS SD induced higher vulnerability to the conditioned rewarding effects of cocaine only in defeated WT mice. Similarly, defeated WT mice exhibited higher 6% EtOH consumption, an effect that was not observed in the defeated TLR4-KO group. However, the motivation to obtain the drug was observed in both genotypes of defeated animals. Notably, a significant upregulation of the protein proinflammatory markers NFkBp-p65, IL-1β, IL-17 A and COX-2 were observed only in the defeated WT mice, but not in their defeated TLR4-KO counterparts. CONCLUSIONS These results suggest that TLR4 receptors mediate the neuroinflammatory response underlying the increase in the rewarding effects of cocaine and EtOH induced by social stress.
Collapse
|
10
|
Methionine mediates resilience to chronic social defeat stress by epigenetic regulation of NMDA receptor subunit expression. Psychopharmacology (Berl) 2020; 237:3007-3020. [PMID: 32564114 DOI: 10.1007/s00213-020-05588-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 06/11/2020] [Indexed: 10/24/2022]
Abstract
RATIONALE Previous studies suggested that methionine (Met) levels are decreased in depressed patients. However, whether the decrease in this amino acid is important for phenotypic behaviors associated with depression has not been deciphered. OBJECTIVE The response of individuals to chronic stress is variable, with some individuals developing depression and others becoming resilient to stress. In this study, our objective was to examine the effect of Met on susceptibility to stress. METHODS Male C57BL/6J mice were subjected to daily defeat sessions by a CD1 aggressor, for 10 days. On day 11, the behavior of mice was assessed using social interaction and open-field tests. Mice received Met 4 h before each defeat session. Epigenetic targets were assessed either through real-rime RTPCR or through Western Blots. RESULTS Met did not modulate anxiety-like behaviors, but rather promoted resilience to chronic stress, rescued social avoidance behaviors and reversed the increase in the cortical expression levels of N-methyl-D-aspartate receptor (NMDAR) subunits. Activating NMDAR activity abolished the ability of Met to promote resilience to stress and to rescue social avoidance behavior, whereas inhibiting NMDAR did not show any synergistic or additive protective effects. Indeed, Met increased the cortical levels of the histone methyltransferase SETDB1, and in turn, the levels of the repressive histone H3 lysine (K9) trimethylation (me3). CONCLUSIONS Our data indicate that Met rescues susceptibility to stress by inactivating cortical NMDAR activity through an epigenetic mechanism involving histone methylation.
Collapse
|
11
|
Lamontagne SJ, Wilkin MM, Menard JL, Olmstead MC. Mid-adolescent stress differentially affects binge-like intake of sucrose across estrous cycles in female rats ✰. Physiol Behav 2020; 228:113194. [PMID: 33011230 DOI: 10.1016/j.physbeh.2020.113194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/14/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
Binge eating disorder (BED), characterized by excessive food consumption within a discrete period of time, is the most prevalent of all eating disorders, with higher rates in women than men. Chronic stress, particularly during adolescence, is a significant risk factor for BED in women, but the mechanism underlying this relationship remains elusive. We investigated the phenomenon by testing the impact of mid-adolescent intermittent physical stress (IPS) on binge-like intake of sucrose in adult female rats, assessing how the behavior changed across reproductive cycles. One hundred and nineteen Long-Evans rats were exposed to IPS (n = 59) or no stress (NS; n = 60) for 12 days during mid-adolescence (PD35-46). Binge-like eating was induced in adult animals using an intermittent access protocol: animals were provided with 12 h or 24 h access to sucrose, 12 h access to saccharin, or 12 h access to food over 28 days. After 1- or 28-day abstinence, compulsive responding for sucrose was measured using a conditioned suppression paradigm. Rats given 12 h access to sucrose developed binge-like intake, measured as increased consumption during the first hour; the effect was magnified in IPS animals and most pronounced during proestrous. Solution intake in IPS rats was predicted by open arm entries in the elevated plus maze, suggesting that increased risk-taking behavior is associated with greater binge-like eating. IPS blocked conditioned suppression after 28 days of abstinence, pointing to a role of mid-adolescent stress in compulsivity. Collectively, these findings emphasize the impact of stress on the emergence of binge eating in females and suggest that intervention programs for women with a history of adolescent adversity should be investigated as a means to reduce risk for BED.
Collapse
Affiliation(s)
- Steven J Lamontagne
- Department of Psychology, Queen's University, Kingston, Ontario, Canada, K7L 3N6
| | - Meaghan M Wilkin
- Department of Psychology, Queen's University, Kingston, Ontario, Canada, K7L 3N6
| | - Janet L Menard
- Department of Psychology, Queen's University, Kingston, Ontario, Canada, K7L 3N6; Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada, K7L 3N6
| | - Mary C Olmstead
- Department of Psychology, Queen's University, Kingston, Ontario, Canada, K7L 3N6; Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada, K7L 3N6.
| |
Collapse
|
12
|
Biological intersection of sex, age, and environment in the corticotropin releasing factor (CRF) system and alcohol. Neuropharmacology 2020; 170:108045. [PMID: 32217364 DOI: 10.1016/j.neuropharm.2020.108045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/13/2020] [Accepted: 03/06/2020] [Indexed: 01/21/2023]
Abstract
The neuropeptide corticotropin-releasing factor (CRF) is critical in neural circuit function and behavior, particularly in the context of stress, anxiety, and addiction. Despite a wealth of preclinical evidence for the efficacy of CRF receptor 1 antagonists in reducing behavioral pathology associated with alcohol exposure, several clinical trials have had disappointing outcomes, possibly due to an underappreciation of the role of biological variables. Although he National Institutes of Health (NIH) now mandate the inclusion of sex as a biological variable in all clinical and preclinical research, the current state of knowledge in this area is based almost entirely on evidence from male subjects. Additionally, the influence of biological variables other than sex has received even less attention in the context of neuropeptide signaling. Age (particularly adolescent development) and housing conditions have been shown to affect CRF signaling and voluntary alcohol intake, and the interaction between these biological variables is particularly relevant to the role of the CRF system in the vulnerability or resilience to the development of alcohol use disorder (AUD). Going forward, it will be important to include careful consideration of biological variables in experimental design, reporting, and interpretation. As new research uncovers conditions in which sex, age, and environment play major roles in physiological and/or pathological processes, our understanding of the complex interaction between relevant biological variables and critical signaling pathways like the CRF system in the cellular and behavioral consequences of alcohol exposure will continue to expand ultimately improving the ability of preclinical research to translate to the clinic. This article is part of the special issue on Neuropeptides.
Collapse
|
13
|
Ahmed SH, Badiani A, Miczek KA, Müller CP. Non-pharmacological factors that determine drug use and addiction. Neurosci Biobehav Rev 2020; 110:3-27. [PMID: 30179633 PMCID: PMC6395570 DOI: 10.1016/j.neubiorev.2018.08.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/26/2018] [Accepted: 08/28/2018] [Indexed: 12/26/2022]
Abstract
Based on their pharmacological properties, psychoactive drugs are supposed to take control of the natural reward system to finally drive compulsory drug seeking and consumption. However, psychoactive drugs are not used in an arbitrary way as pure pharmacological reinforcement would suggest, but rather in a highly specific manner depending on non-pharmacological factors. While pharmacological effects of psychoactive drugs are well studied, neurobiological mechanisms of non-pharmacological factors are less well understood. Here we review the emerging neurobiological mechanisms beyond pharmacological reinforcement which determine drug effects and use frequency. Important progress was made on the understanding of how the character of an environment and social stress determine drug self-administration. This is expanded by new evidence on how behavioral alternatives and opportunities for drug instrumentalization generate different patterns of drug choice. Emerging evidence suggests that the neurobiology of non-pharmacological factors strongly determines pharmacological and behavioral drug action and may, thus, give rise for an expanded system's approach of psychoactive drug use and addiction.
Collapse
Affiliation(s)
- Serge H Ahmed
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 146 rue Léo-Saignat, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 146 rue Léo-Saignat, F-33000 Bordeaux, France
| | - Aldo Badiani
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; Sussex Addiction Research and Intervention Centre (SARIC), School of Psychology, University of Sussex, BN1 9RH Brighton, UK
| | - Klaus A Miczek
- Psychology Department, Tufts University, Bacon Hall, 530 Boston Avenue, Medford, MA 02155, USA; Department of Neuroscience, Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| |
Collapse
|
14
|
Wilkin MM, Menard JL. Social housing ameliorates the enduring effects of intermittent physical stress during mid-adolescence. Physiol Behav 2020; 214:112750. [DOI: 10.1016/j.physbeh.2019.112750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/02/2019] [Accepted: 11/22/2019] [Indexed: 12/01/2022]
|
15
|
Role of N-methyl-D-aspartate receptors in the long-term effects of repeated social defeat stress on the rewarding and psychomotor properties of cocaine in mice. Behav Brain Res 2019; 361:95-103. [DOI: 10.1016/j.bbr.2018.12.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/09/2018] [Accepted: 12/11/2018] [Indexed: 02/07/2023]
|
16
|
Ferrer-Pérez C, Martinez TE, Montagud-Romero S, Ballestín R, Reguilón MD, Miñarro J, Rodríguez-Arias M. Indomethacin blocks the increased conditioned rewarding effects of cocaine induced by repeated social defeat. PLoS One 2018; 13:e0209291. [PMID: 30557308 PMCID: PMC6296503 DOI: 10.1371/journal.pone.0209291] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/01/2018] [Indexed: 01/05/2023] Open
Abstract
It is well established that repeated social defeat stress can induce negative long-term consequences such as increased anxiety-like behavior and enhances the reinforcing effect of psychostimulants in rodents. In the current study, we evaluated how the immune system may play a role in these long-term effects of stress. A total of 148 OF1 mice were divided into different experimental groups according to stress condition (exploration or social defeat) and pre-treatment (saline, 5 or 10 mg/kg of the anti-inflammatory indomethacin) before each social defeat or exploration episode. Three weeks after the last social defeat, anxiety was evaluated using an elevated plus maze paradigm. After this test, conditioned place preference (CPP) was induced by a subthreshold dose of cocaine (1 mg/kg). Biological samples were taken four hours after the first and the fourth social defeat, 3 weeks after the last defeat episode, and after the CPP procedure. Plasma and brain tissue (prefrontal cortex, striatum and hippocampus) were used to determine the levels of the pro-inflammatory cytokine interleukin 6 (IL-6). Results showed an increase of peripheral and brain IL-6 levels after the first and fourth social defeat that was reverted three weeks later. Intraperitoneal administration of the anti-inflammatory drug indomethacin before each episode of stress prevented this enhancement of IL-6 levels and also reversed the increase in the rewarding effects of cocaine in defeated mice. Conversely, this protective effect was not observed with respect to the anxiogenic consequences of social stress. Our results confirm the hypothesis of a modulatory proinflammatory contribution to stress-induced vulnerability to drug abuse disorders and highlight anti-inflammatory interventions as a potential therapeutic tool to treat stress-related addiction disorders.
Collapse
Affiliation(s)
- Carmen Ferrer-Pérez
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Tamara Escrivá Martinez
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Sandra Montagud-Romero
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Raúl Ballestín
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Marina D. Reguilón
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - José Miñarro
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Faculty of Psychology, Universitat de València, Valencia, Spain
| |
Collapse
|
17
|
Walker RA, Andreansky C, Ray MH, McDannald MA. Early adolescent adversity inflates threat estimation in females and promotes alcohol use initiation in both sexes. Behav Neurosci 2018; 132:171-182. [PMID: 29809045 DOI: 10.1037/bne0000239] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Childhood adversity is associated with exaggerated threat processing and earlier alcohol use initiation. Conclusive links remain elusive, as childhood adversity typically co-occurs with detrimental socioeconomic factors, and its impact is likely moderated by biological sex. To unravel the complex relationships among childhood adversity, sex, threat estimation, and alcohol use initiation, we exposed female and male Long-Evans rats to early adolescent adversity (EAA). In adulthood, >50 days following the last adverse experience, threat estimation was assessed using a novel fear discrimination procedure in which cues predict a unique probability of footshock: danger (p = 1.00), uncertainty (p = .25), and safety (p = .00). Alcohol use initiation was assessed using voluntary access to 20% ethanol, >90 days following the last adverse experience. During development, EAA slowed body weight gain in both females and males. In adulthood, EAA selectively inflated female threat estimation, exaggerating fear to uncertainty and safety, but promoted alcohol use initiation across sexes. Meaningful relationships between threat estimation and alcohol use initiation were not observed, underscoring the independent effects of EAA. Results isolate the contribution of EAA to adult threat estimation, alcohol use initiation, and reveal moderation by biological sex. (PsycINFO Database Record
Collapse
|
18
|
Newman EL, Leonard MZ, Arena DT, de Almeida RMM, Miczek KA. Social defeat stress and escalation of cocaine and alcohol consumption: Focus on CRF. Neurobiol Stress 2018; 9:151-165. [PMID: 30450381 PMCID: PMC6236516 DOI: 10.1016/j.ynstr.2018.09.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 12/15/2022] Open
Abstract
Both the ostensibly aversive effects of unpredictable episodes of social stress and the intensely rewarding effects of drugs of abuse activate the mesocorticolimbic dopamine systems. Significant neuroadaptations in interacting stress and reward neurocircuitry may underlie the striking connection between stress and substance use disorders. In rodent models, recurring intermittent exposure to social defeat stress appears to produce a distinct profile of neuroadaptations that translates most readily to the repercussions of social stress in humans. In the present review, preclinical rodent models of social defeat stress and subsequent alcohol, cocaine or opioid consumption are discussed with regard to: (1) the temporal pattern of social defeat stress, (2) male and female protocols of social stress-escalated drug consumption, and (3) the neuroplastic effects of social stress, which may contribute to escalated drug-taking. Neuroadaptations in corticotropin-releasing factor (CRF) and CRF modulation of monoamines in the ventral tegmental area and the bed nucleus of the stria terminalis are highlighted as potential mechanisms underlying stress-escalated drug consumption. However, the specific mechanisms that drive CRF-mediated increases in dopamine require additional investigation as do the stress-induced neuroadaptations that may contribute to the development of compulsive patterns of drug-taking.
Collapse
Affiliation(s)
- Emily L Newman
- Psychology Dept., Tufts University, Medford, MA, 02155, USA
| | | | | | - Rosa M M de Almeida
- Institute of Psychology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Klaus A Miczek
- Psychology Dept., Tufts University, Medford, MA, 02155, USA.,Dept. of Neuroscience, Sackler School of Graduate Biomedical Sciences, Boston, MA, 02111, USA
| |
Collapse
|
19
|
Montagud-Romero S, Blanco-Gandía MC, Reguilón MD, Ferrer-Pérez C, Ballestín R, Miñarro J, Rodríguez-Arias M. Social defeat stress: Mechanisms underlying the increase in rewarding effects of drugs of abuse. Eur J Neurosci 2018; 48:2948-2970. [PMID: 30144331 DOI: 10.1111/ejn.14127] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/11/2018] [Accepted: 08/14/2018] [Indexed: 12/27/2022]
Abstract
Social interaction is known to be the main source of stress in human beings, which explains the translational importance of this research in animals. Evidence reported over the last decade has revealed that, when exposed to social defeat experiences (brief episodes of social confrontations during adolescence and adulthood), the rodent brain undergoes remodeling and functional modifications, which in turn lead to an increase in the rewarding and reinstating effects of different drugs of abuse. The mechanisms by which social stress cause changes in the brain and behavior are unknown, and so the objective of this review is to contemplate how social defeat stress induces long-lasting consequences that modify the reward system. First of all, we will describe the most characteristic results of the short- and long-term consequences of social defeat stress on the rewarding effects of drugs of abuse such as psychostimulants and alcohol. Secondly, and throughout the review, we will carefully assess the neurobiological mechanisms underlying these effects, including changes in the dopaminergic system, corticotrophin releasing factor signaling, epigenetic modifications and the neuroinflammatory response. To conclude, we will consider the advantages and disadvantages and the translational value of the social defeat stress model, and will discuss challenges and future directions.
Collapse
Affiliation(s)
- Sandra Montagud-Romero
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | | | - Marina D Reguilón
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - Carmen Ferrer-Pérez
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - Raul Ballestín
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - Jose Miñarro
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| |
Collapse
|
20
|
Negative consequences of early-life adversity on substance use as mediated by corticotropin-releasing factor modulation of serotonin activity. Neurobiol Stress 2018; 9:29-39. [PMID: 30151419 PMCID: PMC6108067 DOI: 10.1016/j.ynstr.2018.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/11/2018] [Accepted: 08/05/2018] [Indexed: 01/01/2023] Open
Abstract
Early-life adversity is associated with increased risk for substance abuse in later life, with women more likely to report past and current stress as a mediating factor in their substance use and relapse as compared to men. Preclinical models of neonatal and peri-adolescent (early through late adolescence) stress all support a direct relationship between experiences of early-life adversity and adult substance-related behaviors, and provide valuable information regarding the underlying neurobiology. This review will provide an overview of these animal models and how these paradigms alter drug and alcohol consumption and/or seeking in male and female adults. An introduction to the corticotropin-releasing factor (CRF) and serotonin systems, their development and their interactions at the level of the dorsal raphe will be provided, illustrating how this particular stress system is sexually dimorphic, and is well positioned to be affected by stressors early in development and throughout maturation. A model for CRF-serotonin interactions in the dorsal raphe and how these influence dopaminergic activity within the nucleus accumbens and subsequent reward-associated behaviors will be provided, and alterations to the activity of this system following early-life adversity will be identified. Overall, converging findings suggest that early-life adversity has long-term effects on the functioning of the CRF-serotonin system, highlighting a potentially important and targetable mediator linking stress to addiction. Future work should focus on identifying the exact mechanisms that promote long-term changes to the expression and activity of CRF receptors in the dorsal raphe. Moreover, it is important to clarify whether similar neurobiological mechanisms exist for males and females, given the sexual dimorphism both in CRF receptors and serotonin indices in the dorsal raphe and in the behavioral outcomes of early-life adversity. Early life stress increases risk for substance abuse in adulthood. Stress and drugs increase CRF which alters serotonin release in the brain. CRF2 receptor expression in the dorsal raphe is altered by early life stress. Resultant changes to serotonin output facilitates dopamine in the accumbens. CRF2-sertotonin-dopamine interactions may link early life stress with substance abuse.
Collapse
Key Words
- 5-HIAA, 5–Hydroxyindoleacetic Acid
- BNST, Bed Nucleus of the Stria Terminalis
- CRF, Corticotropin-Releasing Factor
- CRF-BP, Corticotropin-Releasing Factor Binding Protein
- CeA, Central Nucleus of the Amygdala
- Corticotropin-releasing factor
- Dorsal raphe nucleus
- Drug reward
- Early-life stress
- LC, Locus Coeruleus
- MDMA, 3,4-Methylenedioxymethamphetamine
- NAc, Nucleus Accumbens
- NMDA, N-methyl-d-aspartate
- PND, Postnatal Day
- Serotonin
- Sex differences
- TPH2, Tryptophan Hydroxylase 2
- VTA, Ventral Tegmental Area
- dRN, Dorsal Raphe Nucleus
Collapse
|
21
|
Rowson SA, Foster SL, Weinshenker D, Neigh GN. Locomotor sensitization to cocaine in adolescent and adult female Wistar rats. Behav Brain Res 2018; 349:158-162. [PMID: 29704596 DOI: 10.1016/j.bbr.2018.04.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/19/2018] [Accepted: 04/22/2018] [Indexed: 01/04/2023]
Abstract
Adolescent stress exposure is a risk factor for drug abuse, and sex differences contribute to psychostimulant responses. Although many studies have utilized the Wistar rat strain in adolescent stress paradigms, the impact of adolescent stress exposure on addiction-like outcomes has not been rigorously tested in female Wistar rats. In this study, locomotor sensitization was assessed in adolescent and adult female Wistar rats following either chronic stress during adolescence (CAS) or no stress (NS). Adolescent, but not adult, female Wistar rats developed locomotor sensitization to 15 mg/kg cocaine over 5 days of treatment, regardless of stress history. CAS reduced the initial locomotor response to novelty in both adolescent and adult rats compared to NS controls but had no effect on locomotor sensitization to cocaine in adolescents or adult female rats. These studies expand our understanding of age and adolescent stress on cocaine-induced behavioral plasticity in female Wistar rats.
Collapse
Affiliation(s)
- Sydney A Rowson
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, United States; Molecular and Systems Pharmacology Graduate Program, Emory University School of Medicine, Atlanta, GA, 30322, United States
| | - Stephanie L Foster
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, United States; Neuroscience Graduate Program, Emory University School of Medicine, Atlanta, GA, 30322, United States
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, United States.
| | - Gretchen N Neigh
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, 23284, United States; Department of Physiology, Emory University, Atlanta, GA, 30322, United States.
| |
Collapse
|
22
|
Manz KM, Levine WA, Seckler JC, Iskander AN, Reich CG. A novel adolescent chronic social defeat model: reverse-Resident-Intruder Paradigm (rRIP) in male rats. Stress 2018; 21:169-178. [PMID: 29307250 PMCID: PMC6137812 DOI: 10.1080/10253890.2017.1423285] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Psychosocial stress is linked to the etiology of several neuropsychiatric disorders, including Major Depressive Disorder and Post-Traumatic-Stress-Disorder. Adolescence is a critical neurobehavioral developmental period wherein the maturing nervous system is sensitive to stress-related psychosocial events. The effects of social defeat stress, an animal model of psychosocial stress, on adolescent neurobehavioral phenomena are not well explored. Using the standard Resident-Intruder-Paradigm (RIP), adolescent Long-Evans (LE, residents, n = 100) and Sprague-Dawley (SD, intruders, n = 100) rats interacted for five days to invoke chronic social stress. Tests of depressive behavior (forced-swim-test (FST)), fear conditioning, and long-term synaptic plasticity are affected in various adult rodent chronic stress models, thus we hypothesized that these phenomena would be similarly affected in adolescent rats. Serendipitously, we observed the Intruders became the dominant rats and the Residents were the defeated/submissive rats. This robust and reliable role-reversal resulted in defeated LE-Residents showing a depressive-like state (increased time spent immobile in the FST), enhanced fear conditioning in both hippocampal-dependent and hippocampal-independent fear paradigms and altered hippocampal long-term synaptic plasticity, measured electrophysiologically in vitro in hippocampal slices. Importantly, SD-Intruders, SD and LE controls did not significantly differ from each other in any of these assessments. This reverse-Resident-Intruder-Paradigm (rRIP) represents a novel animal model to study the effects of stress on adolescent neurobehavioral phenomenon.
Collapse
Affiliation(s)
- Kevin M Manz
- a Program in Psychology , Ramapo College of New Jersey , Mahwah , NJ , USA
| | - Wendy A Levine
- a Program in Psychology , Ramapo College of New Jersey , Mahwah , NJ , USA
| | - Joshua C Seckler
- a Program in Psychology , Ramapo College of New Jersey , Mahwah , NJ , USA
| | - Anthony N Iskander
- a Program in Psychology , Ramapo College of New Jersey , Mahwah , NJ , USA
| | - Christian G Reich
- a Program in Psychology , Ramapo College of New Jersey , Mahwah , NJ , USA
| |
Collapse
|
23
|
Montagud-Romero S, Nuñez C, Blanco-Gandia MC, Martínez-Laorden E, Aguilar MA, Navarro-Zaragoza J, Almela P, Milanés MV, Laorden ML, Miñarro J, Rodríguez-Arias M. Repeated social defeat and the rewarding effects of cocaine in adult and adolescent mice: dopamine transcription factors, proBDNF signaling pathways, and the TrkB receptor in the mesolimbic system. Psychopharmacology (Berl) 2017; 234:2063-2075. [PMID: 28466092 DOI: 10.1007/s00213-017-4612-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 03/25/2017] [Indexed: 02/07/2023]
Abstract
RATIONALE Repeated social defeat (RSD) increases the rewarding effects of cocaine in adolescent and adult rodents. OBJECTIVE The aim of the present study was to compare the long-term effects of RSD on the conditioned rewarding effects of cocaine and levels of the transcription factors Pitx3 and Nurr1 in the ventral tegmental area (VTA), the dopamine transporter (DAT), the D2 dopamine receptor (D2DR) and precursor of brain-derived neurotrophic factor (proBDNF) signaling pathways, and the tropomyosin-related kinase B (TrkB) receptor in the nucleus accumbens (NAc) in adult and adolescent mice. METHODS Male adolescent and young adult OF1 mice were exposed to four episodes of social defeat and were conditioned 3 weeks later with 1 mg/kg of cocaine. In a second set of mice, the expressions of the abovementioned dopaminergic and proBDNF and TrkB receptor were measured in VTA and NAc, respectively. RESULTS Adolescent mice experienced social defeats less intensely than their adult counterparts and produced lower levels of corticosterone. However, both adult and adolescent defeated mice developed conditioned place preference for the compartment associated with this low dose of cocaine. Furthermore, only adolescent defeated mice displayed diminished levels of the transcription factors Pitx3 in the VTA, without changes in the expression of DAT and D2DR in the NAc. In addition, stressed adult mice showed a decreased expression of proBDNF and the TrkB receptor, while stressed adolescent mice exhibited increased expression of latter without changes in the former. CONCLUSION Our findings suggest that dopaminergic pathways and proBDNF signaling and TrkB receptors play different roles in social defeat-stressed mice exposed to cocaine.
Collapse
Affiliation(s)
- Sandra Montagud-Romero
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010, Valencia, Spain
| | - Cristina Nuñez
- Murcia Research Institute of Health Sciences (IMIB) and Faculty of Medicine, University of Murcia, Murcia, Spain
| | - M Carmen Blanco-Gandia
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010, Valencia, Spain
| | - Elena Martínez-Laorden
- Murcia Research Institute of Health Sciences (IMIB) and Faculty of Medicine, University of Murcia, Murcia, Spain
| | - María A Aguilar
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010, Valencia, Spain.,Red Tematica de Investigacion Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Javier Navarro-Zaragoza
- Murcia Research Institute of Health Sciences (IMIB) and Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Pilar Almela
- Murcia Research Institute of Health Sciences (IMIB) and Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Maria-Victoria Milanés
- Murcia Research Institute of Health Sciences (IMIB) and Faculty of Medicine, University of Murcia, Murcia, Spain.,Red Tematica de Investigacion Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - María-Luisa Laorden
- Murcia Research Institute of Health Sciences (IMIB) and Faculty of Medicine, University of Murcia, Murcia, Spain.,Red Tematica de Investigacion Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - José Miñarro
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010, Valencia, Spain.,Red Tematica de Investigacion Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010, Valencia, Spain. .,Red Tematica de Investigacion Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain.
| |
Collapse
|
24
|
Burke AR, McCormick CM, Pellis SM, Lukkes JL. Impact of adolescent social experiences on behavior and neural circuits implicated in mental illnesses. Neurosci Biobehav Rev 2017; 76:280-300. [DOI: 10.1016/j.neubiorev.2017.01.018] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 11/11/2016] [Accepted: 01/06/2017] [Indexed: 12/18/2022]
|