1
|
Tang S, Kim SW, Olsen-Dufour A, Pearson T, Freaney M, Singley E, Jenkins M, Burkard NJ, Wozniak A, Parcon P, Wu S, Morse CL, Jana S, Liow JS, Zoghbi SS, Vendruscolo JCM, Vendruscolo LF, Pike VW, Koob GF, Volkow ND, Innis RB. PET imaging in rat brain shows opposite effects of acute and chronic alcohol exposure on phosphodiesterase-4B, an indirect biomarker of cAMP activity. Neuropsychopharmacology 2024; 50:444-451. [PMID: 39285225 PMCID: PMC11632093 DOI: 10.1038/s41386-024-01988-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 12/12/2024]
Abstract
The cyclic adenosine monophosphate (cAMP) cascade is thought to play an important role in regulating alcohol-dependent behaviors, with potentially opposite effects following acute versus chronic administration. Phosphodiesterase 4 (PDE4) is the primary brain enzyme that metabolizes cAMP, thereby terminating its signal. Radioligand binding to PDE4 serves as an indirect biomarker of cAMP activity, as cAMP-protein kinase A (PKA)-mediated phosphorylation of PDE4 increases its affinity for radioligand binding ~10-fold. Of the four PDE4 subtypes, PDE4B polymorphisms are known to be strongly associated with alcohol and substance use disorders. This study imaged rats with the PDE4B-preferring positron emission tomography (PET) radioligand [18F]PF-06445974 following acute and chronic ethanol administration, aiming to explore the potential of PDE4B PET imaging for future human studies. Compared to the control group treated with saline, acute alcohol administration (i.p. ethanol 0.5 g/kg) significantly increased whole brain uptake of [18F]PF-06445974 as early as 30 minutes post-exposure. This effect persisted at 2 hours, peaked at 4 hours, and diminished at 6 hours and 24 hours post-exposure. In contrast, in a rat model of alcohol dependence, [18F]PF-06445974 brain uptake was significantly reduced at 5 hours post-exposure and was normalized by 3 days. This reduction may reflect long-term adaptation to repeated alcohol-induced activation of cAMP signaling with chronic exposure. Taken together, the results suggest that PET imaging of PDE4B in individuals with alcohol use disorder (AUD) should be considered in conjunction with ongoing trials of PDE4 inhibitors to treat alcohol withdrawal and reduce alcohol consumption.
Collapse
Affiliation(s)
- Shiyu Tang
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Sung Won Kim
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Amanda Olsen-Dufour
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Torben Pearson
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Michael Freaney
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Erick Singley
- Clinical Core Laboratory, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Madeline Jenkins
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Nathaniel J Burkard
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Aaron Wozniak
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Paul Parcon
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Shawn Wu
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Cheryl L Morse
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Susovan Jana
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Janaina C M Vendruscolo
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Leandro F Vendruscolo
- Stress and Addiction Neuroscience Unit, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, Baltimore, MD, USA
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - George F Koob
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA.
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Wei R, Zong F, Dong J, Zhao W, Zhang F, Wang W, Zhao S, Wang Z, Zhang F, Zhang HT. Identification of Phosphodiesterase-7A (PDE7A) as a Novel Target for Reducing Ethanol Consumption in Mice. Int J Neuropsychopharmacol 2024; 27:pyae032. [PMID: 39099166 PMCID: PMC11348009 DOI: 10.1093/ijnp/pyae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND Ethanol elicits a rapid stimulatory effect and a subsequent, prolonged sedative response, which are potential predictors of EtOH consumption by decreasing adenosine signaling; this phenomenon also reflects the obvious sex difference. cAMP (cyclic Adenosine Monophosphate)-PKA (Protein Kinase A) signaling pathway modulation can influence the stimulatory and sedative effects induced by EtOH in mice. This study's objective is to clarify the role of phosphodiesterase (PDE) in mediating the observed sex differences in EtOH responsiveness between male and female animals. METHODS EtOH was administered i.p. for 7 days to identify the changes in PDE isoforms in response to EtOH treatment. Additionally, EtOH consumption and preference of male and female C57BL/6J mice were assessed using the drinking-in-the-dark and 2-bottle choice tests. Further, pharmacological inhibition of PDE7A heterozygote knockout mice was performed to investigate its effects on EtOH-induced stimulation and sedation in both male and female mice. Finally, Western blotting analysis was performed to evaluate the alterations in cAMP-PKA/Epac2 pathways. RESULTS EtOH administration resulted in an immediate upregulation in PDE7A expression in female mice, indicating a strong association between PDE7A and EtOH stimulation. Through the pharmacological inhibition of PDE7A KD mice, we have demonstrated for the first time, to our knowledge, that PDE7A selectively attenuates EtOH responsiveness and consumption exclusively in female mice, whichmay be associated with the cAMP-PKA/Epac2 pathway and downstream phosphorylation of CREB and ERK1/2. CONCLUSIONS Inhibition or knockdown of PDE7A attenuates EtOH responsivenessand consumption exclusively in female mice, which is associated with alterations in the cAMP-PKA/Epac2 signaling pathways, thereby highlighting its potential as a novel therapeutic target for alcohol use disorder.
Collapse
Affiliation(s)
- Ran Wei
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
- Weifang Chinese Medical Hospital, Shandong Second Medical University, Weifang, China
| | - Fangjiao Zong
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Jiahao Dong
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
- Weifang People’s Hospital, Shandong Second Medical University, Weifang, China
| | - Wei Zhao
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Fangfang Zhang
- Institude of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Wei Wang
- Institude of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Shuang Zhao
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Ziqi Wang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Fang Zhang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Han-Ting Zhang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| |
Collapse
|
3
|
Staller DW, Bennett RG, Mahato RI. Therapeutic perspectives on PDE4B inhibition in adipose tissue dysfunction and chronic liver injury. Expert Opin Ther Targets 2024; 28:545-573. [PMID: 38878273 PMCID: PMC11305103 DOI: 10.1080/14728222.2024.2369590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
INTRODUCTION Chronic liver disease (CLD) is a complex disease associated with profound dysfunction. Despite an incredible burden, the first and only pharmacotherapy for metabolic-associated steatohepatitis was only approved in March of this year, indicating a gap in the translation of preclinical studies. There is a body of preclinical work on the application of phosphodiesterase 4 inhibitors in CLD, none of these molecules have been successfully translated into clinical use. AREAS COVERED To design therapies to combat CLD, it is essential to consider the dysregulation of other tissues that contribute to its development and progression. As such, proper therapies must combat this throughout the body rather than focusing only on the liver. To detail this, literature characterizing the pathogenesis of CLD was pulled from PubMed, with a particular focus placed on the role of PDE4 in inflammation and metabolism. Then, the focus is shifted to detailing the available information on existing PDE4 inhibitors. EXPERT OPINION This review gives a brief overview of some of the pathologies of organ systems that are distinct from the liver but contribute to disease progression. The demonstrated efficacy of PDE4 inhibitors in other human inflammatory diseases should earn them further examination for the treatment of CLD.
Collapse
Affiliation(s)
- Dalton W. Staller
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Robert G. Bennett
- Department of Internal Medicine, Division of Diabetes Endocrinology and Metabolism, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Ram I. Mahato
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
4
|
Heilig M, Witkiewitz K, Ray LA, Leggio L. Novel medications for problematic alcohol use. J Clin Invest 2024; 134:e172889. [PMID: 38828724 PMCID: PMC11142745 DOI: 10.1172/jci172889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Alcohol-related harm, a major cause of disease burden globally, affects people along a spectrum of use. When a harmful pattern of drinking is present in the absence of significant behavioral pathology, low-intensity brief interventions that provide information about health consequences of continued use provide large health benefits. At the other end of the spectrum, profound behavioral pathology, including continued use despite knowledge of potentially fatal consequences, warrants a medical diagnosis, and treatment is strongly indicated. Available behavioral and pharmacological treatments are supported by scientific evidence but are vastly underutilized. Discovery of additional medications, with a favorable balance of efficacy versus safety and tolerability can improve clinical uptake of treatment, allow personalized treatment, and improve outcomes. Here, we delineate the clinical conditions when pharmacotherapy should be considered in relation to the main diagnostic systems in use and discuss clinical endpoints that represent meaningful clinical benefits. We then review specific developments in three categories of targets that show promise for expanding the treatment toolkit. GPCRs remain the largest category of successful drug targets across contemporary medicine, and several GPCR targets are currently pursued for alcohol-related indications. Endocrine systems are another established category, and several promising targets have emerged for alcohol indications. Finally, immune modulators have revolutionized treatment of multiple medical conditions, and they may also hold potential to produce benefits in patients with alcohol problems.
Collapse
Affiliation(s)
- Markus Heilig
- Center for Social and Affective Neuroscience, Linköping University, and Department of Psychiatry, Linköping University Hospital, Linköping, Sweden
| | - Katie Witkiewitz
- Department of Psychology and Center on Alcohol, Substance Use and Addictions, University of New Mexico, Albuquerque, New Mexico, USA
| | - Lara A. Ray
- Department of Psychology, UCLA, Los Angeles, California, USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, NIH, Baltimore and Bethesda, Maryland, USA
| |
Collapse
|
5
|
Mansilla-Polo M, Gimeno E, Morgado-Carrasco D. Topical and Oral Roflumilast in Dermatology: A Narrative Review. ACTAS DERMO-SIFILIOGRAFICAS 2024; 115:265-279. [PMID: 37709133 DOI: 10.1016/j.ad.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023] Open
Abstract
Oral roflumilast is a phosphodiesterase-4 inhibitor approved for the prevention of exacerbations of chronic obstructive pulmonary disease and chronic bronchitis. In dermatology, topical roflumilast is authorized by the US Food and Drug Administration for the treatment of plaque psoriasis and mild to moderate seborrheic dermatitis. Several studies have described the off-label use of roflumilast in dermatology, including a randomized controlled trial showing its usefulness in the treatment of psoriasis; case reports and small series have also reported successful outcomes in hidradenitis suppurativa, recurrent oral aphthosis, nummular eczema, lichen planus, and Behçet disease. Roflumilast has a favorable safety profile, similar to that of apremilast, and it is considerably cheaper than new generation drugs and even some conventional immunosuppressants. We review the pharmacokinetics and pharmacodynamics of topical and oral roflumilast and discuss potential adverse effects and both approved and off-label uses in dermatology. Roflumilast is a promising agent to consider.
Collapse
Affiliation(s)
- M Mansilla-Polo
- Servicio de Dermatología, Hospital Universitario y Politécnico La Fe, Valencia, España; Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, España
| | - E Gimeno
- Servicio de Dermatología, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, España
| | - D Morgado-Carrasco
- Servicio de Dermatología, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, España; Servicio de Dermatología, Hospital de Figueres, Fundació Salut Empordà, Figueres, Girona, España.
| |
Collapse
|
6
|
Mansilla-Polo M, Gimeno E, Morgado-Carrasco D. [Translated aticle] Topical and Oral Roflumilast in Dermatology: A Narrative Review. ACTAS DERMO-SIFILIOGRAFICAS 2024; 115:T265-T279. [PMID: 38224734 DOI: 10.1016/j.ad.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/04/2023] [Indexed: 01/17/2024] Open
Abstract
Oral roflumilast is a phosphodiesterase-4 inhibitor approved for the prevention of exacerbations of chronic obstructive pulmonary disease and chronic bronchitis. In dermatology, topical roflumilast is authorized by the US Food and Drug Administration for the treatment of plaque psoriasis and mild to moderate seborrheic dermatitis. Several studies have described the off-label use of roflumilast in dermatology, including a randomized controlled trial showing its usefulness in the treatment of psoriasis; case reports and small series have also reported successful outcomes in hidradenitis suppurativa, recurrent oral aphthosis, nummular eczema, lichen planus, and Behçet disease. Roflumilast has a favorable safety profile, similar to that of apremilast, and it is considerably cheaper than new generation drugs and even some conventional immunosuppressants. We review the pharmacokinetics and pharmacodynamics of topical and oral roflumilast and discuss potential adverse effects and both approved and off-label uses in dermatology. Roflumilast is a promising agent to consider.
Collapse
Affiliation(s)
- M Mansilla-Polo
- Servicio de Dermatología, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - E Gimeno
- Servicio de Dermatología, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - D Morgado-Carrasco
- Servicio de Dermatología, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain; Servicio de Dermatología, Hospital de Figueres, Fundació Salut Empordà, Figueres, Girona, Spain.
| |
Collapse
|
7
|
Bertotto LB, Lampson-Stixrud D, Sinha A, Rohani NK, Myer I, Zorrilla EP. Effects of the Phosphodiesterase 10A Inhibitor MR1916 on Alcohol Self-Administration and Striatal Gene Expression in Post-Chronic Intermittent Ethanol-Exposed Rats. Cells 2024; 13:321. [PMID: 38391934 PMCID: PMC10886814 DOI: 10.3390/cells13040321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
Alcohol use disorder (AUD) requires new neurobiological targets. Problematic drinking involves underactive indirect pathway medium spiny neurons (iMSNs) that subserve adaptive behavioral selection vs. overactive direct pathway MSNs (dMSNs) that promote drinking, with a shift from ventromedial to dorsolateral striatal (VMS, DLS) control of EtOH-related behavior. We hypothesized that inhibiting phosphodiesterase 10A (PDE10A), enriched in striatal MSNs, would reduce EtOH self-administration in rats with a history of chronic intermittent ethanol exposure. To test this, Wistar rats (n = 10/sex) with a history of chronic intermittent EtOH (CIE) vapor exposure received MR1916 (i.p., 0, 0.05, 0.1, 0.2, and 0.4 µmol/kg), a PDE10A inhibitor, before operant EtOH self-administration sessions. We determined whether MR1916 altered the expression of MSN markers (Pde10a, Drd1, Drd2, Penk, and Tac1) and immediate-early genes (IEG) (Fos, Fosb, ΔFosb, and Egr1) in EtOH-naïve (n = 5-6/grp) and post-CIE (n = 6-8/grp) rats. MR1916 reduced the EtOH self-administration of high-drinking, post-CIE males, but increased it at a low, but not higher, doses, in females and low-drinking males. MR1916 increased Egr1, Fos, and FosB in the DLS, modulated by sex and alcohol history. MR1916 elicited dMSN vs. iMSN markers differently in ethanol-naïve vs. post-CIE rats. High-drinking, post-CIE males showed higher DLS Drd1 and VMS IEG expression. Our results implicate a role and potential striatal bases of PDE10A inhibitors to influence post-dependent drinking.
Collapse
Affiliation(s)
| | | | | | | | | | - Eric P. Zorrilla
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (L.B.B.); (D.L.-S.); (A.S.); (N.K.R.); (I.M.)
| |
Collapse
|
8
|
Hanim A, Mohamed IN, Mohamed RMP, Mokhtar MH, Makpol S, Naomi R, Bahari H, Kamal H, Kumar J. Alcohol Dependence Modulates Amygdalar mTORC2 and PKCε Expression in a Rodent Model. Nutrients 2023; 15:3036. [PMID: 37447362 PMCID: PMC10346598 DOI: 10.3390/nu15133036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/24/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Multiple alcohol use disorder (AUD)-related behavioral alterations are governed by protein kinase C epsilon (PKCε), particularly in the amygdala. Protein kinase C (PKC) is readily phosphorylated at Ser729 before activation by the mTORC2 protein complex. In keeping with this, the current study was conducted to assess the variations in mTORC2 and PKCε during different ethanol exposure stages. The following groups of rats were employed: control, acute, chronic, ethanol withdrawal (EW), and EW + ethanol (EtOH). Ethanol-containing and non-ethanol-containing modified liquid diets (MLDs) were administered for 27 days. On day 28, either saline or ethanol (2.5 g/kg, 20% v/v) was intraperitoneally administered, followed by bilateral amygdala extraction. PKCε mRNA levels were noticeably increased in the amygdala of the EW + EtOH and EW groups. Following chronic ethanol consumption, the stress-activated map kinase-interacting protein 1 (Sin1) gene expression was markedly decreased. In the EW, EW + EtOH, and chronic ethanol groups, there was a profound increase in the protein expression of mTOR, Sin1, PKCε, and phosphorylated PKCε (Ser729). The PKCε gene and protein expressions showed a statistically significant moderate association, according to a correlation analysis. Our results suggest that an elevated PKCε protein expression in the amygdala during EW and EW + EtOH occurred at the transcriptional level. However, an elevation in the PKCε protein expression, but not its mRNA, after chronic ethanol intake warrants further investigation to fully understand the signaling pathways during different episodes of AUD.
Collapse
Affiliation(s)
- Athirah Hanim
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (A.H.); (M.H.M.); (H.K.)
| | - Isa N. Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Rashidi M. P. Mohamed
- Department of Family Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (A.H.); (M.H.M.); (H.K.)
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Ruth Naomi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.N.); (H.B.)
| | - Hasnah Bahari
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.N.); (H.B.)
| | - Haziq Kamal
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (A.H.); (M.H.M.); (H.K.)
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (A.H.); (M.H.M.); (H.K.)
| |
Collapse
|
9
|
Blednov YA, Da Costa A, Mason S, Mayfield J, Messing RO. Selective PDE4B and PDE4D inhibitors produce distinct behavioral responses to ethanol and GABAergic drugs in mice. Neuropharmacology 2023; 231:109508. [PMID: 36935006 PMCID: PMC10127528 DOI: 10.1016/j.neuropharm.2023.109508] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/02/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023]
Abstract
Apremilast is a phosphodiesterase (PDE) type 4 inhibitor that is nonselective at subtypes PDE4A-D. It modulates ethanol and GABAergic responses via protein kinase A (PKA) phosphorylation of specific GABAA receptor subunits and has opposite effects on ethanol-induced ataxia in wild-type and GABAA β3-S408/409A knock-in mice. We hypothesized that these different effects are due to preferential actions at different PDE4 subtypes. To test this hypothesis, we compared effects of selective PDE4 inhibitors on responses to ethanol and GABAergic drugs in male and female C57BL/6J mice. The PDE4B inhibitor A33 accelerated recovery from ataxia induced by ethanol and diazepam but did not alter ataxia induced by propofol. The PDE4D inhibitor D159687 accelerated recovery from diazepam-induced ataxia but prolonged recovery from ethanol- and propofol-induced ataxia. A33 shortened, while D159687 prolonged, the sedative-hypnotic effects of ethanol. Both drugs shortened diazepam's sedative-hypnotic effects. The modulatory effects of A33 and D159687 were completely prevented by the PKA inhibitor H89. Only D159687 prevented development of acute functional tolerance to ethanol-induced ataxia. D159687 transiently reduced two-bottle choice drinking in male and female mice that had consumed ethanol for 3 weeks and transiently reduced two-bottle choice, every-other-day drinking in male mice. A33 did not alter ethanol drinking in either procedure. Neither drug altered binge-like ethanol consumption or blood ethanol clearance. Thus, D159687 produced behavioral effects similar to apremilast, although it produced a more transient and smaller reduction in drinking. These results indicate that PDE4D inhibition contributes to apremilast's ability to reduce ethanol drinking, whereas PDE4B inhibition is not involved.
Collapse
Affiliation(s)
- Yuri A Blednov
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Adriana Da Costa
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Sonia Mason
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Jody Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Robert O Messing
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA; Department of Neuroscience, The University of Texas at Austin, Austin, TX, 78712, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
10
|
Karimi-Haghighi S, Chavoshinezhad S, Mozafari R, Noorbakhsh F, Borhani-Haghighi A, Haghparast A. Neuroinflammatory Response in Reward-Associated Psychostimulants and Opioids: A Review. Cell Mol Neurobiol 2023; 43:649-682. [PMID: 35461410 DOI: 10.1007/s10571-022-01223-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/26/2022] [Indexed: 11/03/2022]
Abstract
Substance abuse is one of the significant problems in social and public health worldwide. Vast numbers of evidence illustrate that motivational and reinforcing impacts of addictive drugs are primarily attributed to their ability to change dopamine signaling in the reward circuit. However, the roles of classic neurotransmitters, especially dopamine and neuromodulators, monoamines, and neuropeptides, in reinforcing characteristics of abused drugs have been extensively investigated. It has recently been revealed that central immune signaling includes cascades of chemokines and proinflammatory cytokines released by neurons and glia via downstream intracellular signaling pathways that play a crucial role in mediating rewarding behavioral effects of drugs. More interestingly, inflammatory responses in the central nervous system modulate the mesolimbic dopamine signaling and glutamate-dependent currents induced by addictive drugs. This review summarized researches in the alterations of inflammatory responses accompanied by rewarding and reinforcing properties of addictive drugs, including cocaine, methamphetamine, and opioids that were evaluated by conditioned place preference and self-administration procedures as highly common behavioral tests to investigate the motivational and reinforcing impacts of addictive drugs. The neuroinflammatory responses affect the rewarding properties of psychostimulants and opioids.
Collapse
Affiliation(s)
- Saeideh Karimi-Haghighi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 19615-1178, Tehran, Iran
| | - Sara Chavoshinezhad
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Roghayeh Mozafari
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 19615-1178, Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | | | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box: 19615-1178, Tehran, Iran.
| |
Collapse
|
11
|
Blednov YA, Da Costa A, Mason S, Mayfield J, Moss SJ, Messing RO. Apremilast-induced increases in acute ethanol intoxication and decreases in ethanol drinking in mice involve PKA phosphorylation of GABA A β3 subunits. Neuropharmacology 2022; 220:109255. [PMID: 36152689 PMCID: PMC9810330 DOI: 10.1016/j.neuropharm.2022.109255] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/23/2022] [Accepted: 09/10/2022] [Indexed: 01/05/2023]
Abstract
We previously showed that apremilast, an FDA-approved PDE4 inhibitor, selectively alters behavioral responses to ethanol and certain GABAergic drugs in a PKA-dependent manner in C57BL6/J mice. Here, we investigated if PKA phosphorylation of β3 GABAA receptor subunits is involved in apremilast regulation of ethanol, propofol, or diazepam responses. Apremilast prolonged rotarod ataxia and loss of the righting reflex by ethanol and propofol in wild-type mice, but not in β3-S408A/S409A knock-in mice. In contrast, apremilast hastened recovery from the ataxic and sedative effects of diazepam in both genotypes. These findings suggest that apremilast modulation of ethanol and propofol behaviors in wild-type mice is mediated by β3 subunit phosphorylation, whereas its actions on diazepam responses involve a different mechanism. The PKA inhibitor H-89 prevented apremilast modulation of ethanol-induced ataxia. Apremilast sensitized wild-type males to ethanol-induced ataxia and decreased acute functional tolerance (AFT) in females but had no effect in β3-S408A/S409A mice of either sex. These results could not be attributed to genotype differences in blood ethanol clearance. There were also no baseline genotype differences in ethanol consumption and preference in two different voluntary drinking procedures. However, the ability of apremilast to reduce ethanol consumption was diminished in β3-S408A/S409A mice. Our results provide strong evidence that PKA-dependent phosphorylation of β3 GABAA receptor subunits is an important mechanism by which apremilast increases acute sensitivity to alcohol, decreases AFT, and decreases ethanol drinking.
Collapse
Affiliation(s)
- Yuri A Blednov
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Adriana Da Costa
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Sonia Mason
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Jody Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Robert O Messing
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA; Department of Neuroscience, The University of Texas at Austin, Austin, TX, 78712, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
12
|
Mu L, Liu X, Yu H, Hu M, Friedman V, Kelly TJ, Zhao L, Liu QS. Ibudilast attenuates cocaine self-administration and prime- and cue-induced reinstatement of cocaine seeking in rats. Neuropharmacology 2021; 201:108830. [PMID: 34626665 PMCID: PMC8656241 DOI: 10.1016/j.neuropharm.2021.108830] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 11/21/2022]
Abstract
Ibudilast is a non-selective phosphodiesterase (PDE) inhibitor and glial cell modulator which has shown great promise for the treatment of drug and alcohol use disorders in recent clinical studies. However, it is unknown whether and how ibudilast affects cocaine seeking behavior. Here we show that systemic administration of ibudilast dose-dependently reduced cocaine self-administration under fixed- and progressive-ratio reinforcement schedules in rats and shifted cocaine dose-response curves downward. In addition, ibudilast decreased cocaine prime- and cue-induced reinstatement of cocaine seeking. These results indicate that ibudilast was effective in reducing the reinforcing effects of cocaine and relapse to cocaine seeking. Chronic cocaine exposure induces cAMP-related neuroadaptations in the reward circuitry of the brain. To investigate potential mechanisms for ibudilast-induced attenuation of cocaine self-administration, we recorded from ventral tegmental area (VTA) dopamine neurons in ex vivo midbrain slices prepared from rats that had undergone saline and cocaine self-administration. We found cocaine self-administration led to a decrease in inhibitory postsynaptic currents (IPSCs), an increase in the AMPAR/NMDAR ratio, and an increase in the excitation to inhibition (E/I) ratio. Ibudilast pretreatments enhanced GABAergic inhibition and did not further change cocaine-induced potentiation of excitation, leading to normalization of the E/I ratio. Restoration of the balance between excitation and inhibition in VTA dopamine neurons may contribute to the attenuation of cocaine self-administration by ibudilast.
Collapse
Affiliation(s)
- Lianwei Mu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Xiaojie Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Hao Yu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA; Department of Exercise Physiology, Beijing Sport University, Beijing, 100084, China
| | - Mengming Hu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Vladislav Friedman
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Thomas J Kelly
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Li Zhao
- Department of Exercise Physiology, Beijing Sport University, Beijing, 100084, China
| | - Qing-Song Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
13
|
Meredith LR, Burnette EM, Grodin EN, Irwin MR, Ray LA. Immune treatments for alcohol use disorder: A translational framework. Brain Behav Immun 2021; 97:349-364. [PMID: 34343618 PMCID: PMC9044974 DOI: 10.1016/j.bbi.2021.07.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/10/2021] [Accepted: 07/28/2021] [Indexed: 12/14/2022] Open
Abstract
While the immune system is essential for survival, an excessive or prolonged inflammatory response, such as that resulting from sustained heavy alcohol use, can damage the host and contribute to psychiatric disorders. A growing body of literature indicates that the immune system plays a critical role in the development and maintenance of alcohol use disorder (AUD). As such, there is enthusiasm for treatments that can restore healthy levels of inflammation as a mechanism to reduce drinking and promote recovery. In this qualitative literature review, we provide a conceptual rationale for immune therapies and discuss progress in medications development for AUD focused on the immune system as a treatment target. This review is organized into sections based on primary signaling pathways targeted by the candidate therapies, namely: (a) toll-like receptors, (b) phosphodiesterase inhibitors, (c) peroxisome proliferator-activated receptors, (d) microglia and astrocytes, (e) other immune pharmacotherapies, and (f) behavioral therapies. As relevant within each section, we examine the basic biological mechanisms of each class of therapy and evaluate preclinical research testing the role of the therapy on mitigating alcohol-related behaviors in animal models. To the extent available, translational findings are reviewed with discussion of completed and ongoing randomized clinical trials and their findings to date. An applied and clinically focused approach is taken to identify the potential clinical applications of the various treatments reviewed. We conclude by delineating the most promising candidate treatments and discussing future directions by considering opportunities for immune treatment development and personalized medicine for AUD.
Collapse
Affiliation(s)
- Lindsay R Meredith
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Elizabeth M Burnette
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Erica N Grodin
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael R Irwin
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA; Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA, USA; Cousins Center for Psychoneuroimmunology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lara A Ray
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Roflumilast: A potential drug for the treatment of cognitive impairment? Neurosci Lett 2020; 736:135281. [DOI: 10.1016/j.neulet.2020.135281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/19/2020] [Accepted: 07/25/2020] [Indexed: 12/16/2022]
|
15
|
Dominant-Negative Attenuation of cAMP-Selective Phosphodiesterase PDE4D Action Affects Learning and Behavior. Int J Mol Sci 2020; 21:ijms21165704. [PMID: 32784895 PMCID: PMC7460819 DOI: 10.3390/ijms21165704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/26/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022] Open
Abstract
PDE4 cyclic nucleotide phosphodiesterases reduce 3′, 5′ cAMP levels in the CNS and thereby regulate PKA activity and the phosphorylation of CREB, fundamental to depression, cognition, and learning and memory. The PDE4 isoform PDE4D5 interacts with the signaling proteins β-arrestin2 and RACK1, regulators of β2-adrenergic and other signal transduction pathways. Mutations in PDE4D in humans predispose to acrodysostosis, associated with cognitive and behavioral deficits. To target PDE4D5, we developed mice that express a PDE4D5-D556A dominant-negative transgene in the brain. Male transgenic mice demonstrated significant deficits in hippocampus-dependent spatial learning, as assayed in the Morris water maze. In contrast, associative learning, as assayed in a fear conditioning assay, appeared to be unaffected. Male transgenic mice showed augmented activity in prolonged (2 h) open field testing, while female transgenic mice showed reduced activity in the same assay. Transgenic mice showed no demonstrable abnormalities in prepulse inhibition. There was also no detectable difference in anxiety-like behavior, as measured in the elevated plus-maze. These data support the use of a dominant-negative approach to the study of PDE4D5 function in the CNS and specifically in learning and memory.
Collapse
|
16
|
Blednov YA, Borghese CM, Dugan MP, Pradhan S, Thodati TM, Kichili NR, Harris RA, Messing RO. Apremilast regulates acute effects of ethanol and other GABAergic drugs via protein kinase A-dependent signaling. Neuropharmacology 2020; 178:108220. [PMID: 32736086 DOI: 10.1016/j.neuropharm.2020.108220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022]
Abstract
Phosphodiesterase type 4 (PDE4) inhibitors prevent hydrolysis of cyclic adenosine monophosphate and increase protein kinase A (PKA)-mediated phosphorylation. PDE4 inhibitors also regulate responses to ethanol and GABAergic drugs. We investigated mechanisms by which the PDE4 inhibitor, apremilast, regulates acute effects of ethanol and GABAergic drugs in male and female mice. Apremilast prolonged the sedative-hypnotic effects of gaboxadol, zolpidem, and propofol but did not alter etomidate effects, and unexpectedly shortened the sedative-hypnotic effects of diazepam. Apremilast prolonged rotarod ataxia induced by zolpidem, propofol, and loreclezole, shortened recovery from diazepam, but had no effect on ataxia induced by gaboxadol or etomidate. The PKA inhibitor H-89 blocked apremilast's ability to prolong the sedative-hypnotic effects of ethanol, gaboxadol, and propofol and to prolong ethanol- and propofol-induced ataxia. H-89 also blocked apremilast's ability to shorten the sedative-hypnotic and ataxic effects of diazepam. The β1-specific antagonist, salicylidene salicylhydrazide (SCS), produced faster recovery from ethanol- and diazepam-induced ataxia, but did not alter propofol- or etomidate-induced ataxia. SCS shortened the sedative-hypnotic effects of ethanol and diazepam but not of propofol. In Xenopus oocytes, a phosphomimetic (aspartate) mutation at the PKA phosphorylation site in β1 subunits decreased the maximal GABA current in receptors containing α1 or α3, but not α2 subunits. In contrast, phosphomimetic mutations at PKA sites in β3 subunits increased the maximal GABA current in receptors containing α1 or α2, but not α3 subunits. The GABA potency and allosteric modulation by ethanol, propofol, etomidate, zolpidem, flunitrazepam, or diazepam were not altered by these mutations. We propose a model whereby apremilast increases PKA-mediated phosphorylation of β1-and β3-containing GABAA receptors and selectively alters acute tolerance to ethanol and GABAergic drugs.
Collapse
Affiliation(s)
- Yuri A Blednov
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Cecilia M Borghese
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Michael P Dugan
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Swetak Pradhan
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Thanvi M Thodati
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Nikhita R Kichili
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Robert O Messing
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA; Department of Neuroscience, The University of Texas at Austin, Austin, TX, 78712, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
17
|
Wang H, Zhang FF, Xu Y, Fu HR, Wang XD, Wang L, Chen W, Xu XY, Gao YF, Zhang JG, Zhang HT. The Phosphodiesterase-4 Inhibitor Roflumilast, a Potential Treatment for the Comorbidity of Memory Loss and Depression in Alzheimer's Disease: A Preclinical Study in APP/PS1 Transgenic Mice. Int J Neuropsychopharmacol 2020; 23:700-711. [PMID: 32645141 PMCID: PMC7727475 DOI: 10.1093/ijnp/pyaa048] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 06/24/2020] [Accepted: 07/07/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Depression is highly related to Alzheimer's disease (AD), yet no effective treatment is available. Phosphodiesterase-4 (PDE4) has been considered a promising target for treatment of AD and depression. Roflumilast, the first PDE4 inhibitor approved for clinical use, improves cognition at doses that do not cause side effects such as emesis. METHODS Here we examined the effects of roflumilast on behavioral dysfunction and the related mechanisms in APPswe/PS1dE9 transgenic mice, a widely used model of AD. Mice at 10 months of age were examined for memory in the novel object recognition and Morris water-maze tests and depression-like behavior in the tail-suspension test and forced swimming test before killing for neurochemical assays. RESULTS In the novel object recognition and Morris water-maze, APPswe/PS1dE9 mice showed significant cognitive declines, which were reversed by roflumilast at 5 and 10 mg/kg orally once per day. In the tail-suspension test and forced swimming test, the AD mice showed prolonged immobility time, which was also reversed by roflumilast. In addition, the staining of hematoxylin-eosin and Nissl showed that roflumilast relieved the neuronal cell injuries, while terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labelling analysis indicated that roflumilast ameliorated cell apoptosis in AD mice. Further, roflumilast reversed the decreased ratio of B-cell lymphoma-2/Bcl-2-associated X protein and the increased expression of PDE4B and PDE4D in the cerebral cortex and hippocampus of AD mice. Finally, roflumilast reversed the decreased levels of cyclic AMP (cAMP) and expression of phosphorylated cAMP response element-binding protein and brain derived neurotrophic factor in AD mice. CONCLUSIONS Together, these results suggest that roflumilast not only improves learning and memory but also attenuates depression-like behavior in AD mice, likely via PDE4B/PDE4D-mediated cAMP/cAMP response element-binding protein/brain derived neurotrophic factor signaling. Roflumilast can be a therapeutic agent for AD, in particular the comorbidity of memory loss and depression.
Collapse
Affiliation(s)
- Hao Wang
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Fang-fang Zhang
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Yong Xu
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Hua-rong Fu
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Xiao-dan Wang
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Lei Wang
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Wei Chen
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Xiao-yan Xu
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Yong-feng Gao
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Ji-guo Zhang
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Han-Ting Zhang
- Departments of Neuroscience and Behavioral Medicine & Psychiatry, the Rockefeller Neuroscience Institute, West Virginia University Health Sciences Center, Morgantown, West Virginia,Correspondence: Han-Ting Zhang, MD, PhD, Department of Neuroscience, the Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV 26506 ()
| |
Collapse
|
18
|
Melbourne JK, Thompson KR, Peng H, Nixon K. Its complicated: The relationship between alcohol and microglia in the search for novel pharmacotherapeutic targets for alcohol use disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 167:179-221. [PMID: 31601404 DOI: 10.1016/bs.pmbts.2019.06.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alcohol use disorder (AUD) is a chronic relapsing disorder with wide-ranging health consequences. Alcohol targets the central nervous system producing neurodegeneration and subsequent cognitive and behavioral deficits, but the mechanisms behind these effects remain unclear. Recently, evidence has been mounting for the role of neuroimmune activation in the pathogenesis of AUDs, but our nascent state of knowledge about the interaction of alcohol with the neuroimmune system supports that the relationship is complicated. As the resident macrophage of the central nervous system, microglia are a central focus. Human and animal research on the interplay between microglia and alcohol in AUDs has proven to be complex, and though early research focused on a pro-inflammatory phenotype of microglia, the anti-inflammatory and homeostatic roles of microglia must be considered. How these new roles for microglia should be incorporated into our thinking about the neuroimmune system in AUDs is discussed in the context of developing novel pharmacotherapies for AUDs.
Collapse
Affiliation(s)
- Jennifer K Melbourne
- The University of Texas at Austin, College of Pharmacy, Division of Pharmacology & Toxicology, Austin, TX, United States
| | - K Ryan Thompson
- The University of Texas at Austin, College of Pharmacy, Division of Pharmacology & Toxicology, Austin, TX, United States
| | - Hui Peng
- University of Kentucky, College of Pharmacy, Department of Pharmaceutical Sciences, Lexington, KY, United States
| | - Kimberly Nixon
- The University of Texas at Austin, College of Pharmacy, Division of Pharmacology & Toxicology, Austin, TX, United States.
| |
Collapse
|
19
|
Lee JW, Ryu HW, Lee SU, Kim MG, Kwon OK, Kim MO, Oh TK, Lee JK, Kim TY, Lee SW, Choi S, Li WY, Ahn KS, Oh SR. Pistacia weinmannifolia ameliorates cigarette smoke and lipopolysaccharide‑induced pulmonary inflammation by inhibiting interleukin‑8 production and NF‑κB activation. Int J Mol Med 2019; 44:949-959. [PMID: 31257455 PMCID: PMC6657956 DOI: 10.3892/ijmm.2019.4247] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 05/28/2019] [Indexed: 02/07/2023] Open
Abstract
Pistacia weinmannifolia (PW) has been used in traditional Chinese medicine to treat headaches, dysentery, enteritis and influenza. However, PW has not been known for treating respiratory inflammatory diseases, including chronic obstructive pulmonary disease (COPD). The present in vitro analysis confirmed that PW root extract (PWRE) exerts anti-inflammatory effects in phorbol myristate acetate- or tumor necrosis factor α (TNF-α)-stimulated human lung epithelial NCI-H292 cells by attenuating the expression of interleukin (IL)-8, IL-6 and Mucin A5 (MUC5AC), which are closely associated with the pulmonary inflammatory response in the pathogenesis of COPD. Thus, the aim of the present study was to evaluate the protective effect of PWRE on pulmonary inflammation induced by cigarette smoke (CS) and lipopoly-saccharide (LPS). Treatment with PWRE significantly reduced the quantity of neutrophils and the levels of inflammatory molecules and toxic molecules, including tumor TNF-α, IL-6, IL-8, monocyte chemoattractant protein-1, neutrophil elastase and reactive oxygen species, in the bronchoalveolar lavage fluid of mice with CS- and LPS-induced pulmonary inflammation. PWRE also attenuated the influx of inflammatory cells in the lung tissues. Furthermore, PWRE downregulated the activation of nuclear factor-κB and the expression of phosphodiesterase 4 in the lung tissues. Therefore, these findings suggest that PWRE may be a valuable adjuvant treatment for COPD.
Collapse
Affiliation(s)
- Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk‑do 28116, Republic of Korea
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk‑do 28116, Republic of Korea
| | - Su Ui Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk‑do 28116, Republic of Korea
| | - Min-Gu Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk‑do 28116, Republic of Korea
| | - Ok-Kyoung Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk‑do 28116, Republic of Korea
| | - Mun Ok Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk‑do 28116, Republic of Korea
| | - Tae Kyu Oh
- BTC Corporation, Technology Development Center, Ansan, Gyeonggi‑do 15588, Republic of Korea
| | - Jae Kyoung Lee
- BTC Corporation, Technology Development Center, Ansan, Gyeonggi‑do 15588, Republic of Korea
| | - Tae Young Kim
- BTC Corporation, Technology Development Center, Ansan, Gyeonggi‑do 15588, Republic of Korea
| | - Sang Woo Lee
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sangho Choi
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Wan-Yi Li
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan 650200, P.R. China
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk‑do 28116, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk‑do 28116, Republic of Korea
| |
Collapse
|
20
|
Erickson EK, Grantham EK, Warden AS, Harris RA. Neuroimmune signaling in alcohol use disorder. Pharmacol Biochem Behav 2018; 177:34-60. [PMID: 30590091 DOI: 10.1016/j.pbb.2018.12.007] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/25/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023]
Abstract
Alcohol use disorder (AUD) is a widespread disease with limited treatment options. Targeting the neuroimmune system is a new avenue for developing or repurposing effective pharmacotherapies. Alcohol modulates innate immune signaling in different cell types in the brain by altering gene expression and the molecular pathways that regulate neuroinflammation. Chronic alcohol abuse may cause an imbalance in neuroimmune function, resulting in prolonged perturbations in brain function. Likewise, manipulating the neuroimmune system may change alcohol-related behaviors. Psychiatric disorders that are comorbid with AUD, such as post-traumatic stress disorder, major depressive disorder, and other substance use disorders, may also have underlying neuroimmune mechanisms; current evidence suggests that convergent immune pathways may be involved in AUD and in these comorbid disorders. In this review, we provide an overview of major neuroimmune cell-types and pathways involved in mediating alcohol behaviors, discuss potential mechanisms of alcohol-induced neuroimmune activation, and present recent clinical evidence for candidate immune-related drugs to treat AUD.
Collapse
Affiliation(s)
- Emma K Erickson
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712-01095, USA.
| | - Emily K Grantham
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712-01095, USA
| | - Anna S Warden
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712-01095, USA
| | - R A Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712-01095, USA
| |
Collapse
|
21
|
Shi J, Liu H, Pan J, Chen J, Zhang N, Liu K, Fei N, O'Donnell JM, Zhang HT, Xu Y. Inhibition of phosphodiesterase 2 by Bay 60-7550 decreases ethanol intake and preference in mice. Psychopharmacology (Berl) 2018; 235:2377-2385. [PMID: 29876622 DOI: 10.1007/s00213-018-4934-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/24/2018] [Indexed: 12/14/2022]
Abstract
RATIONALE Alcohol use disorder (AUD) is a chronically relapsing condition, which affects nearly 11% of population worldwide. Currently, there are only three FDA-approved medications for treatment of AUD, and normally, satisfactory effects are hard to be achieved. Cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) signaling has been implicated in regulation of ethanol intake. Phosphodiesterase 2 (PDE), a dual substrate PDE that hydrolyzes both cAMP and cGMP, may play a crucial role in regulating ethanol consumption. METHODS The present study determined whether PDE2 was involved in the regulation of ethanol intake and preference. The two-bottle choice procedure was used to examine the effects of the selective PDE2 inhibitor Bay 60-7550 on ethanol intake. The sucrose and quinine intake (taste preference) and locomotor activity (sedative effects) were also measured to exclude the false positive effects of Bay 60-7550. RESULTS Treatment with Bay 60-7550 (1 and 3 mg/kg, i.p.) decreased ethanol intake and preference, without changing total fluid intake. In addition, Bay 60-7550 at doses that reduced ethanol intake did not affect sucrose and quinine intake and preference, which excluded the potential influence of taste preference and sedative effects on ethanol drinking behavior. Moreover, Bay 60-7550 at 3 mg/kg did not alter locomotor activity or ethanol metabolism, further supporting the specific effect of Bay 60-7550 on ethanol drinking behavior. CONCLUSIONS The results suggest that PDE2 plays a role in the regulation of ethanol consumption and that PDE2 inhibitors may be a novel class of drugs for treatment of alcoholism.
Collapse
Affiliation(s)
- Jing Shi
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310053, Zhejiang Province, China
| | - Huaxia Liu
- School of Nursing, Taishan Medical University, Tai'an, 271016, Shandong Province, China
| | - Jianchun Pan
- Brain Institute, Wenzhou Medical University School of Pharmacy, Wenzhou, 325021, Zhejiang Province, China
| | - Jie Chen
- Brain Institute, Wenzhou Medical University School of Pharmacy, Wenzhou, 325021, Zhejiang Province, China
| | - Nianping Zhang
- Datong University Medical College, Datong, 037009, Shanxi Province, China
| | - Kaiping Liu
- Brain Institute, Wenzhou Medical University School of Pharmacy, Wenzhou, 325021, Zhejiang Province, China
| | - Ning Fei
- Brain Institute, Wenzhou Medical University School of Pharmacy, Wenzhou, 325021, Zhejiang Province, China
| | - James M O'Donnell
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, the State University of New York, Buffalo, NY, 14214, USA
| | - Han-Ting Zhang
- Departments of Behavioral Medicine & Psychiatry and Physiology, Pharmacology & Neuroscience, Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA.
- Institute of Pharmacology, Taishan Medical University, Tai'an, 271016, Shandong, China.
| | - Ying Xu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, the State University of New York, Buffalo, NY, 14214, USA.
| |
Collapse
|
22
|
Ferguson LB, Harris RA, Mayfield RD. From gene networks to drugs: systems pharmacology approaches for AUD. Psychopharmacology (Berl) 2018; 235:1635-1662. [PMID: 29497781 PMCID: PMC6298603 DOI: 10.1007/s00213-018-4855-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/06/2018] [Indexed: 12/29/2022]
Abstract
The alcohol research field has amassed an impressive number of gene expression datasets spanning key brain areas for addiction, species (humans as well as multiple animal models), and stages in the addiction cycle (binge/intoxication, withdrawal/negative effect, and preoccupation/anticipation). These data have improved our understanding of the molecular adaptations that eventually lead to dysregulation of brain function and the chronic, relapsing disorder of addiction. Identification of new medications to treat alcohol use disorder (AUD) will likely benefit from the integration of genetic, genomic, and behavioral information included in these important datasets. Systems pharmacology considers drug effects as the outcome of the complex network of interactions a drug has rather than a single drug-molecule interaction. Computational strategies based on this principle that integrate gene expression signatures of pharmaceuticals and disease states have shown promise for identifying treatments that ameliorate disease symptoms (called in silico gene mapping or connectivity mapping). In this review, we suggest that gene expression profiling for in silico mapping is critical to improve drug repurposing and discovery for AUD and other psychiatric illnesses. We highlight studies that successfully apply gene mapping computational approaches to identify or repurpose pharmaceutical treatments for psychiatric illnesses. Furthermore, we address important challenges that must be overcome to maximize the potential of these strategies to translate to the clinic and improve healthcare outcomes.
Collapse
Affiliation(s)
- Laura B Ferguson
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, 1 University Station A4800, Austin, TX, 78712, USA
- Intitute for Neuroscience, University of Texas at Austin, Austin, TX, 78712, USA
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, 1 University Station A4800, Austin, TX, 78712, USA
| | - Roy Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, 1 University Station A4800, Austin, TX, 78712, USA.
| |
Collapse
|
23
|
Wen RT, Zhang FF, Zhang HT. Cyclic nucleotide phosphodiesterases: potential therapeutic targets for alcohol use disorder. Psychopharmacology (Berl) 2018; 235:1793-1805. [PMID: 29663017 PMCID: PMC5949271 DOI: 10.1007/s00213-018-4895-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/29/2018] [Indexed: 12/19/2022]
Abstract
Alcohol use disorder (AUD), which combines the criteria of both alcohol abuse and dependence, contributes as an important causal factor to multiple health and social problems. Given the limitation of current treatments, novel medications for AUD are needed to better control alcohol consumption and maintain abstinence. It has been well established that the intracellular signal transduction mediated by the second messengers cyclic AMP (cAMP) and cyclic GMP (cGMP) crucially underlies the genetic predisposition, rewarding properties, relapsing features, and systemic toxicity of compulsive alcohol consumption. On this basis, the upstream modulators phosphodiesterases (PDEs), which critically control intracellular levels of cyclic nucleotides by catalyzing their degradation, are proposed to play a role in modulating alcohol abuse and dependent process. Here, we highlight existing evidence that correlates cAMP and cGMP signal cascades with the regulation of alcohol-drinking behavior and discuss the possibility that PDEs may become a novel class of therapeutic targets for AUD.
Collapse
Affiliation(s)
- Rui-Ting Wen
- Department of Pharmacy, Peking University People's Hospital, Beijing, 100044, China
| | - Fang-Fang Zhang
- Institute of Pharmacology, Qilu Medical University, Taian, 271016, Shandong, China
| | - Han-Ting Zhang
- Institute of Pharmacology, Qilu Medical University, Taian, 271016, Shandong, China.
- Departments of Behavioral Medicine and Psychiatry and Physiology, Pharmacology and Neuroscience, Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA.
| |
Collapse
|
24
|
Giménez-Gómez P, Pérez-Hernández M, Gutiérrez-López MD, Vidal R, Abuin-Martínez C, O'Shea E, Colado MI. Increasing kynurenine brain levels reduces ethanol consumption in mice by inhibiting dopamine release in nucleus accumbens. Neuropharmacology 2018; 135:581-591. [PMID: 29705534 DOI: 10.1016/j.neuropharm.2018.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/22/2018] [Accepted: 04/17/2018] [Indexed: 12/11/2022]
Abstract
Recent research suggests that ethanol (EtOH) consumption behaviour can be regulated by modifying the kynurenine (KYN) pathway, although the mechanisms involved have not yet been well elucidated. To further explore the implication of the kynurenine pathway in EtOH consumption we inhibited kynurenine 3-monooxygenase (KMO) activity with Ro 61-8048 (100 mg/kg, i.p.), which shifts the KYN metabolic pathway towards kynurenic acid (KYNA) production. KMO inhibition decreases voluntary binge EtOH consumption and EtOH preference in mice subjected to "drinking in the dark" (DID) and "two-bottle choice" paradigms, respectively. This effect seems to be a consequence of increased KYN concentration, since systemic KYN administration (100 mg/kg, i.p.) similarly deters binge EtOH consumption in the DID model. Despite KYN and KYNA being well-established ligands of the aryl hydrocarbon receptor (AhR), administration of AhR antagonists (TMF 5 mg/kg and CH-223191 20 mg/kg, i.p.) and of an agonist (TCDD 50 μg/kg, intragastric) demonstrates that signalling through this receptor is not involved in EtOH consumption behaviour. Ro 61-8048 did not alter plasma acetaldehyde concentration, but prevented EtOH-induced dopamine release in the nucleus accumbens shell. These results point to a critical involvement of the reward circuitry in the reduction of EtOH consumption induced by KYN and KYNA increments. PNU-120596 (3 mg/kg, i.p.), a positive allosteric modulator of α7-nicotinic acetylcholine receptors, partially prevented the Ro 61-8048-induced decrease in EtOH consumption. Overall, our results highlight the usefulness of manipulating the KYN pathway as a pharmacological tool for modifying EtOH consumption and point to a possible modulator of alcohol drinking behaviour.
Collapse
Affiliation(s)
- Pablo Giménez-Gómez
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Mercedes Pérez-Hernández
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - María Dolores Gutiérrez-López
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Rebeca Vidal
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Cristina Abuin-Martínez
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Esther O'Shea
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - María Isabel Colado
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041, Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
25
|
Savarese AM, Lasek AW. Transcriptional Regulators as Targets for Alcohol Pharmacotherapies. Handb Exp Pharmacol 2018; 248:505-533. [PMID: 29594350 PMCID: PMC6242703 DOI: 10.1007/164_2018_101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Alcohol use disorder (AUD) is a chronic relapsing brain disease that currently afflicts over 15 million adults in the United States. Despite its prevalence, there are only three FDA-approved medications for AUD treatment, all of which show limited efficacy. Because of their ability to alter expression of a large number of genes, often with great cell-type and brain-region specificity, transcription factors and epigenetic modifiers serve as promising new targets for the development of AUD treatments aimed at the neural circuitry that underlies chronic alcohol abuse. In this chapter, we will discuss transcriptional regulators that can be targeted pharmacologically and have shown some efficacy in attenuating alcohol consumption when targeted. Specifically, the transcription factors cyclic AMP-responsive element binding protein (CREB), peroxisome proliferator-activated receptors (PPARs), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and glucocorticoid receptor (GR), as well as the epigenetic enzymes, the DNA methyltransferases (DNMTs) and histone deacetylases (HDACs), will be discussed.
Collapse
Affiliation(s)
| | - Amy W. Lasek
- Department of Psychiatry, University of Illinois at Chicago,Corresponding author: 1601 West Taylor Street, MC 912, Chicago, IL 60612, Tel: (312) 355-1593,
| |
Collapse
|
26
|
Abstract
Animal models provide rapid, inexpensive assessments of an investigational drug's therapeutic potential. Ideally, they support the plausibility of therapeutic efficacy and provide a rationale for further investigation. Here, I discuss how the absence of clear effective-ineffective categories for alcohol use disorder (AUD) medications and biases in the clinical and preclinical literature affect the development of predictive preclinical alcohol dependence (AD) models. Invoking the analogical argument concept from the philosophy of science field, I discuss how models of excessive alcohol drinking support the plausibility of clinical pharmacotherapy effects. Even though these models are not likely be completely discriminative, they are sensitive to clinically effective medications and have revealed dozens of novel medication targets. In that context, I discuss recent preclinical work on GLP-1 receptor agonists, phosphodiesterase inhibitors, glucocorticoid receptor antagonists, nociception agonists and antagonists, and CRF1 antagonists. Clinically approved medications are available for each of these drug classes. I conclude by advocating a translational approach in which drugs are evaluated highly congruent preclinical models and human laboratory studies. Once translation is established, I suggest the burden is to develop hypothesis-based therapeutic interventions maximizing the impact of the confirmed pharmacotherapeutic effects in the context of additional variables falling outside the model.
Collapse
Affiliation(s)
- Mark Egli
- Division of Neuroscience and Behavior, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|