1
|
Jagielska A, Sałaciak K, Pytka K. Beyond the blur: Scopolamine's utility and limits in modeling cognitive disorders across sexes - Narrative review. Ageing Res Rev 2025; 104:102635. [PMID: 39653154 DOI: 10.1016/j.arr.2024.102635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/18/2024] [Accepted: 12/05/2024] [Indexed: 12/19/2024]
Abstract
Scopolamine, widely regarded as the gold standard in preclinical studies of memory impairments, acts as a non-selective antagonist of central and peripheral muscarinic receptors. While its application in modeling dementia primarily involves antagonism at the M1 receptor, its non-selective peripheral actions may introduce adverse effects that influence behavioral test outcomes. This review analyzes preclinical findings to consolidate knowledge on scopolamine's use and elucidate potential mechanisms responsible for its amnestic effects. We focused on recognition, spatial, and emotional memory processes, alongside executive functions such as attention, cognitive flexibility, and working memory. The cognitive effects of scopolamine are highly dose-dependent, influenced by factors such as species, age, and sex of subjects. Notably, scopolamine rapidly induces observable memory impairments across species, from fish to rodents and primates, often with deficits that can persist for days. However, the compound's broad action on muscarinic receptors and its peripheral side effects, including pupil dilation and reduced salivation, complicates result interpretation, particularly in tasks requiring visual discrimination or food intake. The review also highlights scopolamine's translational value in modeling dementia and Alzheimer's disease, emphasizing the importance of considering individual factors and task-specific designs. Despite its widespread use, scopolamine's limited specificity for cholinergic dysfunction and inability to fully mimic the complex pathophysiology of cognitive disorders like Alzheimer's and Parkinson's disease point to the need for complementary models. This review aims to guide researchers in using scopolamine for modeling cognitive impairments, ensuring attention to factors impacting experimental outcomes.
Collapse
Affiliation(s)
- Angelika Jagielska
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland; Jagiellonian University Medical College, Doctoral School of Medical and Health Sciences, Krakow, Poland
| | - Kinga Sałaciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland.
| |
Collapse
|
2
|
Saleh SR, Khamiss SE, Aly Madhy S, Khattab SN, Sheta E, Elnozahy FY, Thabet EH, Ghareeb DA, Awad D, El-Bessoumy AA. Biochemical investigation and in silico analysis of the therapeutic efficacy of Ipriflavone through Tet-1 Surface-Modified-PLGA nanoparticles in Streptozotocin-Induced Alzheimer's like Disease: Reduced oxidative damage and etiological Descriptors. Int J Pharm 2025; 669:125021. [PMID: 39631714 DOI: 10.1016/j.ijpharm.2024.125021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Ipriflavone (IPRI), an isoflavone derivative, is clinically used to prevent postmenopausal bone loss in addition to its antioxidant and cognitive benefits. However, its poor aqueous solubility retained its bioavailability. New strategies have been developed to improve the bioavailability and solubility of neurological medications to enhance their potency and limit adverse effects. This study aimed to prepare targeted IPRI-poly-lactic-co-glycolic acid (PLGA) nanoparticles coupled with Tet-1 peptide to increase the therapeutic potency of IPRI in a rat model of Alzheimer's disease (AD). Streptozotocin (STZ) exacerbates Alzheimer-related alterations by promoting central insulin resistance resulted from defective signaling pathways related to neuroinflammation and neurotoxicity. Bilateral intracerebroventricular (icv) injection of STZ was used to introduce the AD model. Icv-STZ injection significantly affected brain insulin, oxidative stress, inflammatory, and apoptotic indicators and caused behavioral abnormalities. STZ promoted the formation of amyloid β42 (Aβ42) by increasing BACE1 and reducing ADAM10 and ADAM17 expression levels. STZ also triggered the accumulation of neurofibrillary tangles and synaptic dysfunction, which are crucial for neurological impairments. Icv-STZ injection showed evident degenerative changes in the pyramidal cell layer and significantly reduced the count of viable cells in both CA1 and prefrontal cortex, indicating increased neuronal cell death. IPRI successfully ameliorated cognitive dysfunction by improving the phosphorylated forms of cAMP-response element-binding protein (pCREB) and extracellular signal-regulated kinase 1/2 (pERK1/2) related to synaptic plasticity. Targeted IPRI nanoparticles exceeded free IPRI potential in reducing oxidative stress, acetylcholinesterase/monoamine oxidase activities, Tau phosphorylation, and Aβ42 levels revealing less degenerative changes and increased viable neuron counts. IPRI-targeted nanoparticles improved the neuroprotective potential of free IPRI, making this strategy applicable to treat many neurodegenerative diseases. Finally, the in silico study predicted its ability to cross the BBB and to bind various protein targets in the brain.
Collapse
Affiliation(s)
- Samar R Saleh
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt; Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Salma E Khamiss
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt; Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Somaya Aly Madhy
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Sherine N Khattab
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Eman Sheta
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Fatma Y Elnozahy
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Eman H Thabet
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt; Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Doaa A Ghareeb
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt; Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Doaa Awad
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Ashraf A El-Bessoumy
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| |
Collapse
|
3
|
Vishnumurthy RH, Priya MGR, Tiwari P, Solomon VR. In-silico Studies and Antioxidant and Neuroprotective Assessment of Microencapsulated Celecoxib against Scopolamine-induced Alzheimer's Disease. Curr Pharm Des 2025; 31:320-329. [PMID: 39206485 DOI: 10.2174/0113816128298289240723103828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/10/2024] [Accepted: 05/29/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND AND OBJECTIVE Alzheimer's disease (AD) is an enervating and chronic progressive neurodegenerative disorder. Celecoxib (CXB) possesses efficacious antioxidants and has neuroprotective, anti-inflammatory, and immunomodulatory properties. However, the poor bioavailability of CXB limits its therapeutic utility. Thus, this study aimed to evaluate the microencapsulated celecoxib MCXB for neuroprotection. METHODOLOGY CXB was screened by molecular docking study using AutoDock (version 5.2), and the following proteins, such as 4EY7, 2HM1, 2Z5X, and 1PBQ were selected for predicting its neuroprotective effect. Scopolamine 20 mg/kg/day for approximately 7 days was administered to albino rats. Pure CXB 100 mg/kg/- day and 200 mg/kg/day, and MCXB 100 mg/kg/day and 200 mg/kg/day were administered, respectively. Further, to assess the oxidative stress, the nitric oxide (NO), superoxide dismutase (SOD), catalase, and lipid peroxidation (LPO) were evaluated using chemical methods. The neurochemical biomarkers like AChE, glutamate, and dopamine were evaluated using the ELISA method. Further, the histopathology of brain cells was carried out to assess the neuro-regeneration and neurodegeneration of the neurons. RESULTS There was a significant binding interaction of CXB (score -6.3, -6.5, -5.1, -9.1) and donepezil (score- 5.5, -7.6, -7.0, and -8.6) with AchE (4EY7), β-secretase (2HM1, monoamine oxidase (2Z5X), and glutamate (1PBQ), respectively. MCXB-treated rats (100 mg/kg/day, 200 mg/kg/day) showed increased SOD levels (p < 0.001), whereas NO, catalase, and LPO levels were significantly (p < 0.001) decreased as compared to scopolamine-treated rats. Further, MCXB-treated rats showed a modulatory effect in the level of dopamine and AchE. However, the glutamate level was significantly (p < 0.001) decreased. CONCLUSION In addition to that, histopathological examination of the hippocampus part showed remarkable improvement in brain cells. So, the findings of the results revealed that MCXB, in a dose-dependent manner, showed a neuroprotective effect against scopolamine-induced AD. This effect may be attributed to the activation of cholinergic pathways.
Collapse
Affiliation(s)
| | - M Gnana Ruba Priya
- College of Pharmaceutical Sciences, Dayananda Sagar University, Bengaluru, Karnataka 560111, India
| | - Prashant Tiwari
- College of Pharmaceutical Sciences, Dayananda Sagar University, Bengaluru, Karnataka 560111, India
| | - Viswas Raja Solomon
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy 502 294, India
| |
Collapse
|
4
|
Helal AM, Yossef MM, Seif IK, Abd El-Salam M, El Demellawy MA, Abdulmalek SA, Ghareeb AZ, Holail J, Mohsen Al-Mahallawi A, El-Zahaby SA, Ghareeb DA. Nanostructured biloalbuminosomes loaded with berberine and berberrubine for Alleviating heavy Metal-Induced male infertility in rats. Int J Pharm 2024; 667:124892. [PMID: 39481813 DOI: 10.1016/j.ijpharm.2024.124892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024]
Abstract
Despite the remarkable biological effects of berberine (BBR), particularly on fertility, its bioavailability is low. This study aims to test the effectiveness of novel nanostructured biloalbuminosomes (BILS) of BBR and its metabolite berberrubine (M1) in treatment of testicular and prostatic lesions. M1 was semi-synthesized from BBR using microwave-assisted reaction. The solvent evaporation method was used to prepare BBR-BILS and M1-BILS by three different concentrations of sodium cholate (SC) or glycocholate (SG), along with the incorporation of bovine serum albumin (BSA). The prepared BILS were fully characterized. Male infertility was induced by cadmium (Cd) at 5 mg/kg and lead (Pb) at 20 mg/kg contaminated water for 90 days, followed by treatment with BBR, M1, and their BILS (BBR-BILS and M1-BILS) for 45 days. Blood male infertility markers, testicular and prostatic oxidative stress status, autophagy, inflammation, along with testicular and prostatic concentrations of Cd and Pb, and histopathology of both tested tissues were determined using standardized protocols. The optimal BBR-BILS and M1-BILS nano-preparations, containing 30 mg SC, were chosen based on the best characterization properties of the preparations. Both nano-preparations improved heavy metals-induced testicular and prostatic deformities, as they reduced Bax and elevated Bcl-2 expressions in both tissues. Moreover, they activated the mTOR/PI3K pathway with a marked reduction in AMPK and activated LC-3II protein levels. Consequently, testicular and prostatic architecture and functions were improved. This study is the first to report the preparation of BBR and M1 BILS nano-preparations and proved their superior efficacy compared to free drugs against testicular and prostatic deformities by attenuating oxidative stress-induced excessive autophagy, offering a new hope to manage male infertility.
Collapse
Affiliation(s)
- Aya M Helal
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria, Egypt
| | - Mona M Yossef
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Inas K Seif
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications (SRTA-city), New Borg El Arab, Alexandria, Egypt
| | - Mohamed Abd El-Salam
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin D02 VN5, Ireland; Department of Pharmacognosy, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa, 11152, Egypt
| | - Maha A El Demellawy
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), The City of Scientific Research and Technological Applications (SRTA-City), Borg Al-Arab, Alexandria, Egypt
| | - Shaymaa A Abdulmalek
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmed Z Ghareeb
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications (SRTA-city), New Borg El Arab, Alexandria, Egypt
| | - Jasmine Holail
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Sally A El-Zahaby
- Department of Pharmaceutics and Industrial Pharmacy, PharmD Program, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt.
| | - Doaa A Ghareeb
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications (SRTA-city), New Borg El Arab, Alexandria, Egypt; Research Projects Unit, Pharos University in Alexandria, Canal El Mahmoudia Street, Beside Green Plaza Complex 21648, Alexandria, Egypt
| |
Collapse
|
5
|
Attia HG, Elmataeeshy ME, Aleraky M, Saleh SR, Ghareeb DA, El Demellawy MA, El-Nahas HM, Ibrahim TM. The assessment of pharmacokinetics and neuroprotective effect of berberine hydrochloride-embedded albumin nanoparticles via various administration routes: comparative in-vivo studies in rats. J Microencapsul 2024; 41:576-600. [PMID: 39229806 DOI: 10.1080/02652048.2024.2395976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/10/2024] [Indexed: 09/05/2024]
Abstract
The current study aimed to evaluate the pharmacokinetics and neuroprotective effect of well-characterised berberine-bovine serum albumin (BBR-BSA) nanoparticles. BBR-BSA nanoparticles were generated by desolvation method. Entrapment efficiency, loading capacity, particle size, polydispersity index, surface morphology, thermal stability, and in-vitro release were estimated. In-vitro pharmacokinetic and tissue distribution were conducted. Their neuroprotection was evaluated against lipopolysaccharides-induced neurodegeneration. BBR-BSA nanoparticles showed satisfactory particle size (202.60 ± 1.20 nm) and entrapment efficiency (57.00 ± 1.56%). Results confirmed the formation of spheroid-thermal stable nanoparticles with a sustained drug release over 48 h. Sublingual and intranasal routes had higher pharmacokinetic plasma profiles than other routes, with Cmax values at 0.75 h (444 ± 77.79 and 259 ± 42.41 ng/mL, respectively). BBR and its metabolite distribution in the liver and kidney were higher than in plasma. Intranasal and sublingual treatment improves antioxidants, proinflammatory, amyloidogenic biomarkers, and brain architecture, protecting the brain. In conclusion, neuroinflammation and neurodegeneration may be prevented by intranasal and sublingual BBR-BSA nanoparticles.
Collapse
Affiliation(s)
- Hany G Attia
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | | | - Mohamed Aleraky
- Department of Microbiology, College of Medicine, Najran University, Najran, Saudi Arabia
- Department of Clinical Pathology, Al-Azhar University, New Damietta, Egypt
| | - Samar R Saleh
- Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Alexandria University, Alexandria, Egypt
| | - Doaa A Ghareeb
- Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Alexandria University, Alexandria, Egypt
- Research Projects unit, Pharos University in Alexandria; Canal El Mahmoudia Street, Beside Green Plaza Complex 21648, Alexandria, Egypt
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab, Egypt
| | - Maha A El Demellawy
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab, Egypt
- Medical Biotechnology Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab, Egypt
| | | | - Tarek M Ibrahim
- Department of Pharmaceutics, Zagazig University, Zagazig, Egypt
| |
Collapse
|
6
|
Khishvand MA, Yeganeh EM, Zarei M, Soleimani M, Mohammadi M, Mahjub R. Development, Statistical Optimization, and Characterization of Resveratrol-Containing Solid Lipid Nanoparticles (SLNs) and Determination of the Efficacy in Reducing Neurodegenerative Symptoms Related to Alzheimer's Disease: In Vitro and In Vivo Study. BIOMED RESEARCH INTERNATIONAL 2024; 2024:7877265. [PMID: 39376256 PMCID: PMC11458308 DOI: 10.1155/2024/7877265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 10/09/2024]
Abstract
Resveratrol (RSV), as a natural polyphenol exhibiting antioxidative properties, is studied in the treatment of neurodegenerative diseases. However, RSV has low oral bioavailability. In this study and in order to overcome the issue, RSV was encapsulated into the solid lipid nanoparticles (SLNs). In this study, RSV-loaded solid lipid nanoparticles (RSV-SLNs) were prepared by the solvent emulsification-evaporation technique, and their physicochemical properties were optimized using Box-Behnken response surface methodology. The morphology of the particles was evaluated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The neuroprotective effects of the nanoparticles were investigated in animal models using the Morris water maze (MWM). Then after, the rats were sacrificed, their brains were collected, and the extent of lipid peroxidase (LPO) as well as the level of reduced glutathione (GSH) were determined in the hippocampus section samples. Finally, the collected brain tissues were histologically studied. The particle size, polydispersity index (PDI), zeta potential, entrapment efficiency (EE%), and drug loading (DL%) of the optimized nanoparticles were 104.5 ± 12.3 nm, 0.322 ± 0.11, -3.1 ± 0.15 mV, 72.9 ± 5.31% and 14.6 ± 0.53%, respectively. The microscopic images revealed spherically shaped and nonaggregated nanoparticles. The in vivo studies demonstrated higher efficiency of RSV-SLN in the reduction of escape latency time and improvement in the time spent in the target quadrant compared to free RSV. Moreover, it was demonstrated that RSV-SLN posed a higher potency in the reduction of LPO as well as elevation of the GSH levels in the brain samples. The histological studies revealed a decline in neural degeneration and an improvement in the CA1 pyramidal cell morphology. The obtained data revealed that RSV-SLNs caused more reduction in Alzheimer-related symptoms rather than free RSV.
Collapse
Affiliation(s)
- Mohammad Amin Khishvand
- Department of PharmaceuticsSchool of PharmacyHamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and ToxicologySchool of PharmacyHamadan University of Medical Sciences, Hamadan, Iran
| | - Ehsan Mehrabani Yeganeh
- Department of PharmaceuticsSchool of PharmacyHamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Zarei
- Department of PhysiologySchool of MedicineHamadan University of Medical Sciences, Hamadan, Iran
| | - Meysam Soleimani
- Department of Pharmaceutical BiotechnologySchool of PharmacyHamadan University of Medical Sciences, Hamadan, Iran
| | - Mojdeh Mohammadi
- Department of Pharmacology and ToxicologySchool of PharmacyHamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Mahjub
- Department of PharmaceuticsSchool of PharmacyHamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
7
|
El-Sayed NS, Khalil NA, Saleh SR, Aly RG, Basta M. The Possible Neuroprotective Effect of Caffeic Acid on Cognitive Changes and Anxiety-Like Behavior Occurring in Young Rats Fed on High-Fat Diet and Exposed to Chronic Stress: Role of β-Catenin/GSK-3B Pathway. J Mol Neurosci 2024; 74:61. [PMID: 38954245 DOI: 10.1007/s12031-024-02232-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Lifestyle influences physical and cognitive development during the period of adolescence greatly. The most important of these lifestyle factors are diet and stress. Therefore, the aim of this study was to investigate the impact of high fat diet (HFD) and chronic mild stress on cognitive function and anxiety-like behaviors in young rats and to study the role of caffeic acid as a potential treatment for anxiety and cognitive dysfunction. Forty rats were assigned into 4 groups: control, HFD, HFD + stress, and caffeic acid-treated group. Rats were sacrificed after neurobehavioral testing. We detected memory impairment and anxiety-like behavior in rats which were more exaggerated in stressed rats. Alongside the behavioral changes, there were biochemical and histological changes. HFD and/or stress decreased hippocampal brain-derived neurotrophic factor (BDNF) levels and induced oxidative and inflammatory changes in the hippocampus. In addition, they suppressed Wnt/β-catenin pathway which was associated with activation of glycogen synthase kinase 3β (GSK3β). HFD and stress increased arginase 1 and inducible nitric oxide synthase (iNOS) levels as well. These disturbances were found to be aggravated in stressed rats than HFD group. However, caffeic acid was able to reverse these deteriorations leading to memory improvement and ameliorating anxiety-like behavior. So, the current study highlights an important neuroprotective role for caffeic acid that may guard against induction of cognitive dysfunction and anxiety disorders in adolescents who are exposed to HFD and/or stress.
Collapse
Affiliation(s)
- Norhan S El-Sayed
- Department of Medical Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt.
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Nehal Adel Khalil
- Department of Medical Biochemistry, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Samar R Saleh
- Department of Biochemistry, Faculty of Science, Alexandria University, Baghdad St., Moharam Bek, Alexandria, 21511, Egypt
- Bioscreening and Preclinical Trial Lab, Department of Biochemistry, Faculty of Science, Alexandria University, Baghdad St., Moharam Bek, Alexandria, 21511, Egypt
| | - Rania G Aly
- Department of pathology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Marianne Basta
- Department of Medical Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| |
Collapse
|
8
|
Saleh SR, Abd-Elmegied A, Aly Madhy S, Khattab SN, Sheta E, Elnozahy FY, Mehanna RA, Ghareeb DA, Abd-Elmonem NM. Brain-targeted Tet-1 peptide-PLGA nanoparticles for berberine delivery against STZ-induced Alzheimer's disease in a rat model: Alleviation of hippocampal synaptic dysfunction, Tau pathology, and amyloidogenesis. Int J Pharm 2024; 658:124218. [PMID: 38734273 DOI: 10.1016/j.ijpharm.2024.124218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder that causes severe dementia and memory loss. Surface functionalized poly(lactic-co-glycolic acid) nanoparticles have been reported for better transport through the blood-brain barrier for AD therapy. This study investigated the improved therapeutic potential of berberine-loaded poly(lactic-co-glycolic acid)/Tet-1 peptide nanoparticles (BBR/PLGA-Tet NPs) in a rat model of sporadic AD. BBR was loaded into the PLGA-Tet conjugate. BBR/PLGA-Tet NPs were physicochemically and morphologically characterized. AD was achieved by bilateral intracerebroventricular (ICV) injection of streptozotocin (STZ). Cognitively impaired rats were divided into STZ, STZ + BBR, STZ + BBR/PLGA-Tet NPs, and STZ + PLGA-Tet NPs groups. Cognitive improvement was assessed using the Morris Water Maze. Brain acetylcholinesterase and monoamine oxidase activities, amyloid β42 (Aβ42), and brain glycemic markers were estimated. Further, hippocampal neuroplasticity (BDNF, pCREB, and pERK/ERK), Tau pathogenesis (pGSK3β/GSK3β, Cdk5, and pTau), inflammatory, and apoptotic markers were evaluated. Finally, histopathological changes were monitored. ICV-STZ injection produces AD-like pathologies evidenced by Aβ42 deposition, Tau hyperphosphorylation, impaired insulin signaling and neuroplasticity, and neuroinflammation. BBR and BBR/PLGA-Tet NPs attenuated STZ-induced hippocampal damage, enhanced cognitive performance, and reduced Aβ42, Tau phosphorylation, and proinflammatory responses. BBR/PLGA-Tet NPs restored neuroplasticity, cholinergic, and monoaminergic function, which are critical for cognition and brain function. BBR/PLGA-Tet NPs may have superior therapeutic potential in alleviating sporadic AD than free BBR due to their bioavailability, absorption, and brain uptake.
Collapse
Affiliation(s)
- Samar R Saleh
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Aml Abd-Elmegied
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Somaya Aly Madhy
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Sherine N Khattab
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Eman Sheta
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Fatma Y Elnozahy
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Radwa A Mehanna
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt; Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Doaa A Ghareeb
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Nihad M Abd-Elmonem
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
9
|
Allam EAH, Assi AA, Badary DM, Farrag MMY, Nicola MA. Memantine versus Ginkgo biloba Extract: A Comparative Study on Cognitive Dysfunction Treatment in a Novel Rat Model. PLANTA MEDICA 2024; 90:286-297. [PMID: 38286405 DOI: 10.1055/a-2245-3624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Extracellular senile plaques and intraneuronal neurofibrillary tangles are two devastating brain proteinopathies that are indicative of Alzheimer's disease, the most prevalent type of dementia. Currently, no effective medications are available to stop or reverse Alzheimer's disease. Ginkgo biloba extract, commonly referred to as EGb 761, is a natural product made from the leaves of the G. biloba tree. It has long been demonstrated to have therapeutic benefits in Alzheimer's disease. The current study assessed the beneficial effects of EGb 761 against Alzheimer's disease in comparison with memantine, a standard treatment for Alzheimer's disease. The scopolamine-heavy metals mixture rat Alzheimer's disease model is a newly created model to study the effects of EGb 761 oral therapy on cognitive performance and other Alzheimer's disease-like changes over a 28-day experimental period. This new Alzheimer's disease model provides better criteria for Alzheimer's disease hallmarks than the conventional scopolamine model. The EGb 761 reversed memory and learning deficits induced by the scopolamine-heavy metals mixture. These outcomes were linked to a more pronounced inhibitory effect on acetylcholinesterase, caspase-3, hippocampal amyloid-beta protein (Aβ1 - 42), phosphorylated tau protein counts, and proinflammatory cytokines (tumor necrosis factor-α and interleukin-1β) compared to the memantine-treated group. Furthermore, EGb 761 treatment considerably reduced lipid peroxidation (malondialdehyde) and improved reduced glutathione levels compared to memantine. Our results suggest EGb 761's potential in treating central nervous system disorders. It's a promising candidate for future Alzheimer's disease therapeutic exploration. This study also highlights the need for future research to focus on the positive benefits of herbal medicines.
Collapse
Affiliation(s)
- Essmat A H Allam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Abdel-Azim Assi
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Dalia M Badary
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Magda M Y Farrag
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mariam A Nicola
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
10
|
Babanzadeh R, Vafaei SY, Moghadam DA, Komaki A, Mohammadi M. Quercetin-loaded nanoemulsions prevent Scopolamine-induced neurotoxicity in male rats. Physiol Behav 2024; 277:114494. [PMID: 38360390 DOI: 10.1016/j.physbeh.2024.114494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/16/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Quercetin (QCT) is well-known as a neuroprotective agent due to its antioxidant capacities and reinstating mitochondrial functions. Scopolamine is commonly used as a model to induce Alzheimer's disease (AD-like) symptoms. The current study develops QCT-loaded nanoemulsion (QCT-NE) accompanied by evaluating its neuro-therapeutic effectiveness against SCO-induced neurotoxicity in male rats. The QCT-NE was prepared by the spontaneous emulsification technique and characterized by using particle size, zeta potential, drug loading, in vitro drug release behavior, and stability studies. In vivo studies were done on adult Wistar rats by applying the Morris water maze (MWM) test to study spatial memory and learning. The levels of lipid peroxidation and reduced glutathione were quantitatively determined to reveal the potential mechanism of SCO-induced oxidative stress. Finally, histological studies were performed using staining techniques. The QCT-NE particle size, zeta potential, polydispersity index (PDI), and DL were obtained at 172.4 ± 16.8 nm, -29 ± 0.26 mV, 0.3 ± 0.07, and 81.42 ± 9.14 %, respectively. The QCT and more effectively QCT-NE reduced the elevation of neurobehavioral abnormalities in the MWM test in SCO-exposed rats. The results of oxidative status showed that SCO significantly could increase the LPO and decrease the GSH levels in the rat's brain. However, QCT-NE treatment was more effective than free QCT to inhibit oxidative damage and was well correlated with histopathological findings. Taken together, QCT-NE, compared to QCT, was superior in ameliorating SCO-induced AD-like symptoms due to its better neuroprotective activity and can be considered a novel supplementary therapeutic agent in AD management.
Collapse
Affiliation(s)
- Reza Babanzadeh
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Yaser Vafaei
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Davood Ahmadi Moghadam
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojdeh Mohammadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
11
|
Samir SM, Hassan HM, Elmowafy R, ElNashar EM, Alghamdi MA, AlSheikh MH, Al-Zahrani NS, Alasiri FM, Elhadidy MG. Neuroprotective effect of ranolazine improves behavioral discrepancies in a rat model of scopolamine-induced dementia. Front Neurosci 2024; 17:1267675. [PMID: 38323121 PMCID: PMC10845649 DOI: 10.3389/fnins.2023.1267675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/15/2023] [Indexed: 02/08/2024] Open
Abstract
Background Ranolazine (Rn), an antianginal agent, acts in the central nervous system and has been used as a potential treatment agent for pain and epileptic disorders. Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases and the leading factor in dementia in the elderly. Aim We examined the impact of Rn on scopolamine (Sco)-induced dementia in rats. Methods Thirty-two albino male rats were divided into four groups: control, Rn, Sco, and Rn + Sco. Results A significant decrease in the escape latency in the Morris water maze test after pre-treatment with Rn explained better learning and memory in rats. Additionally, Rn significantly upregulated the activities of the antioxidant enzymes in the treated group compared to the Sco group but substantially reduced acetylcholinesterase activity levels in the hippocampus. Moreover, Rn dramatically reduced interleukin-1 β (IL-1β) and IL-6 and upregulated the gene expression of brain-derived neurotrophic factor (BDNF). Furthermore, in the Sco group, the hippocampal tissue's immunohistochemical reaction of Tau and glial factor activating protein (GFAP) was significantly increased in addition to the upregulation of the Caspase-3 gene expression, which was markedly improved by pre-treatment with Rn. The majority of pyramidal neurons had large vesicular nuclei with prominent nucleoli and appeared to be more or less normal, reflecting the all-beneficial effects of Rn when the hippocampal tissue was examined under a microscope. Conclusion Our findings indicated that Rn, through its antioxidative, anti-inflammatory, and anti-apoptotic effects, as well as the control of the expression of GFAP, BDNF, and Tau proteins, has a novel neuroprotective impact against scopolamine-induced dementia in rats.
Collapse
Affiliation(s)
- Shereen M. Samir
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Hend M. Hassan
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Rasha Elmowafy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Eman Mohamed ElNashar
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mansour Abdullah Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mona Hmoud AlSheikh
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Norah Saeed Al-Zahrani
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Faten Mohammed Alasiri
- Pharmacist in King Fahad Armed Forces Hospital Khamis Mushait, Khamis Mushait, Saudi Arabia
| | - Mona G. Elhadidy
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Medical Physiology, Faculty of Medicine, Al-Baha University, Al-Baha, Saudi Arabia
| |
Collapse
|
12
|
Moazzam F, Hatamian-Zarmi A, Ebrahimi Hosseinzadeh B, Khodagholi F, Rooki M, Rashidi F. Preparation and characterization of brain-targeted polymeric nanocarriers (Frankincense-PMBN-lactoferrin) and in-vivo evaluation on an Alzheimer's disease-like rat model induced by scopolamine. Brain Res 2024; 1822:148622. [PMID: 37832760 DOI: 10.1016/j.brainres.2023.148622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/11/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Experiments have demonstrated that frankincense may offer protection against scopolamine-induced Alzheimer's disease by mitigating cholinergic dysfunction and inhibiting inflammatory mediators. Nevertheless, its instability and limited water solubility lead to diminished medicinal efficacy. In this study, we utilized PMBN (poly [MPC-co-(BMA)-co-(MEONP)]) as a nanocarrier for targeted brain drug delivery of frankincense, employing lactoferrin as a ligand for precise targeting. Characterization of nanoparticle properties was conducted through FTIR and FESEM analysis, and the in-vitro drug release percentage from the nanoparticles was quantified. To induce Alzheimer's-like dementia in rats, scopolamine was intraperitoneally administered at a dose of 1 mg/kg/day for 14 days. Subsequently, behavioral assessments (Y-maze, passive avoidance test, tail suspension test) were performed, followed by evaluations of acetylcholinesterase (AChE), reduced glutathione (GSH), catalase (CAT), and brain histopathology at the conclusion of the treatment period. The results revealed that the nanoparticles had a size of 106.6 nm and a zeta potential of -3.8 mV. The maximum release of frankincense in the PBS environment from PMBN nanoparticles was 18.2 %, in accordance with the Peppas model. Behavioral tests indicated that targeted drug nanoparticles (F-PMBN-Lf) exhibited the capability to alleviate stress and depression while enhancing short-term memory in scopolamine-induced animals. Additionally, F-PMBN-Lf counteracted the scopolamine-induced elevation of AChE activity and GSH levels. However, it resulted in decreased activity of the antioxidant enzyme CAT compared to the scopolamine group. Histological analysis of brain tissue suggested that F-PMBN-Lf exerted a notable neuroprotective effect, preserving neuronal cells in contrast to the scopolamine-induced group. It appears that the polymer nanoparticles containing this plant extract have introduced a novel neuroprotective approach for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Farimah Moazzam
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Ashrafalsadat Hatamian-Zarmi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Bahman Ebrahimi Hosseinzadeh
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meisam Rooki
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Fatemehsadat Rashidi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Ostovan VR, Baberi N, Farokhi MR, Moezi L, Pirsalami F, Soukhaklari R, Moosavi M. Cholinergic deficit induced memory retrieval impairment and hippocampal CaMKII-alpha deregulation is counteracted by sub-chronic agmatine treatment in mice. Neurol Res 2023; 45:1091-1099. [PMID: 37733020 DOI: 10.1080/01616412.2023.2257417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/02/2023] [Indexed: 09/22/2023]
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative disease characterized by brain cholinergic dysfunction. Evidence suggests the impairment of memory retrieval phase in AD. It has been shown that CaMKII-α expressing neurons are selectively reduced in the hippocampus in AD brains. The present study aimed to investigate the effect of scopolamine on the memory retrieval phase and the hippocampal CaMKII-α signaling. In addition, the effect of sub-chronic administration of agmatine against scopolamine induced memory and possible hippocampal CaMKII-α deregulation was investigated in mice. Adult male NMRI mice were administered with agmatine at the doses of 5, 10, 20, 30 and 40 mg/kg/i.p. or saline for 11 days. Acquisition and retrieval tests of passive avoidance task were performed on days 10 and 11, respectively (30 Min following agmatine treatment). Scopolamine (1 mg/kg/i.p.) was administered once, 30 Min before retrieval test. Upon completion of the behavioral tasks, the hippocampi were isolated for western blot analysis to detect the phosphorylated and total levels of CaMKII-α and beta actin proteins. The results showed that scopolamine induced memory retrieval deficit and decreased the phosphorylated level of hippocampal CaMKII-α. Sub-chronic agmatine treatment at the dose of 40 mg/kg prevented scopolamine induced memory retrieval deficit and restored the level of hippocampal phosphorylated CaMKII-α. This study suggests that hippocampal CaMKII-α might play a role in scopolamine induced amnesia and sub-chronic agmatine prevents the impairing effect of scopolamine on the retrieval phase of memory and the phosphorylation of hippocampal CaMKII-α protein.
Collapse
Affiliation(s)
- Vahid Reza Ostovan
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Neurology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nahid Baberi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Neurology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Reza Farokhi
- Shiraz Neuroscience Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Moezi
- Department of Pharmacology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatema Pirsalami
- Department of Pharmacology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maryam Moosavi
- Nanomedicine and Nanobiology Research Center, Mohammad Rasoolullah (PBUH) Research Tower, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Hawiset T, Sriraksa N, Kamsrijai U, Praman S, Inkaew P. Neuroprotective effect of Tiliacora triandra (Colebr.) Diels leaf extract on scopolamine-induced memory impairment in rats. Heliyon 2023; 9:e22545. [PMID: 38107289 PMCID: PMC10724565 DOI: 10.1016/j.heliyon.2023.e22545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023] Open
Abstract
Alzheimer's disease is characterized by progressive memory loss caused from alterations in the central cholinergic system. While existing medications often have adverse effects, traditional use of Tiliacora triandra in Thailand shows its potential as a revitalizing neurotonic agent. This study explores the impact of T. triandra leaf extract on cognitive behaviors, neuronal density, and oxidative stress in male rats with scopolamine-induced cognitive impairment. Experimental groups composed of a control, vehicle, positive control meditation, and T. triandra extract-treated groups (100, 200, and 400 mg/kg BW) over 14 days, with scopolamine administration (i.p.) between days 8 and 14. Results showed significant enhancements in the discrimination ratio and spontaneous alteration behavior percentage during novel object recognition (NORT) and Y-maze tests for scopolamine-administered rats treated with T. triandra extract or donepezil. In contrast, open field test (OFT)-assessed spontaneous locomotor activity displayed no significant difference. Notably, acetylcholinesterase (AChE) activity and malondialdehyde (MDA) levels reduced significantly in scopolamine-treated rats with T. triandra extract or the positive control. Moreover, neuronal density in the hippocampal CA3 region, superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) activities increased significantly. However, catalase (CAT) activity exhibited no significant difference. In conclusion, T. triandra leaf extract shows promise in mitigating scopolamine-induced memory deficits, potentially attributed to increased neuronal density, inhibited AChE activity, reduced MDA levels, and enhanced antioxidant activities. This extract has potential as a therapeutic agent for Alzheimer's disease-associated memory impairment.
Collapse
Affiliation(s)
- Thaneeya Hawiset
- School of Medicine, Mae Fah Luang University, Muang, Chiang Rai, 57100, Thailand
| | - Napatr Sriraksa
- School of Medical Sciences, University of Phayao, Muang, Phayao, 56000, Thailand
- Unit of Excellence in The Pulmonary and Cardiovascular Health Care, University of Phayao, Muang, Phayao, 56000, Thailand
| | | | - Siwaporn Praman
- School of Medicine, Mae Fah Luang University, Muang, Chiang Rai, 57100, Thailand
| | - Prachak Inkaew
- School of Science, Mae Fah Luang University, Muang, Chiang Rai, 57100, Thailand
- Center of Chemical Innovation for Sustainability (CIS), Mae Fah Luang University, Chiang Rai, 57100, Thailand
| |
Collapse
|
15
|
Kim SB, Ryu HY, Nam W, Lee SM, Jang MR, Kwak YG, Kang GI, Song KS, Lee JW. The Neuroprotective Effects of Dendropanax morbifera Water Extract on Scopolamine-Induced Memory Impairment in Mice. Int J Mol Sci 2023; 24:16444. [PMID: 38003650 PMCID: PMC10671129 DOI: 10.3390/ijms242216444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
This study investigated the neuroprotective effects of Dendropanax morbifera leaves and stems (DMLS) water extract on scopolamine (SCO)-induced memory impairment in mice. First, we conducted experiments to determine the protective effect of DMLS on neuronal cells. Treatment with DMLS showed a significant protective effect against neurotoxicity induced by Aβ(25-35) or H2O2. After confirming the neuroprotective effects of DMLS, we conducted animal studies. We administered DMLS orally at concentrations of 125, 250, and 375 mg/kg for 3 weeks. In the Y-maze test, SCO decreased spontaneous alternation, but treatment with DMLS or donepezil increased spontaneous alternation. In the Morris water-maze test, the SCO-treated group showed increased platform reach time and decreased swim time on the target platform. The passive avoidance task found that DMLS ingestion increased the recognition index in short-term memory. Furthermore, memory impairment induced by SCO reduced the ability to recognize novel objects. In the Novel Object Recognition test, recognition improved with DMLS or donepezil treatment. In the mouse brain, except for the cerebellum, acetylcholinesterase activity increased in the SCO group and decreased in the DMLS and donepezil groups. We measured catalase and malondialdehyde, which are indicators of antioxidant effectiveness, and found that oxidative stress increased with SCO but was mitigated by DMLS or donepezil treatment. Thus, our findings suggest that ingestion of DMLS restored memory impairment by protecting neuronal cells from Aβ(25-35) or H2O2-induced neurotoxicity, and by reducing oxidative stress.
Collapse
Affiliation(s)
- Sung Bae Kim
- Korea Conformity Laboratories, Incheon 21999, Republic of Korea; (S.B.K.); (H.Y.R.); (W.N.); (S.M.L.); (G.I.K.); (K.S.S.)
| | - Hyun Yeoul Ryu
- Korea Conformity Laboratories, Incheon 21999, Republic of Korea; (S.B.K.); (H.Y.R.); (W.N.); (S.M.L.); (G.I.K.); (K.S.S.)
| | - Woo Nam
- Korea Conformity Laboratories, Incheon 21999, Republic of Korea; (S.B.K.); (H.Y.R.); (W.N.); (S.M.L.); (G.I.K.); (K.S.S.)
| | - So Min Lee
- Korea Conformity Laboratories, Incheon 21999, Republic of Korea; (S.B.K.); (H.Y.R.); (W.N.); (S.M.L.); (G.I.K.); (K.S.S.)
| | - Mi Ran Jang
- Huons Foodience Co., Ltd., Geumsan-gun 32724, Republic of Korea; (M.R.J.); (Y.G.K.)
| | - Youn Gil Kwak
- Huons Foodience Co., Ltd., Geumsan-gun 32724, Republic of Korea; (M.R.J.); (Y.G.K.)
| | - Gyoo Il Kang
- Korea Conformity Laboratories, Incheon 21999, Republic of Korea; (S.B.K.); (H.Y.R.); (W.N.); (S.M.L.); (G.I.K.); (K.S.S.)
| | - Kyung Seok Song
- Korea Conformity Laboratories, Incheon 21999, Republic of Korea; (S.B.K.); (H.Y.R.); (W.N.); (S.M.L.); (G.I.K.); (K.S.S.)
| | - Jae Won Lee
- Korea Conformity Laboratories, Incheon 21999, Republic of Korea; (S.B.K.); (H.Y.R.); (W.N.); (S.M.L.); (G.I.K.); (K.S.S.)
| |
Collapse
|
16
|
Wang H, Zhao T, Liu Z, Danzengquzhen, Cisangzhuoma, Ma J, Li X, Huang X, Li B. The neuromodulatory effects of flavonoids and gut Microbiota through the gut-brain axis. Front Cell Infect Microbiol 2023; 13:1197646. [PMID: 37424784 PMCID: PMC10327292 DOI: 10.3389/fcimb.2023.1197646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/09/2023] [Indexed: 09/10/2023] Open
Abstract
Recent investigations show that dietary consumption of flavonoids could potentially confer neuroprotective effects through a variety of direct and indirect mechanisms. Numerous flavonoids have been shown to cross the BBB and accumulate within the central nervous system (CNS). Some of these compounds purportedly counteract the accumulation and deleterious effects of reactive oxygen species, fostering neuronal survival and proliferation by inhibiting neuroinflammatory and oxidative stress responses. Moreover, several studies suggest that gut microbiota may participate in regulating brain function and host behavior through the production and modulation of bioactive metabolites. Flavonoids may shape gut microbiota composition by acting as carbon substrates to promote the growth of beneficial bacteria that produce these neuroprotective metabolites, consequently antagonizing or suppressing potential pathogens. By influencing the microbiota-gut-brain axis through this selection process, flavonoids may indirectly improve brain health. This review examines the current state of research into the relationship between bioactive flavonoids, gut microbiota, and the gut-brain axis.
Collapse
Affiliation(s)
- Haoran Wang
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Tingting Zhao
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Zhenjiang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Danzengquzhen
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
| | - Cisangzhuoma
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
| | - Jinying Ma
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
| | - Xin Li
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaodan Huang
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Bin Li
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
| |
Collapse
|
17
|
Seong HJ, Im AE, Kim H, Park N, Yang KY, Kim D, Nam SH. Production of Prunin and Naringenin by Using Naringinase from Aspergillus oryzae NYO-2 and Their Neuroprotective Properties and Debitterization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1655-1666. [PMID: 36629749 DOI: 10.1021/acs.jafc.2c06586] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Naringin is a flavanone glycoside in citrus fruits that has various biological functions. However, its bitterness affects the quality, economic value, and consumer acceptability of citrus products. Deglycosylation of naringin using naringinase decreases its bitterness and enhances its functional properties. In this study, eight microbial strains with naringinase activity were isolated from 33 yuzu-based fermented foods. Among them, naringinase from Aspergillus oryzae NYO-2, having the highest activity, was used to produce prunin and naringenin. Under optimal conditions, 19 mM naringin was converted to 14.06 mM prunin and 1.97 mM naringenin. The bitterness of prunin and naringenin was significantly decreased compared to naringin using the human bitter taste receptor TAS2R39. The neuroprotective effects of prunin and naringenin on human neuroblastoma SH-SY5Y cells treated with scopolamine were greater than that of naringin. These findings can widen the potential applications of deglycosylation of naringin to improve sensory and functional properties.
Collapse
Affiliation(s)
- Hyeon-Jun Seong
- Department of integrative food, bioscience, and biotechnology, Chonnam national university, Gwangju61186, South Korea
| | - Ae Eun Im
- Department of integrative food, bioscience, and biotechnology, Chonnam national university, Gwangju61186, South Korea
| | - Hayeong Kim
- Institute of Food Industrialization, Institutes of Green Bioscience and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do25354, South Korea
| | - Namhyeon Park
- Department of Nutrition, Dietetics, and Food Sciences, Utah State University, 8700 Old Main Hill, 750 North 1200 East, Logan, Utah84322-8700, United States
| | - Kwang-Yeol Yang
- Department of Applied Biology, College of Agriculture and Life Science, Chonnam National University, Gwangju61186, South Korea
| | - Doman Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang-gun, Gangwon-do25354, South Korea
| | - Seung-Hee Nam
- Department of integrative food, bioscience, and biotechnology, Chonnam national university, Gwangju61186, South Korea
- Institute of Agricultural and Life Science Technology, Chonnam National University, Gwangju61186, South Korea
| |
Collapse
|
18
|
Basta M, Saleh SR, Aly RG, Dief AE. Resveratrol ameliorates the behavioural and molecular changes in rats exposed to uninephrectomy: role of hippocampal SIRT1, BDNF and AChE. J Physiol Biochem 2022:10.1007/s13105-022-00937-x. [DOI: 10.1007/s13105-022-00937-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/25/2022] [Indexed: 12/11/2022]
Abstract
AbstractSubtle memory and cognitive changes may occur in uninephrectomized (Unix) patients long before the development of chronic kidney disease, such changes may be unnoticed. The dietary polyphenol, Resveratrol, displayed various neuroprotective effects, its role in chronic kidney disease is an area of intense studies. This work was designed to investigate the behavioural and molecular changes that may occur following 7 months of Unix in rats, and to determine whether Resveratrol intake can improve such pathology. Male Wistar rats were divided into three groups: sham operated, Unix and Unix group treated with Resveratrol (20 mg/kg/day). Rats were subjected to series of behavioural testing, different biochemical parameters along with RT-PCR and immunohistochemistry of the hippocampal tissue to track the development of functional or structural brain changes. Anxiety behaviour and reduced spatial memory performance were observed in rats 7 months post-nephrectomy; these deficits were remarkably reversed with Resveratrol. Among the species typical behaviour, burrowing was assessed; it showed significant impairment post-nephrectomy. Resveratrol intake was almost able to increase the burrowing behaviour. Decreased SIRT1 in immune-stained sections, oxidative stress, inflammatory changes, and increased AChE activity in hippocampal homogenates were found in Unix rats, and Resveratrol once more was capable to reverse such pathological changes. This work has investigated the occurrence of behavioural and structural brain changes 7 months following Unix and underlined the importance of Resveratrol to counterbalance the behavioural impairment, biochemical and brain pathological changes after uninephrectomy. These findings may raise the possible protective effects of Resveratrol intake in decreased kidney function.
Collapse
|
19
|
Patel P, Shah J. Vitamin D 3 supplementation ameliorates cognitive impairment and alters neurodegenerative and inflammatory markers in scopolamine induced rat model. Metab Brain Dis 2022; 37:2653-2667. [PMID: 36156759 DOI: 10.1007/s11011-022-01086-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022]
Abstract
A multifaceted approach can be effective for the treatment of dementia including the most common form, Alzheimer's disease (AD). However, currently, it involves only symptomatic treatment with cholinergic drugs. Beneficial effects of high Vitamin D3 levels or its intake in the prevention and treatment of cognitive disorders have been reported. Thus, the present study examined the preventive effect of Vitamin D3 (Calcitriol) supplementation on cognitive impairment and evaluated its impact on the accumulation or degradation of Aβ plaques. A single intraperitoneal injection of scopolamine was used to induce cognitive impairment in rats. Treatment of Vitamin D3 was provided for 21 days after the injection. Various behavioral parameters like learning, spatial memory and exploratory behavior, biochemical alterations in the brain homogenate and histology of the hippocampus were investigated. Our results indicated that scopolamine-induced rats depicted cognitive deficits with high Aβ levels and hyperphosphorylated tau proteins in the brain tissue, while Vitamin D supplementation could significantly improve the cognitive status and lower these protein levels. These results were supported by the histopathological and immunohistochemical staining of the hippocampal brain region. Furthermore, mechanistic analysis depicted that Vitamin D supplementation improved the Aβ protein clearance by increasing the neprilysin levels. It also reduced the accumulation of Aβ plaques by lowering neuroinflammation as well as oxidative stress. The present findings indicate that Vitamin D3 supplementation can ameliorate cognitive deficits and thereby delay AD progression by increasing Aβ plaque degradation, reducing inflammation and oxidative stress.
Collapse
Affiliation(s)
- Parmi Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 381 481, India
| | - Jigna Shah
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 381 481, India.
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382 481, India.
| |
Collapse
|
20
|
Lian B, Gu J, Zhang C, Zou Z, Yu M, Li F, Wu X, Zhao AZ. Protective effects of isofraxidin against scopolamine-induced cognitive and memory impairments in mice involve modulation of the BDNF-CREB-ERK signaling pathway. Metab Brain Dis 2022; 37:2751-2762. [PMID: 35921056 DOI: 10.1007/s11011-022-00980-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/04/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Isofraxidin is a coumarin compound mainly isolated from several traditional and functional edible plants beneficial for neurodegenerative diseases, including Sarcandra glabra and Apium graveolens, and Siberian Ginseng. OBJECTIVE This study aimed to assess effects of isofraxidin against memory impairments and cognition deficits in a scopolamine-induced mouse model. MATERIALS & METHODS Animals were randomly divided into 6 groups, control, vehicle, donepezil (10 mg/kg, p.o.), and isofraxidin (3, 10, and 30 mg/kg, p.o.). Isofraxidin or donepezil was administered for 44 days, once per day. The scopolamine insults (1 mg/kg, i.p.) was given from the 21st day, once per day. Morris water maze test and Y-maze test were used for the behavioral test. After that, brain samples were collected for analysis. RESULTS Firstly, isofraxidin significantly improved scopolamine-induced behavioral impairments and cognition deficits in Morris water maze and Y-maze test. Then, isofraxidin facilitated cholinergic activity via inhibiting acetylcholinesterase (AChE) activity. Besides, isofraxidin decreased lipid peroxidation level but enhanced levels of glutathione, glutathione peroxidase, and superoxide dismutase. Moreover, isofraxidin suppressed the expression of inflammatory mediators and cytokines. Further investigations showed that isofraxidin up-regulated expression of brain-derived neurotrophic factor (BDNF), and promoted phosphorylation of tropomyosin-related kinase B (TrkB), cyclic AMP-response element-binding protein (CREB), and extracellular signal-regulated kinase (ERK). DISCUSSION & CONCLUSIONS These results suggested that isofraxidin ameliorated scopolamine-induced cognitive and memory impairments, possibly through regulating AChE activity, suppressing oxidative stress and inflammatory response, and modulating BDNF-CREB-ERK pathways.
Collapse
Affiliation(s)
- Bingliang Lian
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Jingwen Gu
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Chen Zhang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Zhicong Zou
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Meng Yu
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Fanghong Li
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Xiaoli Wu
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| | - Allan Zijian Zhao
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| |
Collapse
|
21
|
Magni G, Riboldi B, Petroni K, Ceruti S. Flavonoids bridging the gut and the brain: intestinal metabolic fate, and direct or indirect effects of natural supporters against neuroinflammation and neurodegeneration. Biochem Pharmacol 2022; 205:115257. [PMID: 36179933 DOI: 10.1016/j.bcp.2022.115257] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/02/2022]
Abstract
In recent years, experimental evidence suggested a possible role of the gut microbiota in the onset and development of several neurodegenerative disorders, such as AD and PD, MS and pain. Flavonoids, including anthocyanins, EGCG, the flavonol quercetin, and isoflavones, are plant polyphenolic secondary metabolites that have shown therapeutic potential for the treatment of various pathological conditions, including neurodegenerative diseases. This is due to their antioxidant and anti-inflammatory properties, despite their low bioavailability which often limits their use in clinical practice. In more recent years it has been demonstrated that flavonoids are metabolized by specific bacterial strains in the gut to produce their active metabolites. On the other way round, both naturally-occurring flavonoids and their metabolites promote or limit the proliferation of specific bacterial strains, thus profoundly affecting the composition of the gut microbiota which in turn modifies its ability to further metabolize flavonoids. Thus, understanding the best way of acting on this virtuous circle is of utmost importance to develop innovative approaches to many brain disorders. In this review, we summarize some of the most recent advances in preclinical and clinical research on the neuroinflammatory and neuroprotective effects of flavonoids on AD, PD, MS and pain, with a specific focus on their mechanisms of action including possible interactions with the gut microbiota, to emphasize the potential exploitation of dietary flavonoids as adjuvants in the treatment of these pathological conditions.
Collapse
Affiliation(s)
- Giulia Magni
- Department of Pharmacological and Biomolecular Sciences - Università degli Studi di Milano - via Balzaretti, 9 - 20133 MILAN (Italy)
| | - Benedetta Riboldi
- Department of Pharmacological and Biomolecular Sciences - Università degli Studi di Milano - via Balzaretti, 9 - 20133 MILAN (Italy)
| | - Katia Petroni
- Department of Biosciences - Università degli Studi di Milano - via Celoria, 26 - 20133 MILAN (Italy)
| | - Stefania Ceruti
- Department of Pharmacological and Biomolecular Sciences - Università degli Studi di Milano - via Balzaretti, 9 - 20133 MILAN (Italy).
| |
Collapse
|
22
|
Abdelghany AK, El-Nahass ES, Ibrahim MA, El-Kashlan AM, Emeash HH, Khalil F. Neuroprotective role of medicinal plant extracts evaluated in a scopolamine-induced rat model of Alzheimer's disease. Biomarkers 2022; 27:773-783. [PMID: 35950787 DOI: 10.1080/1354750x.2022.2112975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BackgroundAlzheimer's disease is a debilitating neurological brain disease with memory impairment among the first signs. Scopolamine (SCO), a muscarinic receptor antagonist that disrupts cognition and memory acquisition, is considered a psychopharmacological AD model. We investigate the effectiveness of medicinal plants in mitigating the SCO-induced neurobehavioural damage in rats.Materials and MethodsAnimals were injected with Scopolamine hydrobromide trihydrate (2.2 mg/kg IP.) daily for 2 months. Each treatment group was administered one of four medicinal spice extracts (Nigella sativa, 400 mg/kg; rosemary, 200 mg/kg; sage, 600 mg/kg and ginseng;200 mg/kg 90 minutes after SCO injection. Animals were subjected to cognitive-behavioral tests (NOR, Y-maze, and MWM). After the experiment, we extracted the brains for histopathological examination and biochemical assessment for oxidative stress (levels of TT, CAT and TBARS) and gene expression of acetylcholinesterase and brain monoamines.ResultsAs expected, SCO treatment impaired memory and cognition, increased oxidative stress, decreased neurotransmitters, and caused severe neurodegenerative changes in the brain.ConclusionSurprisingly, these effects were measurably moderated by the administration of all four plant extracts, indicating a neuroprotective action that we suggest could alleviate AD disease manifestations.
Collapse
Affiliation(s)
- Asmaa K Abdelghany
- Animal and Poultry Management and Wealth Development Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - El-Shymaa El-Nahass
- Pathology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University
| | - Akram M El-Kashlan
- Biochemistry Department, Faculty of Pharmacy, University of Sadat City, Monufia, Egypt
| | - H H Emeash
- Animal and Poultry Management and Wealth Development Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Fatma Khalil
- Animal and Poultry Management and Wealth Development Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| |
Collapse
|
23
|
Chen Y, Li J, Shi J, Ning D, Feng J, Lin W, He F, Xie Z. Ipriflavone suppresses NLRP3 inflammasome activation in host response to biomaterials and promotes early bone healing. J Clin Periodontol 2022; 49:814-827. [PMID: 35569032 DOI: 10.1111/jcpe.13647] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/26/2022] [Accepted: 05/10/2022] [Indexed: 12/23/2022]
Abstract
AIM Emerging studies have shown that immune response to biomaterial implants plays a central role in bone healing. Ipriflavone is clinically used for osteoporosis. However, the mechanism of ipriflavone in immune response to implants in early stages of osseointegration remains unclear. In this study, we aimed to investigate the potential role of ipriflavone in early bone healing process and uncover the underlying mechanism. MATERIALS AND METHODS We carried out histological examination as well as analysis of proinflammatory cytokines and NLRP3 inflammasome activation in a tibial implantation mouse model with intra-peritoneal injection of ipriflavone. In addition, we explored the mechanism of ipriflavone in the regulation of NLRP3 inflammasome activation in macrophages. RESULTS In vivo, ipriflavone ameliorated host inflammatory response related to NLRP3 inflammasome activation at implantation sites, characterized by reductions of inflammatory cell infiltration and proinflammatory cytokine interleukin-1β levels. Ipriflavone treatment also showed beneficial effects on early osseointegration. Further investigations of the molecular mechanism showed that the suppression of NLRP3 inflammasome acts upstream of NLRP3 oligomerization through abrogating the production of reactive oxygen species. CONCLUSIONS These results revealed an anti-inflammatory role of ipriflavone in NLRP3 inflammasome activation through improving mitochondrial function. This study provides a new strategy for the development of immune-regulated biomaterials and treatment options for NLRP3-related diseases.
Collapse
Affiliation(s)
- Yun Chen
- School/Hospital of Stomatology, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Jia Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, PR China
| | - Jue Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, PR China
| | - Dandan Ning
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Jianying Feng
- School/Hospital of Stomatology, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Weiwei Lin
- School/Hospital of Stomatology, Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Fuming He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, PR China
| | - Zhijian Xie
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, PR China
| |
Collapse
|
24
|
Anoush M, Pourmansouri Z, Javadi R, GhorbanPour B, Sharafi A, Mohamadpour H, jafari anarkooli I, Andalib S. Clavulanic Acid: A Novel Potential Agent in Prevention and Treatment of Scopolamine-Induced Alzheimer's Disease. ACS OMEGA 2022; 7:13861-13869. [PMID: 35559146 PMCID: PMC9088895 DOI: 10.1021/acsomega.2c00231] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/29/2022] [Indexed: 05/13/2023]
Abstract
Background and Aim: Alzheimer's disease (AD) is the most common form of dementia in the elderly. It is characterized as a multifaced disorder with a greater genetic contribution. The contribution of many genes such as BDNF, Sirtuin 6, and Seladin 1 has been reported in the pathogenesis of AD. Current therapies include acetylcholinesterase inhibitors and N-methyl-d-aspartate receptor antagonists, which are only temporarily beneficial. Therefore, it seems that more studies should be conducted to determine the exact mechanisms of drugs to deal with the diseases' multifactorial features that we face. Methods: In this study, 42 adult rats were randomly divided into 7 groups and received drugs intraperitoneally and orally according to the protocol as follows: scopolamine group, clavulanic acid group, memantine group, scopolamine + memantine group, clavulanic acid pre- and post-treatment, and normal saline group. The Morris water maze method was performed to evaluate the spatial memory of animals, and the terminal deoxynucleotidyl transferase dUTP nick end labeling assay and real-time polymerase chain reaction were performed to study neuronal cell apoptosis and gene expression, respectively. Results: Significant differences were observed in the spatial memory of rats that received clavulanic acid prophylactically compared to the Alzheimer's model on the day of the test. Moreover, the results obtained during the training showed that both memantine and clavulanic acid improved spatial memory by increasing the time of rats present in the platform position and by reducing the swimming time in the scopolamine-induced Alzheimer's group. Besides, rats that received clavulanic acid and memantine had a greater percentage of healthy cells in comparison with the scopolamine-induced Alzheimer's group; however, the results were more significant for clavulanic acid. Furthermore, the expressions of BDNF, Seladin 1, and Sirtuin 6 as neuroprotective target genes were modified after clavulanic acid and memantine administrations; similarly, the results obtained from clavulanic acid were more significant. Conclusion: The results show that the administration of clavulanic acid before and after the use of scopolamine can reduce the percentage of apoptotic cells in the hippocampus and also improve the parameters related to learning and spatial memory; however, its effect in the prophylactic state was stronger. The results obtained from memantine revealed that it has neuroprotective potency against AD; however, clavulanic acid had a greater effect. Also, with increased expression of the neuroprotective genes, clavulanic acid could be considered as an option in the upcoming preclinical and clinical research about Alzheimer's disease.
Collapse
Affiliation(s)
- Mahdieh Anoush
- Department
of Pharmacology and toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 4515613191, Iran
| | - Zeinab Pourmansouri
- Department
of Pharmacology, School of Medicine, Zanjan
University of Medical Sciences, Zanjan 4515613191, Iran
| | - Rafi Javadi
- Department
of Pharmacology and toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 4515613191, Iran
| | - Benyamin GhorbanPour
- Department
of Pharmacology and toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 4515613191, Iran
| | - Ali Sharafi
- Zanjan
Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan 4515613191, Iran
| | - Hamed Mohamadpour
- Department
of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 4515613191, Iran
| | - Iraj jafari anarkooli
- Department
of Biology and Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan 4515613191, Iran
| | - Sina Andalib
- Department
of Pharmacology and toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 4515613191, Iran
- Phone: +98(241)-427-3637.
Fax: +98(241)-427-3639. E-mail: ,
| |
Collapse
|
25
|
Role of Cholinergic Signaling in Alzheimer's Disease. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061816. [PMID: 35335180 PMCID: PMC8949236 DOI: 10.3390/molecules27061816] [Citation(s) in RCA: 229] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 12/27/2022]
Abstract
Acetylcholine, a neurotransmitter secreted by cholinergic neurons, is involved in signal transduction related to memory and learning ability. Alzheimer’s disease (AD), a progressive and commonly diagnosed neurodegenerative disease, is characterized by memory and cognitive decline and behavioral disorders. The pathogenesis of AD is complex and remains unclear, being affected by various factors. The cholinergic hypothesis is the earliest theory about the pathogenesis of AD. Cholinergic atrophy and cognitive decline are accelerated in age-related neurodegenerative diseases such as AD. In addition, abnormal central cholinergic changes can also induce abnormal phosphorylation of ttau protein, nerve cell inflammation, cell apoptosis, and other pathological phenomena, but the exact mechanism of action is still unclear. Due to the complex and unclear pathogenesis, effective methods to prevent and treat AD are unavailable, and research to explore novel therapeutic drugs is various and active in the world. This review summaries the role of cholinergic signaling and the correlation between the cholinergic signaling pathway with other risk factors in AD and provides the latest research about the efficient therapeutic drugs and treatment of AD.
Collapse
|
26
|
Hussien HM, Ghareeb DA, Ahmed HEA, Hafez HS, Saleh SR. Pharmacological implications of ipriflavone against environmental metal-induced neurodegeneration and dementia in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:65349-65362. [PMID: 34235690 DOI: 10.1007/s11356-021-15193-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Long-term exposure to environmental neurotoxic metals is implicated in the induction of dementia and cognitive decline. The present study aims to illustrate the therapeutic role of ipriflavone as a synthetic isoflavone against environmental metal-induced cognitive impairment in rats. Dementia was induced by a mixture of aluminum, cadmium, and fluoride for 90 days followed by ipriflavone for a further 30 days. Metal-treated animals exhibited abnormal behaviors in the Morris water maze task. Neuropathological biomarkers including oxidative stress (TBARS, NO, SOD, GPX, GST, and GSH), inflammation (TNF- α, IL-6, and IL-1β), neurotransmission (AChE and MAO), and insulin resistance (insulin, insulin receptor, and insulin-degrading enzyme) were altered, which consequently elevated the level of amyloid-β42 and tau protein in the hippocampus tissues inducing neuronal injury. Ipriflavone significantly (P < 0.05) ameliorated the neurobehavioral abnormalities and the cognitive dysfunction biomarkers via antioxidant/anti-inflammatory mechanism. Moreover, ipriflavone downregulated the mRNA expression level of amyloid precursor protein and tau protein, preventing amyloid plaques and neurofibrillary tangle aggregation at P < 0.05. A molecular docking study revealed that ipriflavone has a potent binding affinity towards AChE more than donepezil and acts as a strong AChE inhibitor. Our data concluded that the therapeutic potential of ipriflavone against dementia could provide a new strategy in AD treatment.
Collapse
Affiliation(s)
- Hend M Hussien
- Department of Pharmacology and Therapeutics Department, Faculty of Pharmacy, Pharos University, Canal El Mahmoudia Street, Smouha, Sidi Gaber, P.O. Box 37, Alexandria, Egypt.
| | - Doaa A Ghareeb
- Biological Screening and Preclinical Trial Laboratory, Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
- Center of Excellency for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, Egypt
| | - Hany E A Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Hani S Hafez
- Zoology Department, Faculty of Science, Suez University, Suez, Egypt
| | - Samar R Saleh
- Biological Screening and Preclinical Trial Laboratory, Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
- Center of Excellency for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, Egypt
| |
Collapse
|
27
|
Shaban NZ, Yehia SA, Awad D, Shaban SY, Saleh SR. A Titanium (IV)-Dithiophenolate Complex and Its Chitosan Nanocomposite: Their Roles towards Rat Liver Injuries In Vivo and against Human Liver Cancer Cell Lines. Int J Mol Sci 2021; 22:ijms222011219. [PMID: 34681878 PMCID: PMC8540501 DOI: 10.3390/ijms222011219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 01/01/2023] Open
Abstract
Titanium (IV)–dithiophenolate complex chitosan nanocomposites (DBT–CSNPs) are featured by their antibacterial activities, cytotoxicity, and capacity to bind with DNA helixes. In this study, their therapeutic effects against rat liver damage induced by carbon tetrachloride (CCl4) and their anti-proliferative activity against human liver cancer (HepG2) cell lines were determined. Results of treatment were compared with cisplatin treatment. Markers of apoptosis, oxidative stress, liver functions, and liver histopathology were determined. The results showed that DBT–CSNPs and DBT treatments abolished liver damage induced by CCl4 and improved liver architecture and functions. DNA fragmentation, Bax, and caspase-8 were reduced, but Bcl-2 and the Bcl-2/Bax ratios were increased. However, there was a non-significant change in the oxidative stress markers. DBT–CSNPs and DBT inhibited the proliferation of HepG2 cells by arresting cells in the G2/M phase and inducing cell death. DBT–CSNPs were more efficient than DBT. Low doses of DBT and DBT–CSNPs applied to healthy rats for 14 days had no adverse effect. DBT and DBT–CSNP treatment gave preferable results than the treatment with cisplatin. In conclusion, DBT–CSNPs and DBT have anti-apoptotic activities against liver injuries and have anti-neoplastic impacts. DBT–CSNPs are more efficient. Both compounds can be used in pharmacological fields.
Collapse
Affiliation(s)
- Nadia Z. Shaban
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt; (S.A.Y.); (D.A.); (S.R.S.)
- Correspondence: ; Tel.: +20-1227425785; Fax: +2-(03)-3911794
| | - Salah A. Yehia
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt; (S.A.Y.); (D.A.); (S.R.S.)
| | - Doaa Awad
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt; (S.A.Y.); (D.A.); (S.R.S.)
| | - Shaban Y. Shaban
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Samar R. Saleh
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt; (S.A.Y.); (D.A.); (S.R.S.)
| |
Collapse
|
28
|
The Beneficial Role of Natural Endocrine Disruptors: Phytoestrogens in Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3961445. [PMID: 34527172 PMCID: PMC8437597 DOI: 10.1155/2021/3961445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/17/2021] [Indexed: 01/14/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia with a growing incidence rate primarily among the elderly. It is a neurodegenerative, progressive disorder leading to significant cognitive loss. Despite numerous pieces of research, no cure for halting the disease has been discovered yet. Phytoestrogens are nonestradiol compounds classified as one of the endocrine-disrupting chemicals (EDCs), meaning that they can potentially disrupt hormonal balance and result in developmental and reproductive abnormalities. Importantly, phytoestrogens are structurally, chemically, and functionally akin to estrogens, which undoubtedly has the potential to be detrimental to the organism. What is intriguing, although classified as EDCs, phytoestrogens seem to have a beneficial influence on Alzheimer's disease symptoms and neuropathologies. They have been observed to act as antioxidants, improve visual-spatial memory, lower amyloid-beta production, and increase the growth, survival, and plasticity of brain cells. This review article is aimed at contributing to the collective understanding of the role of phytoestrogens in the prevention and treatment of Alzheimer's disease. Importantly, it underlines the fact that despite being EDCs, phytoestrogens and their use can be beneficial in the prevention of Alzheimer's disease.
Collapse
|
29
|
Kulkarni UD, Kumari Kamalkishore M, Vittalrao AM, Kumar Siraganahalli Eshwaraiah P. Cognition enhancing abilities of vitamin D, epalrestat and their combination in diabetic rats with and without scopolamine induced amnesia. Cogn Neurodyn 2021; 16:483-495. [PMID: 35401868 PMCID: PMC8934839 DOI: 10.1007/s11571-021-09718-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/29/2021] [Accepted: 09/02/2021] [Indexed: 11/28/2022] Open
Abstract
Persistent hyperglycaemia and scopolamine were used to inflict amnesia in rats. Chronic hyperglycaemia causes metabolic impairment, neuronal dysfunction and oxidative stress causing cognitive impairment. This study aimed to determine anti amnesic activities of vitamin D, epalrestat and their combination against diabetes and scopolamine induced cognitive dysfunction. A total of eighty-eight Wistar albino rats, eleven groups, and 8 rats/Gr., were used. Type 2 diabetes mellitus was induced in all groups, except Gr.1 which was treated with 2 ml normal saline. Gr. 2 to 11 by feeding high fat diet for 28 days followed by single dose streptozotocin 35 mg/kg i.p. Hyperglycemic rats were screened with blood sugar level > 200 mg/dL. Gr. 2 rats were treated with only streptozotocin and Gr. 3 to 6 were treated with streptozotocin and test drugs donepezil 1 mg/kg, vitamin D, 27 mcg/kg, epalrestat 57 mg/kg, vitamin D + epalrestat, per oral, respectively. Gr. 7 rats were treated with only streptozotocin + scopolamine and all others from Gr. 8 to 11 were treated with streptozotocin + scopolamine and donepezil, vitamin D, epalrestat, vitamin D + epalrestat respectively. The gold standard behavioural tests were conducted by using Morris water maze and passive avoidance paradigms after 30–60 min of inj. scopolamine, 0.5 mg/kg, intra-peritoneal. Hippocampal tissue was taken for histopathological and biochemical evaluation. Rats treated with donepezil, vitamin D, epalrestat and vitamin D + epalrestat showed significant improvement in behavioural, biochemical and histopathological parameters as compared to streptozotocin and (streptozotocin + scopolamine) treated rats. This study underscores cognition enhancing abilities of vitamin D and epalrestat, and their combination in diabetic rats with and without scopolamine.
Collapse
Affiliation(s)
- Utkarsha D. Kulkarni
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| | - Meena Kumari Kamalkishore
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| | - Amberkar Mohanbabu Vittalrao
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| | | |
Collapse
|
30
|
Saleh SR, Masry AM, Ghareeb DA, Newairy ASA, Sheta E, Maher AM. Trichoderma reesei fungal degradation boosted the potentiality of date pit extract in fighting scopolamine-induced neurotoxicity in male rats. Sci Rep 2021; 11:14872. [PMID: 34290261 PMCID: PMC8295356 DOI: 10.1038/s41598-021-94058-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
Date pits are nutritious by-products, containing high levels of indigestible carbohydrates and polyphenols. To maximize the biological effects of the active ingredients, the hard shell of the polysaccharide must be degraded. Therefore, the current study aimed to assess the protective potentials of date pits extract (DP) and fungal degraded date pits extract (FDDP) against scopolamine (SCO)-induced neurodegeneration in male rats. Date pits were subjected to fungal degradation and extraction, followed by the measurement of phytochemicals and free radical scavenging activities. Forty-two adult Sprague-Dawley male rats were divided into seven groups: three control groups administered with either saline, DP or FDDP; four groups with neurodegeneration receiving SCO (ip 2 mg/kg/day, SCO group) with no treatment, SCO with DP (oral 100 mg/kg/day, DP + SCO group), SCO with FDDP (oral, 100 mg/kg/day, FDDP + SCO group), and SCO with donepezil (DON, oral, 2.25 mg/kg/day, DON + SCO group). The treatment duration was 28 days, and in the last 14 days, SCO was administered daily. Morris water maze test, acetylcholine esterase activity, oxidative stress, markers of inflammation and amyloidogenesis, and brain histopathology were assessed.
Collapse
Affiliation(s)
- Samar R Saleh
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
- Bioscreening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
- Pharmaceutical and Fermentation Industries Development Centre, The City of Scientific Research and Technological Applications, Alexandria, Egypt.
| | - Asmaa M Masry
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Doaa A Ghareeb
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- Bioscreening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
- Pharmaceutical and Fermentation Industries Development Centre, The City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Al-Sayeda A Newairy
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Eman Sheta
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Adham M Maher
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| |
Collapse
|
31
|
Mali KK, Sutar GV, Dias RJ, Devade OA. Evaluation of Nootropic Activity of Limonia acidissima Against Scopolamine-induced Amnesia in Rats. Turk J Pharm Sci 2021; 18:3-9. [PMID: 33631923 DOI: 10.4274/tjps.galenos.2019.30316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Objectives The present study aimed to evaluate the nootropic activity of Limonia acidissima in rats. Materials and Methods Methanolic extract of Limonia acidissima was used to evaluate nootropic activity, piracetam (200 mg/kg, i.p.) was used as a standard, and scopolamine (1 mg/kg, i.p.) was used to induce amnesia. The effect of drugs on learning and memory in rats was evaluated by using the Y-maze task and elevated plus maze on scopolamine-induced amnesia models. Locomotor activity was performed using an actophotometer. Also, levels of acetylcholinestrease, including histopathological examination of rat brains, were assessed. Results Methanolic extract of Limonia acidissima showed increased alteration of the behavior response and percentage spontaneous alteration with the Y-maze task. In the elevated plus maze scopolamine-induced amnesia model, methanolic extract of Limonia acidissima showed a decrease in transfer latency, which is indicative of cognition improvement. Methanolic extract increased locomotor activity in rats and decreased the levels of acetylcholinestrease enzyme significantly. A histopathological study with both low and high doses of extract showed effective regenerative scores as compared to normal control, negative control and standard treatment. Conclusion The results suggested that the administration of methanolic extract of Limonia acidissima enhances learning and memory in different experimental models. The histopathological study revealed the neuroprotective property of the extract. The study indicates that the extract may be used in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Kailas K Mali
- Adarsh College of Pharmacy, Department of Pharmacology, Vita, Maharashtra, India
| | - Guruprasad V Sutar
- Annasaheb Dange College of B-Pharmacy, Department of Pharmacology, Astha, Maharashtra, India
| | - Remeth J Dias
- Government College of Pharmacy, Karad, Maharashtra, India
| | - Omkar A Devade
- Adarsh College of Pharmacy, Department of Pharmacology, Vita, Maharashtra, India
| |
Collapse
|
32
|
Shen H, Zheng Y, Chen R, Huang X, Shi G. Neuroprotective effects of quercetin 3-O-sophoroside from Hibiscus rosa-sinensis Linn. on scopolamine-induced amnesia in mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
33
|
Wen K, Fang X, Yang J, Yao Y, Nandakumar KS, Salem ML, Cheng K. Recent Research on Flavonoids and their Biomedical Applications. Curr Med Chem 2021; 28:1042-1066. [PMID: 32660393 DOI: 10.2174/0929867327666200713184138] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 02/14/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
Abstract
Flavonoids, commonly found in various plants, are a class of polyphenolic compounds having a basic structural unit of 2-phenylchromone. Flavonoid compounds have attracted much attention due to their wide biological applications. In order to facilitate further research on the biomedical application of flavonoids, we surveyed the literature published on the use of flavonoids in medicine during the past decade, documented the commonly found structures in natural flavonoids, and summarized their pharmacological activities as well as associated mechanisms of action against a variety of health disorders including chronic inflammation, cancer, cardiovascular complications and hypoglycemia. In this mini-review, we provide suggestions for further research on the biomedical applications of flavonoids.
Collapse
Affiliation(s)
- Kangmei Wen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaochuan Fang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Junli Yang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yongfang Yao
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | | | | | - Kui Cheng
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
34
|
Dual prophylactic/therapeutic potential of date seed, and nigella and olive oils-based nutraceutical formulation in rats with experimentally-induced Alzheimer's disease: A mechanistic insight. J Chem Neuroanat 2020; 110:101878. [PMID: 33144183 DOI: 10.1016/j.jchemneu.2020.101878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 11/21/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with a multifactorial etiology and significantly increasing incidence during the last decade. Hence, developing an effective therapy is crucial for public health. The current study aimed to examine the dual prophylactic/therapeutic potential of a nutraceutical formula based on aqueous extract of roasted date seeds, and nigella and virgin-olive oils against experimentally-induced Alzheimer's disease in rats. Alzheimer's disease-like pathology was induced in male Wistar rats using oral CuSO4 (200 mg/Kg/day for two months). The nutraceutical formula was given orally to experimental animals (10 mL/kg/d) for 14 days before (as prophylaxis) and after Alzheimer's disease induction and its therapeutic effect in both cases is tested in comparison to donepezil (0.5 mg/kg/d). The nutraceutical formula was found to ameliorate the CuSO4-induced neuronal damage and regenerate the affected hippocampus tissue and significantly improvemed in learning ability. The formula was also effective in decreasing brain amyloid-β, tau protein, TNF-α level, iNOS level in hippocampus, oxidative stress level, and inhibiting acetylcholinesterase activity and expression in brain and hippocampus, respectively. Further, an increase in GSH levels, activities of SOD, and GST and levels of hippocampus ADAM 17 and brain phospholipids was observed. In conclusion, the studied nutraceutical formula is proved to be effective in ameliorating Alzheimer's neurodegenerative progression with added-prophylactic potential.
Collapse
|
35
|
Yadang FSA, Nguezeye Y, Kom CW, Betote PHD, Mamat A, Tchokouaha LRY, Taiwé GS, Agbor GA, Bum EN. Scopolamine-Induced Memory Impairment in Mice: Neuroprotective Effects of Carissa edulis (Forssk.) Valh (Apocynaceae) Aqueous Extract. Int J Alzheimers Dis 2020; 2020:6372059. [PMID: 32934845 PMCID: PMC7479457 DOI: 10.1155/2020/6372059] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/30/2020] [Accepted: 06/29/2020] [Indexed: 01/30/2023] Open
Abstract
Alzheimer's disease is first characterised by memory loss related to the central cholinergic system alteration. Available drugs provide symptomatic treatment with known side effects. The present study is aimed to evaluate the properties of Carissa edulis aqueous extract on a Scopolamine mouse model as an attempt to search for new compounds against Alzheimer's disease-related memory impairment. Memory impairment was induced by administration of 1 mg/kg (i.p.) of Scopolamine for 7 days, and mice were treated with Carissa edulis aqueous extract. Behavioural studies were performed using T-maze and novel object recognition task for assessing learning and memory and open field test for locomotion. Brain acetylcholinesterase enzyme (AChE) activity was measured to evaluate the central cholinergic system. The level of MDA, glutathione, and catalase activity were measured to evaluate the oxidative stress level. Administration of Scopolamine shows a decrease in learning and memory enhancement during behavioural studies. A significant decrease in the time spent in the preferred arm of T-maze, in the time spent in the exploration of the novel object, and in the discrimination index of the familiar object was also observed. The significant impairment of the central cholinergic system was characterised in mice by an increase of AChE activity to 2.55 ± 0.10 mol/min/g with an increase in oxidative stress. Treatment with the different doses of Carissa edulis (62.8, 157, 314, and 628 mg/kg orally administrated) significantly increased the memory of mice in T-maze and novel object recognition tests and also ameliorated locomotion of mice in the open field. Carissa edulis aqueous extract treatment also decreases the AChE activity and brain oxidative stress. It is concluded that administration of Carissa edulis aqueous extract enhances memory of mice by reducing AChE activity and demonstrating antioxidant properties. This could be developed into a novel therapy against memory impairment related to Alzheimer's disease.
Collapse
Affiliation(s)
- Fanta Sabine Adeline Yadang
- Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, P.O. Box 13033, Yaounde, Cameroon
- Department of Biological Sciences, Faculty of Science, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon
| | - Yvette Nguezeye
- Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, P.O. Box 13033, Yaounde, Cameroon
- Department of Biological Sciences, Faculty of Science, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon
| | - Christelle Wayoue Kom
- Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, P.O. Box 13033, Yaounde, Cameroon
| | - Patrick Herve Diboue Betote
- Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, P.O. Box 13033, Yaounde, Cameroon
| | - Amina Mamat
- Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, P.O. Box 13033, Yaounde, Cameroon
- Department of Biological Sciences, Faculty of Science, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon
| | - Lauve Rachel Yamthe Tchokouaha
- Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, P.O. Box 13033, Yaounde, Cameroon
| | - Germain Sotoing Taiwé
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Gabriel Agbor Agbor
- Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, P.O. Box 13033, Yaounde, Cameroon
| | - Elisabeth Ngo Bum
- Department of Biological Sciences, Faculty of Science, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon
| |
Collapse
|
36
|
Yassa NW, Khalil S, Saleh SR, Ghareeb DA, El Demellawy MA, El-Sayed MM. Ipriflavone and Ipriflavone loaded albumin nanoparticles reverse lipopolysaccharide induced neuroinflammation in rats. PLoS One 2020; 15:e0237929. [PMID: 32822403 PMCID: PMC7446929 DOI: 10.1371/journal.pone.0237929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/06/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Neuroinflammation causes neurodegenerative conditions like Alzheimer's disease (AD). Ipriflavone (IP), therapeutic compound to postmenopausal osteoporosis, has limited estrogenic activity and is accounted as AChE inhibitor. The developing of drug delivery systems to enable drug targeting to specific sites increases the drug therapeutic effect. OBJECTIVE The aim of the present study was to formulate and evaluate ipriflavone loaded albumin nanoparticles (IP-Np) along with free ipriflavone against lipopolysaccharide (LPS) induced neuroinflammation in rats. METHODS Neuroinflammation was induced by intra-peritoneal (i.p) injection of LPS (250 μg/kg rat body weight) then treatments were conducted with (1) ipriflavone at two doses 50 mg/kg and 5 mg/kg, (2) IP-Np (5 mg ipriflavone/kg) or (3) IP-Np coated with polysorbate 80 (IP-Np-T80) (5 mg ipriflavone/kg). The alteration of the inflammatory response in male adult Wistar rats' brain hippocampus was investigated by examining associated indices using biochemical and molecular analyses. RESULTS A significant upsurge in inflammatory mediators and decline in antioxidant status were observed in LPS-induced rats. In one hand, ipriflavone (50 mg/kg), IP-Np and IP-Np-T80 ameliorated LPS induced brain hippocampal inflammation where they depreciated the level of pro-inflammatory cytokines (TNF-α, IL-6, IL-1β) and enhanced antioxidant status. In another hand, ipriflavone at dose (5 mg/kg) didn't show the same therapeutic effect. CONCLUSION The current study provides evidence for the potential neuroprotective effect of ipriflavone (50 mg/kg) against LPS-induced neuroinflammation in rats through its anti-inflammatory and antioxidant activities. Moreover, nanoparticles significantly attenuated neuroinflammation in concentration lower than the effective therapeutic dose of free drug ten times.
Collapse
Affiliation(s)
- Nashwa W. Yassa
- Bioscreening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
- Biochemistry Department, Faulty of Science, Alexandria University, Alexandria, Egypt
| | - Sofia Khalil
- Biochemistry Department, Faulty of Science, Alexandria University, Alexandria, Egypt
| | - Samar R. Saleh
- Bioscreening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
- Biochemistry Department, Faulty of Science, Alexandria University, Alexandria, Egypt
- Pharmaceutical and Fermentation Industries Development Centre, The City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Doaa A. Ghareeb
- Bioscreening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
- Biochemistry Department, Faulty of Science, Alexandria University, Alexandria, Egypt
- Pharmaceutical and Fermentation Industries Development Centre, The City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Maha A. El Demellawy
- Pharmaceutical and Fermentation Industries Development Centre, The City of Scientific Research and Technological Applications, Alexandria, Egypt
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, Alexandria, Egypt
| | - Mohamed M. El-Sayed
- Bioscreening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
- Biochemistry Department, Faulty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
37
|
Gad RA, Abdel-Reheim ES, Shehab GMG, Hafez HS, Abuelsaad ASA. Evaluation of Insulin Resistance Induced Brain Tissue Dysfunction in Obese Dams and their Neonates: Role of Ipriflavone Amelioration. Comb Chem High Throughput Screen 2020; 24:767-780. [PMID: 32772909 DOI: 10.2174/1386207323666200808181148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nonalcoholic steatohepatitis (NASH) is associated with activation of liver fibrogenesis and predisposes to cirrhosis and associated morbi-mortality. A high fat high cholesterol diet (HFD) was provided to female albino rats to establish a NASH model. It is well known that the offspring of obese mothers have an increased risk of obesity and diabetes. The present study aimed at evaluating the ameliorative effects of ipriflavone (IP) as a natural food supplement on lipid metabolism, improving insulin sensitivity, reducing oxidative stress and inflammation, modifying metabolic risk factors and/or reduce brain damage, in both neonates and their dams. MATERIALS AND METHODS The present aim was achieved by evaluating the oxidative stress and antioxidant defense system biomarkers, as thiobarbituric acid reactive substances (TBARS) and reduced glutathione (GSH), catalase, and superoxide dismutase (SOD) activities. In addition, the neurotransmitter acetylcholine (Ach) and acetylcholine esterase (AchE) activities, as well as levels of the apolipoprotein E4 (APOE4); β-secretase, hyper phosphor-tau and β-amyloid 42; 3-hydroxy- 3-methyl glutaryl coenzyme A reductase (HMG CoA R)" and COX-II by immunoblotting assays in the brain tissue of neonates and their dams in all the studied groups. RESULTS A very significant amelioration in acetylcholine and acetylcholine esterase neurotransmitters, Alzheimer's makers (β-amyloid), antioxidants (reduced glutathione (GSH) contents, catalase (CAT) and superoxide dismutase (SOD); and inflammatory cytokines in NASH model is observed upon administrating ipriflavone (IP) as a natural food supplement. The multifunctional activities of ipriflavone as an antioxidant, anti-inflammatory and anti-insulin resistance drug were discussed and correlated with other investigations. CONCLUSION Regarding steatohepatitis, the present study confirmed the anti-inflammatory effects of the ipriflavone (IP). Therefore, future studies should focus on hepatic fatty acid uptake, hepatic lipogenesis, and fatty acid oxidation and the role of IP in regulating hepatic fat metabolism. In addition, natural products like IP could be combined with the highly used pharmaceutical drugs to reduce the side effects of nonalcoholic steatohepatitis, and minimize progression of dementia. Moreover, the present study supports further attempts to heal the neural dysfunction via antioxidant and anti-inflammatory cascade activities using ipriflavone (IP).
Collapse
Affiliation(s)
- Rania A Gad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef (NUB), Beni-Suef, 62511, Egypt
| | - Eman S Abdel-Reheim
- Physiology Divisions; Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Gaber M G Shehab
- Department of Biochemistry, College of Medicine, Taif University, Taif 21944, Saudi Arabia
| | - Hani S Hafez
- Zoology Department, Faculty of Science, Suez University, Suez, Egypt
| | - Abdelaziz S A Abuelsaad
- Immunology Divisions; Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
38
|
Lv J, Lu C, Jiang N, Wang H, Huang H, Chen Y, Li Y, Liu X. Protective effect of ginsenoside Rh2 on scopolamine-induced memory deficits through regulation of cholinergic transmission, oxidative stress and the ERK-CREB-BDNF signaling pathway. Phytother Res 2020; 35:337-345. [PMID: 32754961 DOI: 10.1002/ptr.6804] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 06/04/2020] [Accepted: 06/24/2020] [Indexed: 12/25/2022]
Abstract
Rh2 is a rare ginsenoside and there are few reports of its effect on cognition compared with other similar molecules. This study aimed to establish the impact of Rh2 treatment on improving scopolamine (Scop)-induced memory deficits in mice and illuminate the underlying mechanisms. First, memory-related behavior was evaluated using two approaches: object location recognition (OLR), based on spontaneous activity, and a Morris water maze (MWM) task, based on an aversive stimulus. Our results suggested that Rh2 treatment effectively increased the discrimination index of the mice in the OLR test. In addition, Rh2 elevated the crossing numbers and decreased the escape latency during the MWM task. Moreover, Rh2 markedly upregulated the phosphorylation of the extracellular signal-regulated kinase (ERK)-cAMP response element binding (CREB)-brain derived neurotrophic factor (BDNF) pathway in the hippocampus. Meanwhile, the administration of Rh2 significantly promoted the cholinergic system and dramatically suppressed oxidative stress in the hippocampus. Taken together, Rh2 exhibited neuroprotective effects against Scop-induced memory dysfunction in mice. Rh2 activity might be ascribed to several underlying mechanisms, including its effects on modulating the cholinergic transmission, inhibiting oxidative stress and activating the ERK-CREB-BDNF signaling pathway. Consequently, the ginsenoside Rh2 might serve as a promising candidate compound for Alzheimer's disease.
Collapse
Affiliation(s)
- Jingwei Lv
- Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cong Lu
- Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Ning Jiang
- Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haixia Wang
- Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Huang
- Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yujiao Li
- Affiliated (T.C.M.) Hospital, Sino-Portugal TCM International Cooperation Center, Southwest Medical University, Luzhou, China
| | - Xinmin Liu
- Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Affiliated (T.C.M.) Hospital, Sino-Portugal TCM International Cooperation Center, Southwest Medical University, Luzhou, China
| |
Collapse
|
39
|
Prastya ME, Astuti RI, Batubara I, Takagi H, Wahyudi AT. Natural extract and its fractions isolated from the marine bacterium Pseudoalteromonas flavipulchra STILL-33 have antioxidant and antiaging activities in Schizosaccharomyces pombe. FEMS Yeast Res 2020; 20:5807080. [PMID: 32175559 DOI: 10.1093/femsyr/foaa014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 03/13/2020] [Indexed: 12/11/2022] Open
Abstract
Investigations into the potential for pharmacological inhibition of the aging process and the onset of age-related disease are increasingly garnering attention. Here, we analyzed the antiaging properties of natural compounds derived from several marine bacteria in vitro and in vivo using the fission yeast Schizosaccharomyces pombe. The Pseudoalteromonas flavipulchra STILL-33 extract exhibited high antioxidant and antiglycation activities in vitro. We then characterized two antioxidant active fractions isolated from this extract. In addition, we showed that the P. flavipulchra STILL-33 extract or either of its two active fractions (Fractions 1 and 2) could extend the longevity of fission yeast. Moreover, the particular extract and two active fractions were found to induce mitochondrial activity and to delay the G1 phase of the fission yeast cell cycle, perhaps by improving the aging process. The P. flavipulchra STILL-33 extract and Fraction 1 also increased the expression of the catalase-encoding ctt1+ gene and thereby decreased the reactive oxygen species level. Structural analysis showed that Fraction 1 was dominated by l-arginine and ipriflavone, and we showed indeed that the two corresponding commercial products increase the fission yeast lifespan. As for Fraction 2 was identified as the putative structure of butamben. Together, these results should facilitate the discovery of additional antiaging compounds from P. flavipulchra and ultimately the development of novel antiaging compounds for pharmaceutical use.
Collapse
Affiliation(s)
- Muhammad Eka Prastya
- Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Agatis Street, IPB Dramaga Campus, Bogor 16680, Indonesia
| | - Rika Indri Astuti
- Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Agatis Street, IPB Dramaga Campus, Bogor 16680, Indonesia
| | - Irmanida Batubara
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Agatis Street, IPB Dramaga Campus, Bogor 16680, Indonesia.,Tropical Biopharmaca Research Center, Bogor Agricultural University, Taman Kencana Street, IPB Taman Kencana Campus, Bogor 16128, Indonesia
| | - Hiroshi Takagi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Aris Tri Wahyudi
- Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Agatis Street, IPB Dramaga Campus, Bogor 16680, Indonesia
| |
Collapse
|
40
|
Horio Y, Sogabe R, Shichiri M, Ishida N, Morimoto R, Ohshima A, Isegawa Y. Induction of a 5-lipoxygenase product by daidzein is involved in the regulation of influenza virus replication. J Clin Biochem Nutr 2020; 66:36-42. [PMID: 32001954 PMCID: PMC6983437 DOI: 10.3164/jcbn.19-70] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 09/29/2019] [Indexed: 01/27/2023] Open
Abstract
This study was conducted to evaluate the regulation mechanism of influenza virus replication following treatment of Madin-Darby canine kidney cells with the soy isoflavone daidzein. We performed comparative qualitative and quantitative analyses of lipid peroxide between mock-infected and virus-infected cells treated with or without daidzein, as it had been reported that daidzein was an antioxidant and lipid peroxide levels increased upon virus infection. Contrary to our belief, lipid peroxides were not elevated in virus-infected cells and no decrease in lipid peroxides was observed in daidzein-treated cells. In daidzein-treated cells, 5-hydroxyeicosatetraenoic acid, the 5-lipoxygenase product derived from arachidonate, was significantly elevated compared to other lipid peroxides. Zileuton (5-lipoxygenase inhibitor) and 5-lipoxygenase knockdown reduced the daidzein-induced antiviral effect. Moreover, virus replication was regulated by treatment with 5-hydroperoxyeicosatetraenoic acid, a precursor of 5-hydroxyeicosatetraenoic acid and 5-lipoxygenase primary product. These results suggest that daidzein regulates virus replication via signal transduction through 5-lipoxygenase products.
Collapse
Affiliation(s)
- Yuka Horio
- Department of Food Sciences and Nutrition, Mukogawa Women's University, 6-46 Ikebiraki, Nishinomiya, Hyogo 663-8558, Japan
| | - Riho Sogabe
- Department of Food Sciences and Nutrition, Mukogawa Women's University, 6-46 Ikebiraki, Nishinomiya, Hyogo 663-8558, Japan
| | - Mototada Shichiri
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan.,DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), 1-1-1 Higashi, Tsukuba-shi, Ibaraki 305-8562, Japan
| | - Noriko Ishida
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Ryosuke Morimoto
- Department of Food Sciences and Nutrition, Mukogawa Women's University, 6-46 Ikebiraki, Nishinomiya, Hyogo 663-8558, Japan
| | - Atsushi Ohshima
- Genomics Program, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-Cho, Nagahama, Shiga 526-0829, Japan
| | - Yuji Isegawa
- Department of Food Sciences and Nutrition, Mukogawa Women's University, 6-46 Ikebiraki, Nishinomiya, Hyogo 663-8558, Japan.,Institute for Biosciences, Mukogawa Women's University, 6-46 Ikebiraki, Nishinomiya, Hyogo 663-8558, Japan
| |
Collapse
|
41
|
Jahanshahi M, Nikmahzar E, Sayyahi A. Vitamin E therapy prevents the accumulation of congophilic amyloid plaques and neurofibrillary tangles in the hippocampus in a rat model of Alzheimer's disease. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:86-92. [PMID: 32395206 PMCID: PMC7206846 DOI: 10.22038/ijbms.2019.38165.9067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 07/21/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Vitamin E may have beneficial effects on oxidative stress and Aβ-associated reactive oxygen species production in Alzheimer's disease. But, the exact role of vitamin E as a treatment for Alzheimer's disease pathogenesis still needs to be studied. Hence, we examined the therapeutic effects of vitamin E on the density of congophilic amyloid plaques and neurofibrillary tangles in rats' hippocampi. MATERIALS AND METHODS Wistar rats were randomly assigned to control (no drug treatment), sham scopolamine (3 mg/kg)+saline and Sham scopolamine+sesame oil groups, and three experimental groups that received scopolamine+vitamin E (25, 50, and 100 mg/kg/day) daily for 14 days after scopolamine injection. The rats' brains were collected immediately following transcardial perfusion and fixed in 4% paraformaldehyde. Pathological brain alterations were monitored through Congo red and bielschowsky silver staining. RESULTS Scopolamine treatment led to a significant increase in the density of congophilic amyloid plaques and neurofibrillary tangles in the hippocampus. IP injection of vitamin E in three doses (25, 50, and 100 mg/kg/day) significantly reversed the scopolamine-induced increase of the congophilic amyloid plaque density and density of neurofibrillary tangles in the hippocampus. Although vitamin E (25 and 50 mg/kg/day) doses were also effective, but a 100 mg/kg/day dose of vitamin E was more effective in the reduction of congophilic amyloid plaque and neurofibrillary tangle density. CONCLUSION Vitamin E could exert a therapeutic effect in the reduction of congophilic amyloid plaque and neurofibrillary tangle density in the hippocampus of scopolamine-treated rats and it is useful for Alzheimer's disease.
Collapse
Affiliation(s)
- Mehrdad Jahanshahi
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Emsehgol Nikmahzar
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Sayyahi
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
42
|
Yang Y, Chen Q, Zhao Q, Luo Y, Xu Y, Du W, Wang H, Li H, Yang L, Hu C, Zhang J, Li Y, Xia H, Chen Z, Ma J, Tian X, Yang J. Inhibition of COX2/PGD2-Related Autophagy Is Involved in the Mechanism of Brain Injury in T2DM Rat. Front Cell Neurosci 2019; 13:68. [PMID: 30873010 PMCID: PMC6400968 DOI: 10.3389/fncel.2019.00068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 02/11/2019] [Indexed: 12/21/2022] Open
Abstract
The present study was designed to observe the effect of COX2/PGD2-related autophagy on brain injury in type 2 diabetes rats. The histopathology was detected by haematoxylin–eosin staining. The learning and memory functions were evaluated by Morris water maze. The levels of insulin and PGD2 were measured by enzyme-linked immunosorbent assay. The expressions of COX2, p-AKT(S473), p-AMPK(T172), Aβ, Beclin1, LC3BII, and p62 were measured by immunohistochemistry and Western blotting. In model rats, we found that the body weight was significantly decreased, the blood glucose levels were significantly increased, the plasma insulin content was significantly decreased, the learning and memory functions were impaired and the cortex and hippocampus neurons showed significant nuclear pyknosis. The levels of COX2, p-AKT(S473), PGD2, Aβ, Beclin1 and p62 were significantly increased, whereas the expression of p-AMPK(T172) and LC3BII was significantly decreased in the cortex and hippocampus of model rats. In meloxicam-treated rats, the body weight, blood glucose and the content of plasma insulin did not significantly change, the learning and memory functions were improved and nuclear pyknosis was improved in the cortex and hippocampus neurons. The expression of p-AMPK(T172), Beclin1 and LC3BII was significantly increased, and the levels of COX2, p-AKT(S473), PGD2, Aβ, and p62 were significantly decreased in the cortex and hippocampus of meloxicam-treated rats. Our results suggested that the inhibition of COX2/PGD2-related autophagy was involved in the mechanism of brain injury caused by type 2 diabetes in rats.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, China
| | - Qi Chen
- Department of Pharmacy, GuiZhou Provincial People's Hospital, Guiyang, China
| | - Quanfeng Zhao
- Department of Pharmacy, Southwest Hospital, First Affiliated Hospital to TMMU, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ying Luo
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, China
| | - Ying Xu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, United States
| | - Weimin Du
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, China
| | - Hong Wang
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, China
| | - Huan Li
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, China
| | - Lu Yang
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, China
| | - Congli Hu
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, China
| | - Jiahua Zhang
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, China
| | - Yuke Li
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, China
| | - Hui Xia
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, China
| | - Zhihao Chen
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, China
| | - Jie Ma
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, China
| | - Xiaoyan Tian
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, China
| | - Junqing Yang
- Department of Pharmacology, Chongqing Medical University, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, China
| |
Collapse
|
43
|
Chen G, Liu C, Meng G, Zhang C, Chen F, Tang S, Hong H, Zhang C. Neuroprotective effect of mogrol against Aβ 1-42 -induced memory impairment neuroinflammation and apoptosis in mice. ACTA ACUST UNITED AC 2018; 71:869-877. [PMID: 30585314 DOI: 10.1111/jphp.13056] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 11/18/2018] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Cognitive impairment is the main character of Alzheimer's disease (AD). This study mainly focused on whether mogrol, a tetracyclic triterpenoids compound of Siraitia grosvenorii Swingle, can ameliorate the memory impairment induced by Aβ1-42 . METHODS Memory impairment mice model was made by stereotactic intra-hippocampal microinjection of Aβ1-42 (410 pm/mouse). Mogrol (20, 40, 80 mg/kg) was given to mice by intragastric administration at 3 days after Aβ1-42 injection for totally 3 weeks. Morris water maze test and Y-maze test were operated to evaluate the therapeutic effect of morgrol on Aβ1-42 -induced memory impairments. Immunohistochemical analyses and Hoechst 33258 assay were used to evaluate effect of morgrol on Aβ1-42 -induced microglia overactivation and apoptotic response in hippocampus of mice. Western blotting assay was used to evaluate effect of mogrol on the Aβ1-42 -activated NF-κB signaling. KEY FINDINGS Mogrol could significantly alleviate Aβ1-42 -induced memory impairments, inhibit Aβ1-42 -induced microglia overactivation and prevent Aβ1-42 -triggered apoptotic response in the hippocampus. Mogrol also could suppress Aβ1-42 -activated NF-κB signaling, reduce the production of proinflammatory cytokines. CONCLUSIONS This study suggested that mogrol would ameliorate the memory impairment induced by Aβ1-42 , which is involved in anti-inflammation and anti-apoptosis in the brain.
Collapse
Affiliation(s)
- Gangling Chen
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Caihong Liu
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Guoliang Meng
- School of Pharmacy, Nantong University, Nantong, China
| | - Chunteng Zhang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Fang Chen
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Susu Tang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Hao Hong
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Chaofeng Zhang
- State Key Laboratory of Natural Medicines, Research Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
44
|
Lu C, Wang Y, Xu T, Li Q, Wang D, Zhang L, Fan B, Wang F, Liu X. Genistein Ameliorates Scopolamine-Induced Amnesia in Mice Through the Regulation of the Cholinergic Neurotransmission, Antioxidant System and the ERK/CREB/BDNF Signaling. Front Pharmacol 2018; 9:1153. [PMID: 30369882 PMCID: PMC6194227 DOI: 10.3389/fphar.2018.01153] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/24/2018] [Indexed: 01/16/2023] Open
Abstract
Genistein (GE) was reported to exert a wide spectrum of biological activities, including antioxidant, anti-inflammatory, anti-mutagenic, anticancer, and cardio-protective effects. In addition, both clinical and preclinical studies have recently suggested GE a potential neuroprotective and memory-enhancing drug against neurodegenerative diseases. The animal model of scopolamine (Scop)-induced amnesia is widely used to study underlying mechanisms and treatment of cognitive impairment in neurodegenerative diseases. However, there is no report about the effects of GE on Scop-induced amnesia in mice. Therefore, the present study was carried out to investigate the beneficial effects and potential mechanism of GE against Scop-induced deficits in mice. The mice were orally pretreated with either GE (10, 20, and 40 mg/kg) or donepezil (1.60 mg/kg) for 14 days. After the pretreatment, the open field test was conducted to assess the effect of GE on the locomotor activity of mice. Thereafter, mice were daily injected with Scop (0.75 mg/kg) intraperitoneally to induce memory deficits and subjected to the cognitive behavioral tests including the Object Location Recognition (OLR) experiment and Morris Water Maze (MWM) task. After the behavioral tests, biochemical parameter assay and western blot analysis were used to examine the underlying mechanisms of its action. The results showed that GE administration significantly improved the cognitive performance of Scop-treated mice in OLR and Morris water maze tests, exerting the memory-enhancing effects. Additionally, GE remarkably promoted the cholinergic neurotransmission and protected against the oxidative stress damage in the hippocampus of Scop-treated mice, as indicated by decreasing AChE activity, elevating ChAT activity and Ach level, increasing SOD activity, lowering the level of MDA and increasing GSH content. Furthermore, GE was found to significantly upregulate the expression levels of p-ERK, p-CREB and BDNF proteins in the hippocampus of Scop-treated mice. Taken together, these results for the first time found that GE exerts cognitive-improving effects in Scop-induced amnesia and suggested it may be a potential candidate compound for the treatment of some neurodegenerative diseases such as Alzheimer's Disease (AD).
Collapse
Affiliation(s)
- Cong Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Teng Xu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Donghui Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lijing Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinmin Liu
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|