1
|
Tochon L, Henkous N, Besson M, Maskos U, David V. Distinct Chrna5 mutations link excessive alcohol use to types I/II vulnerability profiles and IPN GABAergic neurons. Transl Psychiatry 2024; 14:461. [PMID: 39505853 PMCID: PMC11541707 DOI: 10.1038/s41398-024-03164-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024] Open
Abstract
Genome wide association and animal studies have implicated genetic variations in CHRNΑ5, encoding the α5 subunit-containing nicotinic acetylcholine receptors (α5*nAChRs), as a risk factor for developing alcohol use disorders (AUDs). To understand how α5*nAChR mutations may influence alcohol (EtOH) drinking behavior, we used a two-bottle choice procedure with intermittent access to alcohol in male and female transgenic mice expressing either the highly frequent human single nucleotide polymorphism (α5SNP/rs16969968) or a deletion of the Chrna5 gene (α5KO). AUDs-related preconsommatory traits (anxiety, sensation-seeking and impulsivity) were assessed with a battery of relevant tasks (elevated-plus maze, novel place preference and step-down inhibitory avoidance). The implication of the α5-expressing IPN GABAergic neurons in AUDs and related behavioral traits was verified using neurospecific lentiviral (LV)-induced reexpression of the α5 subunit in α5KOxGAD-Cre mice. Both α5SNP and α5KO mice showed over-consumption of EtOH, but displayed opposite vulnerability profiles consistent with Cloninger's subtypes of human AUDs. α5SNP mice showed Type I-like characteristics, i.e., high anxiety, novelty avoidance, whereas α5KOs exhibited Type II-like features such as low anxiety and high impulsivity. LV re-expression of the α5 subunit in IPN GABAergic neurons restored the control of EtOH intake and improved the impulsive phenotype. We demonstrate that the SNP (rs16969968) or null mutation of Chrna5 result in increased volitional EtOH consumption but opposite effects on anxiety, novelty-seeking and impulsive-like behaviors that match Cloninger type I and II of AUDs, including sex-related variations. IPN GABAergic neurons expressing α5*nAChRs play a key role in limiting both EtOH drinking and motor impulsivity.
Collapse
Affiliation(s)
- Léa Tochon
- Univ. Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux, France.
| | - Nadia Henkous
- Univ. Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux, France
| | - Morgane Besson
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Integrative Neurobiology of Cholinergic Systems, Paris, France
| | - Uwe Maskos
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Integrative Neurobiology of Cholinergic Systems, Paris, France
| | - Vincent David
- Univ. Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux, France.
| |
Collapse
|
2
|
Yang K, McLaughlin I, Shaw JK, Quijano-Cardé N, Dani JA, De Biasi M. CHRNA5 gene variation affects the response of VTA dopaminergic neurons during chronic nicotine exposure and withdrawal. Neuropharmacology 2023; 235:109547. [PMID: 37116611 PMCID: PMC10249248 DOI: 10.1016/j.neuropharm.2023.109547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/30/2023]
Abstract
Nicotine is the principal psychoactive component in tobacco that drives addiction through its action on neuronal nicotinic acetylcholine receptors (nAChR). The nicotinic receptor gene CHRNA5, which encodes the α5 subunit, is associated with nicotine use and dependence. In humans, the CHRNA5 missense variant rs16969968 (G > A) is associated with increased risk for nicotine dependence and other smoking-related phenotypes. In rodents, α5-containing nAChRs in dopamine (DA) neurons within the ventral tegmental area (VTA) powerfully modulate nicotine reward and reinforcement. Although the neuroadaptations caused by long-term nicotine exposure are being actively delineated at both the synaptic and behavioral levels, the contribution of α5-containing nAChRs to the cellular adaptations associated with long-term nicotine exposure remain largely unknown. To gain insight into the mechanisms behind the influence of α5-containing nAChRs and the rs16969968 polymorphism on nicotine use and dependence, we used electrophysiological approaches to examine changes in nAChR function arising in VTA neurons during chronic nicotine exposure and multiple stages of nicotine withdrawal. Our results demonstrate that CHRNA5 mutation leads to profound changes in VTA nAChR function at baseline, during chronic nicotine exposure, and during short-term and prolonged withdrawal. Whereas nAChR function was suppressed in DA neurons from WT mice undergoing withdrawal relative to drug-naïve or nicotine-drinking mice, α5-null mice exhibited an increase in nAChR function during nicotine exposure that persisted throughout 5-10 weeks of withdrawal. Re-expressing the hypofunctional rs16969968 CHRNA5 variant in α5-null VTA DA neurons did not rescue the phenotype, with α5-SNP neurons displaying a similar increased response to ACh during nicotine exposure and early stages of withdrawal. These results demonstrate the importance of VTA α5-nAChRs in the response to nicotine and implicate them in the time course of withdrawal.
Collapse
Affiliation(s)
- Kechun Yang
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ian McLaughlin
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jessica K Shaw
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Natalia Quijano-Cardé
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John A Dani
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Mariella De Biasi
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
3
|
Papapostolou I, Ross-Kaschitza D, Bochen F, Peinelt C, Maldifassi MC. Contribution of the α5 nAChR Subunit and α5SNP to Nicotine-Induced Proliferation and Migration of Human Cancer Cells. Cells 2023; 12:2000. [PMID: 37566079 PMCID: PMC10417634 DOI: 10.3390/cells12152000] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023] Open
Abstract
Nicotine in tobacco is known to induce tumor-promoting effects and cause chemotherapy resistance through the activation of nicotinic acetylcholine receptors (nAChRs). Many studies have associated the α5 nicotinic receptor subunit (α5), and a specific polymorphism in this subunit, with (i) nicotine administration, (ii) nicotine dependence, and (iii) lung cancer. The α5 gene CHRNA5 mRNA is upregulated in several types of cancer, including lung, prostate, colorectal, and stomach cancer, and cancer severity is correlated with smoking. In this study, we investigate the contribution of α5 in the nicotine-induced cancer hallmark functions proliferation and migration, in breast, colon, and prostate cancer cells. Nine human cell lines from different origins were used to determine nAChR subunit expression levels. Then, selected breast (MCF7), colon (SW480), and prostate (DU145) cancer cell lines were used to investigate the nicotine-induced effects mediated by α5. Using pharmacological and siRNA-based experiments, we show that α5 is essential for nicotine-induced proliferation and migration. Additionally, upon downregulation of α5, nicotine-promoted expression of EMT markers and immune regulatory proteins was impaired. Moreover, the α5 polymorphism D398N (α5SNP) caused a basal increase in proliferation and migration in the DU145 cell line, and the effect was mediated through G-protein signaling. Taken together, our results indicate that nicotine-induced cancer cell proliferation and migration are mediated via α5, adding to the characterization of α5 as a putative therapeutical target.
Collapse
Affiliation(s)
| | | | | | | | - Maria Constanza Maldifassi
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland; (I.P.); (D.R.-K.); (F.B.); (C.P.)
| |
Collapse
|
4
|
Devyatkin VA, Redina OE, Kolosova NG, Muraleva NA. Single-Nucleotide Polymorphisms Associated with the Senescence-Accelerated Phenotype of OXYS Rats: A Focus on Alzheimer's Disease-Like and Age-Related-Macular-Degeneration-Like Pathologies. J Alzheimers Dis 2021; 73:1167-1183. [PMID: 31929160 DOI: 10.3233/jad-190956] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Alzheimer's disease (AD) and age-related macular degeneration (AMD) are two complex incurable neurodegenerative disorders the common pathogenesis of which is actively discussed. There are overlapping risk factors and molecular mechanisms of the two diseases; at the same time, there are arguments in favor of the notion that susceptibility to each of these diseases is associated with a distinct genetic background. Here we identified single-nucleotide polymorphisms (SNPs) that are specific for senescence-accelerated OXYS rats, which simulate key characteristics of both sporadic AD and AMD. Transcriptomes of the hippocampus, prefrontal cortex, and retina (data of RNA-Seq) were analyzed. We detected SNPs in genes Rims2, AABR07072639.2, Lemd2, and AABR07045405.1, which thus can express significantly truncated proteins lacking functionally important domains. Additionally, 33 mutations in genes-which are related to various metabolic and signaling pathways-cause nonsynonymous amino acid substitutions presumably leading to disturbances in protein structure or functions. Some of the genes carrying these SNPs are associated with aging, neurodegenerative, and mental diseases. Thus, we revealed the SNPs can lead to abnormalities in protein structure or functions and affect the development of the senescence-accelerated phenotype of OXYS rats. Our data are consistent with the latest results of genome-wide association studies that highlight the importance of multiple pathways for the pathogenesis of AD and AMD. Identified SNPs can serve as promising research objects for further studies on the molecular mechanisms underlying this particular rat model as well as for the prediction of potential biomarkers of AD and AMD.
Collapse
Affiliation(s)
- Vasiliy A Devyatkin
- Institute of Cytology and Genetics, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Olga E Redina
- Institute of Cytology and Genetics, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | | | | |
Collapse
|
5
|
Prevost MS, Bouchenaki H, Barilone N, Gielen M, Corringer PJ. Concatemers to re-investigate the role of α5 in α4β2 nicotinic receptors. Cell Mol Life Sci 2021; 78:1051-1064. [PMID: 32472188 PMCID: PMC11071962 DOI: 10.1007/s00018-020-03558-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 01/08/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are pentameric ion channels expressed in the central nervous systems. nAChRs containing the α4, β2 and α5 subunits are specifically involved in addictive processes, but their functional architecture is poorly understood due to the intricacy of assembly of these subunits. Here we constrained the subunit assembly by designing fully concatenated human α4β2 and α4β2α5 receptors and characterized their properties by two-electrodes voltage-clamp electrophysiology in Xenopus oocytes. We found that α5-containing nAChRs are irreversibly blocked by methanethiosulfonate (MTS) reagents through a covalent reaction with a cysteine present only in α5. MTS-block experiments establish that the concatemers are expressed in intact form at the oocyte surface, but that reconstitution of nAChRs from loose subunits show inefficient and highly variable assembly of α5 with α4 and β2. Mutational analysis shows that the concatemers assemble both in clockwise and anticlockwise orientations, and that α5 does not contribute to ACh binding from its principal (+) site. Reinvestigation of suspected α5-ligands such as galantamine show no specific effect on α5-containing concatemers. Analysis of the α5-D398N mutation that is linked to smoking and lung cancer shows no significant effect on the electrophysiological function, suggesting that its effect might arise from alteration of other cellular processes. The concatemeric strategy provides a well-characterized platform for mechanistic analysis and screening of human α5-specific ligands.
Collapse
Affiliation(s)
- Marie S Prevost
- Unité Récepteurs-Canaux, Institut Pasteur, UMR 3571, CNRS, 75015, Paris, France
| | - Hichem Bouchenaki
- Unité Récepteurs-Canaux, Institut Pasteur, UMR 3571, CNRS, 75015, Paris, France
| | - Nathalie Barilone
- Unité Récepteurs-Canaux, Institut Pasteur, UMR 3571, CNRS, 75015, Paris, France
| | - Marc Gielen
- Unité Récepteurs-Canaux, Institut Pasteur, UMR 3571, CNRS, 75015, Paris, France.
- Sorbonne Université, 21, rue de l'école de médecine, 75006, Paris, France.
| | | |
Collapse
|
6
|
Al-Omoush TK, Alzoubi KH, Khabour OF, Alsheyab FM, Abu-Siniyeh A, Al-Sawalha NA, Mayyas FA, Cobb CO, Eissenberg T. The CHRNA5 Polymorphism (rs16969968) and its Association with Waterpipe Smoking Addiction among Jordanians. ARAB JOURNAL OF BASIC AND APPLIED SCIENCES 2021; 27:450-455. [PMID: 33511332 DOI: 10.1080/25765299.2020.1849491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Waterpipe smoking is a form of tobacco use that causes nicotine/tobacco dependence and has become a global health problem. In the current study, the association of rs16969968 SNP in the CHRNA5 gene with waterpipe dependence was investigated. A total of 386 men and women who used a waterpipe to smoke tobacco were recruited and divided into less dependent and more dependent smokers based on their score on the Lebanon Waterpipe Dependence Scale (LWDS). Results showed a significant difference in the distribution of GG, GA, and AA genotypes by waterpipe dependence status (P<0.001). The more dependent group showed a higher frequency of the AA genotype than the less dependent smokers' group (38% versus 23% respectively). In addition, the more dependent smokers exhibited more A allele than less dependent smokers (53% versus 37% respectively, P<0.001). In conclusion, there is an association between the rs16969968 SNP and waterpipe dependence as assessed by the LWDS.
Collapse
Affiliation(s)
- Thaka'a K Al-Omoush
- Department of Applied Biology, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Fawzi M Alsheyab
- Department of Applied Biology, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Ahmed Abu-Siniyeh
- Department of Medical Laboratories, Faculty of Health Sciences, American University of Madaba, Madaba, Jordan
| | - Nour A Al-Sawalha
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Fadia A Mayyas
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Caroline O Cobb
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA.,Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, VA, USA
| | - Thomas Eissenberg
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA.,Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
7
|
Moerke MJ, McMahon LR, Wilkerson JL. More than Smoke and Patches: The Quest for Pharmacotherapies to Treat Tobacco Use Disorder. Pharmacol Rev 2020; 72:527-557. [PMID: 32205338 DOI: 10.1124/pr.119.018028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tobacco use is a persistent public health issue. It kills up to half its users and is the cause of nearly 90% of all lung cancers. The main psychoactive component of tobacco is nicotine, primarily responsible for its abuse-related effects. Accordingly, most pharmacotherapies for smoking cessation target nicotinic acetylcholine receptors (nAChRs), nicotine's major site of action in the brain. The goal of the current review is twofold: first, to provide a brief overview of the most commonly used behavioral procedures for evaluating smoking cessation pharmacotherapies and an introduction to pharmacokinetic and pharmacodynamic properties of nicotine important for consideration in the development of new pharmacotherapies; and second, to discuss current and potential future pharmacological interventions aimed at decreasing tobacco use. Attention will focus on the potential for allosteric modulators of nAChRs to offer an improvement over currently approved pharmacotherapies. Additionally, given increasing public concern for the potential health consequences of using electronic nicotine delivery systems, which allow users to inhale aerosolized solutions as an alternative to smoking tobacco, an effort will be made throughout this review to address the implications of this relatively new form of nicotine delivery, specifically as it relates to smoking cessation. SIGNIFICANCE STATEMENT: Despite decades of research that have vastly improved our understanding of nicotine and its effects on the body, only a handful of pharmacotherapies have been successfully developed for use in smoking cessation. Thus, investigation of alternative pharmacological strategies for treating tobacco use disorder remains active; allosteric modulators of nicotinic acetylcholine receptors represent one class of compounds currently under development for this purpose.
Collapse
Affiliation(s)
- M J Moerke
- Division of Preclinical Pharmacology, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland (M.J.M.) and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (L.R.M., J.L.W.)
| | - L R McMahon
- Division of Preclinical Pharmacology, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland (M.J.M.) and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (L.R.M., J.L.W.)
| | - J L Wilkerson
- Division of Preclinical Pharmacology, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland (M.J.M.) and Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida (L.R.M., J.L.W.)
| |
Collapse
|
8
|
Icick R, Forget B, Cloëz-Tayarani I, Pons S, Maskos U, Besson M. Genetic susceptibility to nicotine addiction: Advances and shortcomings in our understanding of the CHRNA5/A3/B4 gene cluster contribution. Neuropharmacology 2020; 177:108234. [PMID: 32738310 DOI: 10.1016/j.neuropharm.2020.108234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/28/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
Over the last decade, robust human genetic findings have been instrumental in elucidating the heritable basis of nicotine addiction (NA). They highlight coding and synonymous polymorphisms in a cluster on chromosome 15, encompassing the CHRNA5, CHRNA3 and CHRNB4 genes, coding for three subunits of the nicotinic acetylcholine receptor (nAChR). They have inspired an important number of preclinical studies, and will hopefully lead to the definition of novel drug targets for treating NA. Here, we review these candidate gene and genome-wide association studies (GWAS) and their direct implication in human brain function and NA-related phenotypes. We continue with a description of preclinical work in transgenic rodents that has led to a mechanistic understanding of several of the genetic hits. We also highlight important issues with regards to CHRNA3 and CHRNB4 where we are still lacking a dissection of their role in NA, including even in preclinical models. We further emphasize the use of human induced pluripotent stem cell-derived models for the analysis of synonymous and intronic variants on a human genomic background. Finally, we indicate potential avenues to further our understanding of the role of this human genetic variation. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
Affiliation(s)
- Romain Icick
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 Rue du Dr Roux, 75724, Paris Cedex 15, France; Département de Psychiatrie et de Médecine Addictologique, Groupe Hospitalier Saint-Louis, Lariboisière, Fernand Widal, Assistance-Publique Hôpitaux de Paris, Paris, F-75010, France; INSERM UMR-S1144, Paris, F-75006, France; FHU "NOR-SUD", Assistance-Publique Hôpitaux de Paris, Paris, F-75001, France
| | - Benoît Forget
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 Rue du Dr Roux, 75724, Paris Cedex 15, France; Génétique Humaine et Fonctions Cognitives, CNRS UMR3571, Institut Pasteur, 25 Rue du Dr Roux, 75724, Paris Cedex 15, France
| | - Isabelle Cloëz-Tayarani
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 Rue du Dr Roux, 75724, Paris Cedex 15, France; FHU "NOR-SUD", Assistance-Publique Hôpitaux de Paris, Paris, F-75001, France
| | - Stéphanie Pons
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 Rue du Dr Roux, 75724, Paris Cedex 15, France; FHU "NOR-SUD", Assistance-Publique Hôpitaux de Paris, Paris, F-75001, France
| | - Uwe Maskos
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 Rue du Dr Roux, 75724, Paris Cedex 15, France; FHU "NOR-SUD", Assistance-Publique Hôpitaux de Paris, Paris, F-75001, France
| | - Morgane Besson
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR3571, Institut Pasteur, 25 Rue du Dr Roux, 75724, Paris Cedex 15, France; FHU "NOR-SUD", Assistance-Publique Hôpitaux de Paris, Paris, F-75001, France.
| |
Collapse
|
9
|
Maskos U. The nicotinic receptor alpha5 coding polymorphism rs16969968 as a major target in disease: Functional dissection and remaining challenges. J Neurochem 2020; 154:241-250. [PMID: 32078158 DOI: 10.1111/jnc.14989] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 12/19/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are major signalling molecules in the central and peripheral nervous system. Over the last decade, they have been linked to a number of major human psychiatric and neurological conditions, like smoking, schizophrenia, Alzheimer's disease and many others. Human Genome-Wide Association Studies (GWAS) have robustly identified genetic alterations at a locus of chromosome 15q to several of these diseases. In this review, we discuss a major coding polymorphism in the alpha5 subunit, referred to as α5SNP, and its functional dissection in vitro and in vivo. Its presence at high frequency in many human populations lends itself to pharmaceutical intervention in the context of 'positive allosteric modulators' (PAMs). We will present the prospects of this novel treatment, and the remaining challenges to identify suitable molecules.
Collapse
Affiliation(s)
- Uwe Maskos
- Department of Neuroscience, Institut Pasteur, Paris, France
| |
Collapse
|
10
|
Bertrand D, Wallace TL. A Review of the Cholinergic System and Therapeutic Approaches to Treat Brain Disorders. Curr Top Behav Neurosci 2020; 45:1-28. [PMID: 32451956 DOI: 10.1007/7854_2020_141] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Since its identification over a hundred years ago, the neurotransmitter acetylcholine (ACh) has proven to play an essential role in supporting many diverse functions. Some well-characterized functions include: chemical transmission at the neuromuscular junction; autonomic function in the peripheral nervous system; and, sustained attention, sleep/wake regulation, and learning and memory within the central nervous system. Within the brain, major cholinergic projection pathways from the basal forebrain and the brainstem support these centrally mediated processes, and dysregulation of the cholinergic system is implicated in cognitive decline associated with aging and dementias including Alzheimer's disease. ACh exerts its effects by binding to two different membrane-bound receptor classes: (1) G‑protein coupled muscarinic acetylcholine receptors (mAChRs), and (2) ligand-gated nicotinic acetylcholine receptors (nAChRs). These receptor systems are described in detail within this chapter along with discussion on the successes and failures of synthetic ligands designed to selectively target receptor subtypes for treating brain disorders. New molecular approaches and advances in our understanding of the target biology combined with opportunities to re-purpose existing cholinergic drugs for new indications continue to highlight the exciting opportunities for modulating this system for therapeutic purposes.
Collapse
|
11
|
Besson M, Forget B, Correia C, Blanco R, Maskos U. Profound alteration in reward processing due to a human polymorphism in CHRNA5: a role in alcohol dependence and feeding behavior. Neuropsychopharmacology 2019; 44:1906-1916. [PMID: 31288250 PMCID: PMC6785024 DOI: 10.1038/s41386-019-0462-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/12/2019] [Accepted: 07/01/2019] [Indexed: 01/08/2023]
Abstract
Human genetic variation in the nicotinic receptor gene cluster CHRNA5/A3/B4, in particular the non-synonymous and frequent CHRNA5 variant rs16969968 (α5SNP), has an important consequence on smoking behavior in humans. A number of genetic association studies have additionally implicated the CHRNA5 gene in addictions to other drugs, and also body mass index (BMI). Here, we model the α5SNP, in a transgenic rat line, and establish its role in alcohol dependence, and feeding behavior. Rats expressing the α5SNP consume more alcohol, and exhibit increased relapse to alcohol seeking after abstinence. This high-relapsing phenotype is reflected in altered activity in the insula, linked to interoception, as established using c-Fos immunostaining. Similarly, relapse to food seeking is increased in the transgenic group, while a nicotine treatment reduces relapse in both transgenic and control rats. These findings point to a general role of this human polymorphism in reward processing, and multiple addictions other than smoking. This could pave the way for the use of medication targeting the nicotinic receptor in the treatment of alcohol use and eating disorders, and comorbid conditions in smokers.
Collapse
Affiliation(s)
- Morgane Besson
- Department of Neuroscience, Unité de Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571, Institut Pasteur, 25 rue du Dr Roux, 75015, Paris, France.
| | - Benoît Forget
- Department of Neuroscience, Unité de Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571, Institut Pasteur, 25 rue du Dr Roux, 75015, Paris, France
- Sorbonne Universités, UPMC Université Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005, Paris, France
| | - Caroline Correia
- Department of Neuroscience, Unité de Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571, Institut Pasteur, 25 rue du Dr Roux, 75015, Paris, France
- Laboratoire de Neurosciences Cognitives et Adaptatives, CNRS UMR 7364, Université de Strasbourg, 67000, Strasbourg, France
| | - Rodolphe Blanco
- Department of Neuroscience, Unité de Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571, Institut Pasteur, 25 rue du Dr Roux, 75015, Paris, France
| | - Uwe Maskos
- Department of Neuroscience, Unité de Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571, Institut Pasteur, 25 rue du Dr Roux, 75015, Paris, France.
| |
Collapse
|
12
|
A Human Polymorphism in CHRNA5 Is Linked to Relapse to Nicotine Seeking in Transgenic Rats. Curr Biol 2018; 28:3244-3253.e7. [PMID: 30293722 DOI: 10.1016/j.cub.2018.08.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/09/2018] [Accepted: 08/20/2018] [Indexed: 12/26/2022]
Abstract
Tobacco addiction is a chronic and relapsing disorder with an important genetic component that represents a major public health issue. Meta-analysis of large-scale human genome-wide association studies (GWASs) identified a frequent non-synonymous SNP in the gene coding for the α5 subunit of nicotinic acetylcholine receptors (α5SNP), which significantly increases the risk for tobacco dependence and delays smoking cessation. To dissect the neuronal mechanisms underlying the vulnerability to nicotine addiction in carriers of the α5SNP, we created rats expressing this polymorphism using zinc finger nuclease technology and evaluated their behavior under the intravenous nicotine-self-administration paradigm. The electrophysiological responses of their neurons to nicotine were also evaluated. α5SNP rats self-administered more nicotine at high doses and exhibited higher nicotine-induced reinstatement of nicotine seeking than wild-type rats. Higher reinstatement was associated with altered neuronal activity in several discrete areas that are interconnected, including in the interpeduncular nucleus (IPN), a GABAergic structure that strongly expresses α5-containing nicotinic receptors. The altered reactivity of IPN neurons of α5SNP rats to nicotine was confirmed electrophysiologically. In conclusion, the α5SNP polymorphism is a major risk factor for nicotine intake at high doses and for relapse to nicotine seeking in rats, a dual effect that reflects the human condition. Our results also suggest an important role for the IPN in the higher relapse to nicotine seeking observed in α5SNP rats.
Collapse
|
13
|
Morton G, Nasirova N, Sparks DW, Brodsky M, Sivakumaran S, Lambe EK, Turner EE. Chrna5-Expressing Neurons in the Interpeduncular Nucleus Mediate Aversion Primed by Prior Stimulation or Nicotine Exposure. J Neurosci 2018; 38:6900-6920. [PMID: 29954848 PMCID: PMC6070661 DOI: 10.1523/jneurosci.0023-18.2018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 06/08/2018] [Accepted: 06/15/2018] [Indexed: 11/21/2022] Open
Abstract
Genetic studies have shown an association between smoking and variation at the CHRNA5/A3/B4 gene locus encoding the α5, α3, and β4 nicotinic receptor subunits. The α5 receptor has been specifically implicated because smoking-associated haplotypes contain a coding variant in the CHRNA5 gene. The Chrna5/a3/b4 locus is conserved in rodents and the restricted expression of these subunits suggests neural pathways through which the reinforcing and aversive properties of nicotine may be mediated. Here, we show that, in the interpeduncular nucleus (IP), the site of the highest Chrna5 mRNA expression in rodents, electrophysiological responses to nicotinic acetylcholine receptor stimulation are markedly reduced in α5-null mice. IP neurons differ markedly from their upstream ventral medial habenula cholinergic partners, which appear unaltered by loss of α5. To probe the functional role of α5-containing IP neurons, we used BAC recombineering to generate transgenic mice expressing Cre-recombinase from the Chrna5 locus. Reporter expression driven by Chrna5Cre demonstrates that transcription of Chrna5 is regulated independently from the Chrna3/b4 genes transcribed on the opposite strand. Chrna5-expressing IP neurons are GABAergic and project to distant targets in the mesopontine raphe and tegmentum rather than forming local circuits. Optogenetic stimulation of Chrna5-expressing IP neurons failed to elicit physical manifestations of withdrawal. However, after recent prior stimulation or exposure to nicotine, IP stimulation becomes aversive. These results using mice of both sexes support the idea that the risk allele of CHRNA5 may increase the drive to smoke via loss of IP-mediated nicotine aversion.SIGNIFICANCE STATEMENT Understanding the receptors and neural pathways underlying the reinforcing and aversive effects of nicotine may suggest new treatments for tobacco addiction. Part of the individual variability in smoking is associated with specific forms of the α5 nicotinic receptor subunit gene. Here, we show that deletion of the α5 subunit in mice markedly reduces the cellular response to nicotine and acetylcholine in the interpeduncular nucleus (IP). Stimulation of α5-expressing IP neurons using optogenetics is aversive, but this effect requires priming by recent prior stimulation or exposure to nicotine. These results support the idea that the smoking-associated variant of the α5 gene may increase the drive to smoke via loss of IP-mediated nicotine aversion.
Collapse
Affiliation(s)
- Glenn Morton
- Center for Integrative Brain Research, Seattle Children's Research Institute
| | - Nailyam Nasirova
- Center for Integrative Brain Research, Seattle Children's Research Institute
| | | | - Matthew Brodsky
- Center for Integrative Brain Research, Seattle Children's Research Institute
| | | | - Evelyn K Lambe
- Department of Physiology
- Department of Obstetrics and Gynecology, and
- Department of Psychiatry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Eric E Turner
- Center for Integrative Brain Research, Seattle Children's Research Institute,
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington 98101
| |
Collapse
|
14
|
Attenuated dopaminergic neurodegeneration and motor dysfunction in hemiparkinsonian mice lacking the α5 nicotinic acetylcholine receptor subunit. Neuropharmacology 2018; 138:371-380. [PMID: 29940207 DOI: 10.1016/j.neuropharm.2018.06.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 06/04/2018] [Accepted: 06/21/2018] [Indexed: 11/23/2022]
Abstract
Preclinical studies suggest the involvement of various subtypes of nicotinic acetylcholine receptors in the pathophysiology of Parkinson's disease, a neurodegenerative disorder characterized by the death of dopaminergic neurons in the substantia nigra pars compacta (SNC). We studied for the first time the effects of α5 nicotinic receptor subunit gene deletion on motor behavior and neurodegeneration in mouse models of Parkinson's disease and levodopa-induced dyskinesia. Unilateral dopaminergic lesions were induced in wild-type and α5-KO mice by 6-hydroxydopamine injections into the striatum or the medial forebrain bundle. Subsequently, rotational behavior induced by dopaminergic drugs was measured. A subset of animals received chronic treatments with levodopa and nicotine to assess levodopa-induced dyskinesia and antidyskinetic effects by nicotine. SNC lesion extent was assessed with tyrosine hydroxylase immunohistochemistry and stereological cell counting. Effects of α5 gene deletion on the dopaminergic system were investigated by measuring ex vivo striatal dopamine transporter function and protein expression, dopamine and metabolite tissue concentrations and dopamine receptor mRNA expression. Hemiparkinsonian α5-KO mice exhibited attenuated rotational behavior after amphetamine injection and attenuated levodopa-induced dyskinesia. In the intrastriatal lesion model, dopaminergic cell loss in the medial cluster of the SNC was less severe in α5-KO mice. Decreased striatal dopamine uptake in α5-KO animals suggested reduced dopamine transporter function as a mechanism of attenuated neurotoxicity. Nicotine reduced dyskinesia severity in wild-type but not α5-KO mice. The attenuated dopaminergic neurodegeneration and motor dysfunction observed in hemiparkinsonian α5-KO mice suggests potential for α5 subunit-containing nicotinic receptors as a novel target in the treatment of Parkinson's disease.
Collapse
|
15
|
Wang JH, Wang M, Liu SC, Du XF, Han M, Liu JF, Qin W, Chen B, van Haselen R, Liu JP. A bibliometric analysis of clinical study literature of traditional Chinese medicine therapies for smoking cessation. Tob Induc Dis 2018; 16:15. [PMID: 31516415 PMCID: PMC6659472 DOI: 10.18332/tid/86330] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 03/06/2018] [Accepted: 03/06/2018] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Traditional Chinese medicine (TCM) is commonly used for smoking cessation in China. The aim of this study is to perform a comprehensive literature search to identify clinical studies on TCM therapies for smoking cessation. METHODS Publications of randomized controlled trials, controlled clinical studies, cohort studies, case-control studies, case series and case reports, reviews and cross-sectional studies on smoking cessation using TCM therapies were retrieved from seven databases from their inception to February 2017. The following data were extracted and analyzed: study type, year of publication, language, country or region, journals, participants, intervention and comparison, and outcome. RESULTS In total, 260 publications on TCM therapies for smoking cessation were identified from 1980 to 2016, including 52 randomized clinical trials, 7 controlled clinical studies, 1 cohort study, 110 case series, 18 case reports, 50 narrative reviews, 17 systematic reviews, and 5 cross-sectional studies. Of these, 68.5% (178) were published in Chinese and the remaining published in English. Mainland China (n=129, 49.6%) was the leading country in this field, followed by USA (n=27, 10.4%) and UK (n=25, 9.6%). A total of 36 645 participants from 40 countries with age ranging from 12 to 86 years were involved in 188 clinical studies (excluding reviews and cross-sectional studies). The most commonly reported therapies were auricular acupressure (25, 13.3%), body acupuncture (14, 7.4%), and body acupuncture plus auricular acupressure (14, 7.4%). Composite outcomes were most frequently reported (110, 58.5%). CONCLUSIONS A substantial number of clinical studies have been conducted and published on TCM therapy for smoking cessation, mainly focusing on acupuncture stimulation techniques. The findings suggest that future research should pay more attention to acupuncture for smoking cessation.
Collapse
Affiliation(s)
- Jian-Hua Wang
- Science and Technology Department, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Mei Wang
- School of Preclinical Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Shu-Chun Liu
- Medical Library, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Xiao-Feng Du
- Medical Library, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Mei Han
- Centre for Evidence-Based Chinese Medicine, Beijing University of Traditional Chinese Medicine, 11 Bei San Huan Dong Lu, Chaoyang District, Beijing 100029, China
| | - Jun-Feng Liu
- Medical Library, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Wei Qin
- Medical Library, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Bin Chen
- Medical Library, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | | | - Jian-Ping Liu
- Centre for Evidence-Based Chinese Medicine, Beijing University of Traditional Chinese Medicine, 11 Bei San Huan Dong Lu, Chaoyang District, Beijing 100029, China
| |
Collapse
|
16
|
Zhang C, Liu X, Zhou P, Zhang J, He W, Yuan TF. Cholinergic tone in ventral tegmental area: Functional organization and behavioral implications. Neurochem Int 2018; 114:127-133. [DOI: 10.1016/j.neuint.2018.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/20/2018] [Accepted: 02/01/2018] [Indexed: 11/29/2022]
|
17
|
Quina LA, Harris J, Zeng H, Turner EE. Specific connections of the interpeduncular subnuclei reveal distinct components of the habenulopeduncular pathway. J Comp Neurol 2017; 525:2632-2656. [PMID: 28387937 DOI: 10.1002/cne.24221] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/07/2017] [Accepted: 03/21/2017] [Indexed: 01/17/2023]
Abstract
The habenulopeduncular pathway consists of the medial habenula (MHb), its output tract, the fasciculus retroflexus, and its principal target, the interpeduncular nucleus (IP). Several IP subnuclei have been described, but their specific projections and relationship to habenula inputs are not well understood. Here we have used viral, transgenic, and conventional anterograde and retrograde tract-tracing methods to better define the relationship between the dorsal and ventral MHb, the IP, and the secondary efferent targets of this system. Although prior studies have reported that the IP has ascending projections to ventral forebrain structures, we find that these projections originate almost entirely in the apical subnucleus, which may be more appropriately described as part of the median raphe system. The laterodorsal tegmental nucleus receives inhibitory inputs from the contralateral dorsolateral IP, and mainly excitatory inputs from the ipsilateral rostrolateral IP subnucleus. The midline central gray of the pons and nucleus incertus receive input from the rostral IP, which contains a mix of inhibitory and excitatory neurons, and the dorsomedial IP, which is exclusively inhibitory. The lateral central gray of the pons receives bilateral input from the lateral IP, which in turn receives bilateral input from the dorsal MHb. Taken together with prior studies of IP projections to the raphe, these results form an emerging map of the habenulopeduncular system that has significant implications for the proposed function of the IP in a variety of behaviors, including models of mood disorders and behavioral responses to nicotine.
Collapse
Affiliation(s)
- Lely A Quina
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, 98101
| | - Julie Harris
- Allen Institute for Brain Science, Seattle, Washington, 98103
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, Washington, 98103
| | - Eric E Turner
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, 98101.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, 98101
| |
Collapse
|