1
|
Chen M, Koopmans F, Gonzalez-Lozano MA, Smit AB, Li KW. Brain Region Differences in α1- and α5-Subunit-Containing GABA A Receptor Proteomes Revealed with Affinity Purification and Blue Native PAGE Proteomics. Cells 2023; 13:14. [PMID: 38201218 PMCID: PMC10778189 DOI: 10.3390/cells13010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
GABAA receptors are the major inhibitory receptors in the brain. They are hetero-pentamers with a composition of predominantly two α, two β, and one γ or δ subunit. Of the six α subunit genes, the α5 subunit displays a limited spatial expression pattern and is known to mediate both phasic and tonic inhibition. In this study, using immunoaffinity-based proteomics, we identified the α5 subunit containing receptor complexes in the hippocampus and olfactory bulb. The α1-α5 interaction was identified in both brain regions, albeit with significantly different stoichiometries. In line with this, reverse IPs using anti-α1 antibodies showed the α5-α1 co-occurrence and validated the quantitative difference. In addition, we showed that the association of Neuroligin 2 with α1-containing receptors was much higher in the olfactory bulb than in the hippocampus, which was confirmed using blue native gel electrophoresis and quantitative mass spectrometry. Finally, immunocytochemical staining revealed a co-localization of α1 and α5 subunits in the post-synaptic puncta in the hippocampus.
Collapse
Affiliation(s)
| | | | | | | | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (M.C.); (M.A.G.-L.); (A.B.S.)
| |
Collapse
|
2
|
Bailey AM, Barrett A, Havens L, Leyder E, Merchant T, Starnes H, Thompson SM. Changes in social, sexual, and hedonic behaviors in rats in response to stress and restoration by a negative allosteric modulator of α5-subunit containing GABA receptor. Behav Brain Res 2023; 452:114554. [PMID: 37356670 PMCID: PMC10528636 DOI: 10.1016/j.bbr.2023.114554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/07/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Abstract
Major depressive disorder (MDD) is a debilitating and costly human condition. Treatment for MDD relies heavily on the use of antidepressants that are slow to produce mood-related changes and are not effective in all patients, such as selective serotonin reuptake inhibitors (SSRIs). Several novel compounds, including negative allosteric modulators of GABA-A receptors containing the α5-subunit (GABA-NAMs), are under investigation for potential fast acting therapeutic use in MDD. Preclinical evidence that these compounds produce a rapid antidepressant-like response comes primarily from simple tests of escape behavior and preference for rewarding stimuli after chronic stress. To increase the ethological relevance of these compounds, we tested the hypothesis that the GABA-NAM, L-655,708, would produce an antidepressant-like response in more complex stress-sensitive social and sex behaviors, which are of relevance to the symptoms of human depression. In male rats subjected to chronic restraint stress, injection of L-655,708 increased reward in a sexual conditioned place preference task, increased male sexual activity with a receptive female, and re-established male social dominance hierarchies within 24 h. We also report increased sucrose preference in the social defeat stress (SDS) model of depression following GABA-NAM administration, demonstrating that its antidepressant-like actions are independent of the type of chronic stress administered. This work extends the impact of GABA-NAMs beyond traditional tests of anhedonia and further supports the development of alpha5 subunit-selective GABA-NAMs as a potential fast-acting therapeutic approach for treating human MDD.
Collapse
Affiliation(s)
- Aileen M Bailey
- Department of Psychology, St. Mary's College of Maryland, St. Mary's City, MD, United States.
| | - Allison Barrett
- Department of Psychology, St. Mary's College of Maryland, St. Mary's City, MD, United States
| | - Lane Havens
- Department of Psychology, St. Mary's College of Maryland, St. Mary's City, MD, United States
| | - Erica Leyder
- Department of Psychology, St. Mary's College of Maryland, St. Mary's City, MD, United States
| | - Taylor Merchant
- Department of Psychology, St. Mary's College of Maryland, St. Mary's City, MD, United States
| | - Hannah Starnes
- Department of Psychology, St. Mary's College of Maryland, St. Mary's City, MD, United States
| | - Scott M Thompson
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, United States; Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
3
|
Troppoli TA, Zanos P, Georgiou P, Gould TD, Rudolph U, Thompson SM. Negative Allosteric Modulation of Gamma-Aminobutyric Acid A Receptors at α5 Subunit-Containing Benzodiazepine Sites Reverses Stress-Induced Anhedonia and Weakened Synaptic Function in Mice. Biol Psychiatry 2022; 92:216-226. [PMID: 35120711 PMCID: PMC9198111 DOI: 10.1016/j.biopsych.2021.11.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Abnormal reward processing, typically anhedonia, is a hallmark of human depression and is accompanied by altered functional connectivity in reward circuits. Negative allosteric modulators of GABAA (gamma-aminobutyric acid A) receptors (GABA-NAMs) have rapid antidepressant-like properties in rodents and exert few adverse effects, but molecular targets underlying their behavioral and synaptic effects remain undetermined. We hypothesized that GABA-NAMs act at the benzodiazepine site of GABAA receptors containing α5 subunits to increase gamma oscillatory activity, strengthen synapses in reward circuits, and reverse anhedonia. METHODS Anhedonia was induced by chronic stress in male mice and assayed by preferences for sucrose and female urine (n = 5-7 mice/group). Hippocampal slices were then prepared for electrophysiological recording (n = 1-6 slices/mouse, 4-6 mice/group). Electroencephalography power was quantified in response to GABA-NAM and ketamine administration (n = 7-9 mice/group). RESULTS Chronic stress reduced sucrose and female urine preferences and hippocampal temporoammonic-CA1 synaptic strength. A peripheral injection of the GABA-NAM MRK-016 restored hedonic behavior and AMPA-to-NMDA ratios in wild-type mice. These actions were prevented by pretreatment with the benzodiazepine site antagonist flumazenil. MRK-016 administration increased gamma power over the prefrontal cortex in wild-type mice but not α5 knockout mice, whereas ketamine promoted gamma power in both genotypes. Hedonic behavior and AMPA-to-NMDA ratios were only restored by MRK-016 in stressed wild-type mice but not α5 knockout mice. CONCLUSIONS α5-Selective GABA-NAMs exert rapid anti-anhedonic actions and restore the strength of synapses in reward regions by acting at the benzodiazepine site of α5-containing GABAA receptors. These results encourage human studies using GABA-NAMs to treat depression by providing readily translatable measures of target engagement.
Collapse
Affiliation(s)
- Timothy A. Troppoli
- Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201,Molecular Medicine Program, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201
| | - Panos Zanos
- Department of Psychiatry, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201,Current address: Department of Psychology, University of Cyprus, 1 Panepistimiou Avenue, Aglantzia, 2109, PO Box 1678, Nicosia, Cyprus
| | - Polymnia Georgiou
- Department of Psychiatry, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201
| | - Todd D. Gould
- Department of Psychiatry, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201,Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201,Department of Pharmacology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201,Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201
| | - Uwe Rudolph
- Department of Comparative Biosciences and Carl R. Woese Institute for Genomic Biology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 2001 S Lincoln Ave, Urbana, IL 61802-6178
| | - Scott M. Thompson
- Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201,Department of Psychiatry, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201,To whom correspondence should be addressed:
| |
Collapse
|
4
|
Fernández-Teruel A. From Inhibition of GABA-A Receptor-Mediated Synaptic Transmission by Conventional Antidepressants to Negative Allosteric Modulators of Alpha5-GABA-A Receptors as Putative Fast-Acting Antidepressant Drugs: Closing the Circle? Curr Neuropharmacol 2021; 20:85-89. [PMID: 34736382 PMCID: PMC9199546 DOI: 10.2174/1570159x19666211104144650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/18/2021] [Accepted: 10/14/2021] [Indexed: 11/22/2022] Open
Abstract
The present perspective paper shortly and specifically addresses the issues of whether inhibition of GABA-A receptor-mediated synaptic transmission may be involved in antidepressant-like actions and the therapeutic effects of conventional antidepressant (AD) drugs, and whether the recent development of negative allosteric modulators (NAMs) of the alpha5-GABA-A receptor may constitute significant progress in our knowledge on the neurobiology and the treatment of depression.
Collapse
Affiliation(s)
- Alberto Fernández-Teruel
- Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193-Bellaterra, Barcelona. Sri Lanka
| |
Collapse
|
5
|
Aranđelović J, Santrač A, Batinić B, Todorović L, Ahmed Khan MZ, Rashid F, Poe MM, Obradović A, Cook JM, Savić MM. Positive and Negative Selective Allosteric Modulators of α5 GABAA Receptors: Effects on Emotionality, Motivation, and Motor Function in the 5xFAD Model of Alzheimer's Disease. J Alzheimers Dis 2021; 84:1291-1302. [PMID: 34657887 DOI: 10.3233/jad-215079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Positive and negative allosteric modulators of α5 GABAA receptors (PAM and NAM, respectively) are worthy of investigation as putative treatments of Alzheimer's disease (AD). However, their potential to modify a dynamic range of behaviors in AD models needs to be systematically examined. OBJECTIVE The study aimed to assess effects of MP-III-022 as PAM and PWZ-029 as NAM on emotional reactivity, motivation, and motor function, as well as on gene expression of GABRA2, GABRA3 and GABRA5 subunit of GABAA receptors in prefrontal cortex (PFC) and hippocampus (HC) in 5xFAD mice, as an early-onset transgenic AD model. METHODS The 6-month-old 5xFAD transgenic and non-transgenic mice of both genders underwent a battery of reflexes and behavioral tests (sensorimotor tests, elevated plus maze, and open field) after 10-day intraperitoneal treatment with MP-III-022, PWZ-029, or solvent. The behavioral battery was followed by qPCR analysis of gene expression. RESULTS MP-III-022 induced a decline in motor function, while PWZ-029 further decreased emotionality of transgenic males, as compared to the transgenic control. No interfering effects on non-cognitive behavior were observed in female mice. In HC, both treatments reversed reciprocal GABRA2 and GABRA3 changes in transgenic females. In PFC, MP-III-022 decreased GABRA5 in both genders, while PWZ-029 increased GABRA2 in male transgenic animals. CONCLUSION Gender-dependent protracted effects of PAMs and NAMs in AD model, with detrimental impact on motor capabilities of PAM, and attenuation of emotionality elicited by NAM in transgenic males, were revealed. This favors future research of α5 GABAA receptor modulation in females as more promising.
Collapse
Affiliation(s)
- Jovana Aranđelović
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Anja Santrač
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Bojan Batinić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Lidija Todorović
- Laboratory for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Md Zubair Ahmed Khan
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Farjana Rashid
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Michael M Poe
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Aleksandar Obradović
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - James M Cook
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Miroslav M Savić
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
6
|
Knoflach F, Bertrand D. Pharmacological modulation of GABA A receptors. Curr Opin Pharmacol 2021; 59:3-10. [PMID: 34020139 DOI: 10.1016/j.coph.2021.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
Ligand-gated ion channels are integral membrane proteins that activate through a change in conformation upon transmitter binding and were identified as key players of brain function. GABAA receptors are major inhibitory ligand-gated ion channels of this protein family. They are the target of many therapeutic compounds widely used in the clinic and continue to attract the attention of academic and pharmaceutical laboratories. Advances in the knowledge of the structure of GABAA receptors at the molecular level with unprecedented resolution enabled the determination of the binding sites of many allosteric modulators revealing the nature of their interactions with the receptors. Herein, we review the latest findings on allosteric modulation of GABAA receptors and their relevance to drug discovery.
Collapse
Affiliation(s)
- Frédéric Knoflach
- F. Hoffmann-La Roche Ltd., Neuroscience & Rare Diseases (NRD) Research, Roche Innovation Center Basel, Basel, 4070, Switzerland
| | - Daniel Bertrand
- HiQScreen Sàrl, 6 rte de Compois, Vésenaz, Geneva, 1222, Switzerland.
| |
Collapse
|
7
|
Maramai S, Benchekroun M, Ward SE, Atack JR. Subtype Selective γ-Aminobutyric Acid Type A Receptor (GABAAR) Modulators Acting at the Benzodiazepine Binding Site: An Update. J Med Chem 2019; 63:3425-3446. [DOI: 10.1021/acs.jmedchem.9b01312] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Samuele Maramai
- Sussex Drug Discovery Centre, University of Sussex, Brighton BN1 9QJ, U.K
| | - Mohamed Benchekroun
- Sussex Drug Discovery Centre, University of Sussex, Brighton BN1 9QJ, U.K
- Équipe de Chimie Moléculaire, Laboratoire de Génomique Bioinformatique et Chimie Moléculaire, GBCM, EA7528, Conservatoire National des Arts et Métiers, 2 rue Conté, 75003 Paris, France
| | - Simon E. Ward
- Medicines Discovery Institute, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - John R. Atack
- Medicines Discovery Institute, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| |
Collapse
|
8
|
Roberts AJ, Khom S, Bajo M, Vlkolinsky R, Polis I, Cates-Gatto C, Roberto M, Gruol DL. Increased IL-6 expression in astrocytes is associated with emotionality, alterations in central amygdala GABAergic transmission, and excitability during alcohol withdrawal. Brain Behav Immun 2019; 82:188-202. [PMID: 31437534 PMCID: PMC6800653 DOI: 10.1016/j.bbi.2019.08.185] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 01/14/2023] Open
Abstract
Accumulating evidence from preclinical and clinical studies has implicated a role for the cytokine IL-6 in a variety of CNS diseases including anxiety-like and depressive-like behaviors, as well as alcohol use disorder. Here we use homozygous and heterozygous transgenic mice expressing elevated levels of IL-6 in the CNS due to increased astrocyte expression and non-transgenic littermates to examine a role for astrocyte-produced IL-6 in emotionality (response to novelty, anxiety-like, and depressive-like behaviors). Our results from homozygous IL-6 mice in a variety of behavioral tests (light/dark transfer, open field, digging, tail suspension, and forced swim tests) support a role for IL-6 in stress-coping behaviors. Ex vivo electrophysiological studies of neuronal excitability and inhibitory GABAergic synaptic transmission in the central nucleus of the amygdala (CeA) of the homozygous transgenic mice revealed increased inhibitory GABAergic signaling and increased excitability of CeA neurons, suggesting a role for astrocyte produced IL-6 in the amygdala in exploratory drive and depressive-like behavior. Furthermore, studies in the hippocampus of activation/expression of proteins associated with IL-6 signal transduction and inhibitory GABAergic mechanisms support a role for astrocyte produced IL-6 in depressive-like behaviors. Our studies indicate a complex and dose-dependent relationship between IL-6 and behavior and implicate IL-6 induced neuroadaptive changes in neuronal excitability and the inhibitory GABAergic system as important contributors to altered behavior associated with IL-6 expression in the CNS.
Collapse
Affiliation(s)
- Amanda J. Roberts
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, CA 92037 U.S.A
| | - Sophia Khom
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037 U.S.A
| | - Michal Bajo
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037 U.S.A
| | - Roman Vlkolinsky
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037 U.S.A
| | - Ilham Polis
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, CA 92037 U.S.A
| | - Chelsea Cates-Gatto
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, CA 92037 U.S.A
| | - Marisa Roberto
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037 U.S.A
| | - Donna L. Gruol
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037 U.S.A,Corresponding Author: Dr. Donna L. Gruol, Neuroscience Department, SP30-1522, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, Phone: (858) 784-7060, Fax: (858) 784-7393,
| |
Collapse
|
9
|
Chaihu-Shugan-San Reinforces CYP3A4 Expression via Pregnane X Receptor in Depressive Treatment of Liver-Qi Stagnation Syndrome. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9781675. [PMID: 31781287 PMCID: PMC6875207 DOI: 10.1155/2019/9781675] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 07/24/2019] [Accepted: 08/13/2019] [Indexed: 01/11/2023]
Abstract
Backgrounds. Chaihu-Shugan-San (CSS) is a classic traditional Chinese herbal prescription for treating depression. However, the underlying mechanism of the Chinese syndrome-specific efficacy of CSS is poorly understood. Aim of the Study. From traditional Chinese medicine and pharmacogenetics perspectives, the present study aimed to investigate the antidepressant effects of CSS on a mouse model of Liver-Qi Stagnation (LQS) syndrome and its underlying mechanisms. Methods and Materials. We used two main mouse models of depressive syndromes in the study, including LQS and liver stagnation and spleen deficiency (LSSD) syndrome. Tail suspension and forced swimming tests were used to evaluate the effects of CSS on animal behaviour. The expression level of the CYP450 enzyme from liver microsomes was analysed by western blot (WB) analysis and quantitative real-time polymerase chain reaction (qRT-PCR). More specifically, we analysed the key compounds of CSS that are responsible for CYP450 regulation via bioinformatics. Ultimately, luciferase assays were employed to confirm the prediction in vitro. Results. CSS remarkably reduced the immobile time in LQS rather than in LSSD mice. Although CSS significantly upregulated CYP2C9 in mice with both syndromes, activated translation of CYP3A4 induced by CSS was only observed in the LQS group. Bioinformatics analysis revealed that the unique regulation of CYP3A4 was responsible for the effects of glycyrrhetinic acid (GA) from CSS. Further luciferase assays confirmed the enhancement of CYP3A4 expression via the pregnane X receptor (PXR) pathway in vitro. Conclusions. CSS specifically upregulates the translation of CYP3A4 via the PXR pathway in depressed LQS mice. GA, a bioactive compound that originates from CSS, contributes to this activation. This work provides novel insight into Chinese syndrome-based therapy for depression.
Collapse
|
10
|
Hashimoto K. Rapid-acting antidepressant ketamine, its metabolites and other candidates: A historical overview and future perspective. Psychiatry Clin Neurosci 2019; 73:613-627. [PMID: 31215725 PMCID: PMC6851782 DOI: 10.1111/pcn.12902] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/28/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022]
Abstract
Major depressive disorder (MDD) is one of the most disabling psychiatric disorders. Approximately one-third of the patients with MDD are treatment resistant to the current antidepressants. There is also a significant therapeutic time lag of weeks to months. Furthermore, depression in patients with bipolar disorder (BD) is typically poorly responsive to antidepressants. Therefore, there exists an unmet medical need for rapidly acting antidepressants with beneficial effects in treatment-resistant patients with MDD or BD. Accumulating evidence suggests that the N-methyl-D-aspartate receptor (NMDAR) antagonist ketamine produces rapid and sustained antidepressant effects in treatment-resistant patients with MDD or BD. Ketamine is a racemic mixture comprising equal parts of (R)-ketamine (or arketamine) and (S)-ketamine (or esketamine). Because (S)-ketamine has higher affinity for NMDAR than (R)-ketamine, esketamine was developed as an antidepressant. On 5 March 2019, esketamine nasal spray was approved by the US Food and Drug Administration. However, preclinical data suggest that (R)-ketamine exerts greater potency and longer-lasting antidepressant effects than (S)-ketamine in animal models of depression and that (R)-ketamine has less detrimental side-effects than (R,S)-ketamine or (S)-ketamine. In this article, the author reviews the historical overview of the antidepressant actions of enantiomers of ketamine and its major metabolites norketamine and hydroxynorketamine. Furthermore, the author discusses the other potential rapid-acting antidepressant candidates (i.e., NMDAR antagonists and modulators, low-voltage-sensitive T-type calcium channel inhibitor, potassium channel Kir4.1 inhibitor, negative modulators of γ-aminobutyric acid, and type A [GABAA ] receptors) to compare them with ketamine. Moreover, the molecular and cellular mechanisms of ketamine's antidepressant effects are discussed.
Collapse
Affiliation(s)
- Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| |
Collapse
|
11
|
Hu X, Rocco BR, Fee C, Sibille E. Cell Type-Specific Gene Expression of Alpha 5 Subunit-Containing Gamma-Aminobutyric Acid Subtype A Receptors in Human and Mouse Frontal Cortex. MOLECULAR NEUROPSYCHIATRY 2019; 4:204-215. [PMID: 30815456 DOI: 10.1159/000495840] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/27/2018] [Indexed: 01/01/2023]
Abstract
Converging evidence suggests that deficits in somatostatin (SST)-expressing neuron signaling contributes to major depressive disorder. Preclinical studies show that enhancing this signaling, specifically at α5 subunit-containing γ-ami-nobutyric acid subtype A receptors (α5-GABAARs), provides a potential means to overcome low SST neuron function. The cortical microcircuit comprises multiple subtypes of inhibitory γ-aminobutyric acid (GABA) neurons and excitatory pyramidal cells (PYCs). In this study, multilabel fluorescence in situ hybridization was used to characterize α5-GABAAR gene expression in PYCs and three GABAergic neuron subgroups - vasoactive intestinal peptide (VIP)-, SST-, and parvalbumin (PV)-expressing cells - in the human and mouse frontal cortex. Across species, we found the majority of gene expression in PYCs (human: 39.7%; mouse: 54.14%), less abundant expression in PV neurons (human: 20%; mouse: 16.33%), and no expression in VIP neurons (0%). Only human SST cells expressed GABRA5, albeit at low levels (human: 8.3%; mouse: 0%). Together, this localization suggests potential roles for α5-GABAARs within the cortical microcircuit: (1) regulators of PYCs, (2) regulators of PV cell activity across species, and (3) sparse regulators of SST cell inhibition in humans. These results will advance our ability to predict the effects of pharmacological agents targeting α5-GABAARs, which have shown therapeutic potential in preclinical animal models.
Collapse
Affiliation(s)
- Xiyue Hu
- Campbell Family Mental Health Research Institute of CAMH, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Brad R Rocco
- Campbell Family Mental Health Research Institute of CAMH, Toronto, Ontario, Canada
| | - Corey Fee
- Campbell Family Mental Health Research Institute of CAMH, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Etienne Sibille
- Campbell Family Mental Health Research Institute of CAMH, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Abstract
For decades, symptoms of depression have been treated primarily with medications that directly target the monoaminergic brain systems, which typically take weeks to exert measurable effects and months to exert remission of symptoms. Low, subanesthetic doses of ( R,S)-ketamine (ketamine) result in the rapid improvement of core depressive symptoms, including mood, anhedonia, and suicidal ideation, occurring within hours following a single administration, with relief from symptoms typically lasting up to a week. The discovery of these actions of ketamine has resulted in a reconceptualization of how depression could be more effectively treated in the future. In this review, we discuss clinical data pertaining to ketamine and other rapid-acting antidepressant drugs, as well as the current state of pharmacological knowledge regarding their mechanism of action. Additionally, we discuss the neurobiological circuits that are engaged by this drug class and that may be targeted by a future generation of medications, for example, hydroxynorketamine; metabotropic glutamate receptor 2/3 antagonists; and N-methyl-d-aspartate, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and γ-aminobutyric acid receptor modulators.
Collapse
Affiliation(s)
- Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA;
- Departments of Pharmacology and Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA 20892
| | - Scott M Thompson
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA;
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| |
Collapse
|
13
|
Mohamad FH, Has ATC. The α5-Containing GABA A Receptors-a Brief Summary. J Mol Neurosci 2019; 67:343-351. [PMID: 30607899 DOI: 10.1007/s12031-018-1246-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 12/17/2018] [Indexed: 12/21/2022]
Abstract
GABAA receptors are the major inhibitory neurotransmitter receptor in the human brain. The receptors are assembled from combination of protein subunits in pentameric complex which may consist of α1-6, β1-3, γ1-3, ρ1-3, δ, ε, θ, or π subunits. There are a theoretical > 150,000 possible assemblies and arrangements of GABAA subunits, although only a few combinations have been found in human with the most dominant consists of 2α1, 2β2, and 1γ2 in a counterclockwise arrangement as seen from the synaptic cleft. The receptors also possess binding sites for various unrelated substances including benzodiazepines, barbiturates, and anesthetics. The α5-containing GABAARs only make up ≤ 5% of the entire receptor population, but up to 25% of the receptor subtype is located in the crucial learning and memory-associated area of the brain-the hippocampus, which has ignited myriads of hypotheses and theories in regard to its role. As well as exhibiting synaptic phasic inhibition, the α5-containing receptors are also extrasynaptic and mediate tonic inhibition with continuously occurring smaller amplitude. Studies on negative-allosteric modulators for reducing this tonic inhibition have been shown to enhance learning and memory in neurological disorders such as schizophrenia, Down syndrome, and autism with a possible alternative benzodiazepine binding site. Therefore, a few α5 subunit-specific compounds have been developed to address these pharmacological needs. With its small population, the α5-containing receptors could be the key and also the answer for many untreated cognitive dysfunctions and disorders.
Collapse
Affiliation(s)
- Fatin H Mohamad
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kampus Kesihatan, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kampus Kesihatan, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
14
|
Witkin JM, Martin AE, Golani LK, Xu NZ, Smith JL. Rapid-acting antidepressants. ADVANCES IN PHARMACOLOGY 2019; 86:47-96. [DOI: 10.1016/bs.apha.2019.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Wang X, Tao J, Qiao Y, Luo S, Zhao Z, Gao Y, Guo J, Kong J, Chen C, Ge L, Zhang B, Guo P, Liu L, Song Y. Gastrodin Rescues Autistic-Like Phenotypes in Valproic Acid-Induced Animal Model. Front Neurol 2018; 9:1052. [PMID: 30581411 PMCID: PMC6293267 DOI: 10.3389/fneur.2018.01052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is an immensely challenging developmental disorder characterized by impaired social interaction, restricted/repetitive behavior, and anxiety. GABAergic dysfunction has been postulated to underlie these autistic symptoms. Gastrodin is widely used clinically in the treatment of neurological disorders and showed to modulate GABAergic signaling in the animal brain. The present study aimed to determine whether treatment with gastrodin can rescue valproic acid (VPA) induced autistic-like phenotypes, and to determine its possible mechanism of action. Our results showed that administration of gastrodin effectively alleviated the autistic-associated behavioral abnormalities as reflected by an increase in social interaction and decrement in repetitive/stereotyped behavior and anxiety in mice as compared to those in untreated animals. Remarkably, the amelioration in autistic-like phenotypes was accompanied by the restoration of inhibitory synaptic transmission, α5 GABAA receptor, and type 1 GABA transporter (GAT1) expression in the basolateral amygdala (BLA) of VPA-treated mice. These findings indicate that gastrodin may alleviate the autistic symptoms caused by VPA through regulating GABAergic synaptic transmission, suggesting that gastrodin may be a potential therapeutic target in autism.
Collapse
Affiliation(s)
- Xiaona Wang
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Jing Tao
- Department of Pathology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yidan Qiao
- Department of Pathology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Shuying Luo
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Zhenqin Zhao
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yinbo Gao
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Jisheng Guo
- Center for Translational Medicine, The Sixth People's Hospital of Zhengzhou, Zhengzhou, China
| | - Jinghui Kong
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Chongfen Chen
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Lili Ge
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Bo Zhang
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Pengbo Guo
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Lei Liu
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yinsen Song
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Witkin JM, Shenvi RA, Li X, Gleason SD, Weiss J, Morrow D, Catow JT, Wakulchik M, Ohtawa M, Lu HH, Martinez MD, Schkeryantz JM, Carpenter TS, Lightstone FC, Cerne R. Pharmacological characterization of the neurotrophic sesquiterpene jiadifenolide reveals a non-convulsant signature and potential for progression in neurodegenerative disease studies. Biochem Pharmacol 2018; 155:61-70. [PMID: 29940173 DOI: 10.1016/j.bcp.2018.06.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/18/2018] [Indexed: 11/17/2022]
Abstract
The 'neurotrophic sesquiterpenes' refer to a group of molecules derived from the Illicium genus of flowering plant. They display neurotrophic effects in cultured neuron preparations and have been suggested to be cognitive enhancers and potential therapeutics for neurodegenerative disorders and dementias. Recent synthetic advances generated sufficient quantities of jiadifenolide for in vivo investigation into its biological effects. Jiadifenolide did not induce convulsions in mice nor did it enhance or diminish convulsions induced by pentylenetetrazole. Other negative allosteric modulators of GABAA receptors, picrotoxin, tetramethylenedisulfotetramine (TETS), and bilobalide all induced convulsions. Either i.p. or i.c.v. dosing generated micromolar plasma and brain levels of jiadifenolide but only small effects on locomotion of mice. However, jiadifenolide decreased d-amphetamine-induced hyperlocomotion in mice, an antipsychotic-like drug effect. Jiadifenolide did not significantly alter body temperature or behavior in the forced-swim test in mice. Molecular simulation data suggested a potential site in the pore/M2 helix region that is at an overlapping, yet lower position than those observed for other 'cage convulsant' compounds such as TETS and picrotoxin. We hypothesize that a position nearer to the entrance of the pore channel may allow for easier displacement of jiadifenolide from its blocking location leading to lower potency and lower side-effect liability. Like jiadifenolide, memantine (Namenda), one of the few drugs used in the symptomatic treatment of dementias, occupies a unique site on the NMDA receptor complex that creates low binding affinity that is associated with its reduced side-effect profile. Given the potential therapeutic applications of jiadifenolide and its relatively inert effects on overt behavior, the possibility of clinical utility for jiadifenolide and related compounds becomes intriguing.
Collapse
Affiliation(s)
- Jeffrey M Witkin
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA.
| | - Ryan A Shenvi
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Xia Li
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | - Scott D Gleason
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | - Julie Weiss
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | - Denise Morrow
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | - John T Catow
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | - Mark Wakulchik
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| | - Masaki Ohtawa
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Hai-Hua Lu
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Michael D Martinez
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Timothy S Carpenter
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Felice C Lightstone
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Rok Cerne
- The Lilly Research Labs, Eli Lilly and Company, Indianapolis, IN, USA
| |
Collapse
|
17
|
Abstract
Traditional pharmacological treatments for depression have a delayed therapeutic onset, ranging from several weeks to months, and there is a high percentage of individuals who never respond to treatment. In contrast, ketamine produces rapid-onset antidepressant, anti-suicidal, and anti-anhedonic actions following a single administration to patients with depression. Proposed mechanisms of the antidepressant action of ketamine include N-methyl-D-aspartate receptor (NMDAR) modulation, gamma aminobutyric acid (GABA)-ergic interneuron disinhibition, and direct actions of its hydroxynorketamine (HNK) metabolites. Downstream actions include activation of the mechanistic target of rapamycin (mTOR), deactivation of glycogen synthase kinase-3 and eukaryotic elongation factor 2 (eEF2), enhanced brain-derived neurotrophic factor (BDNF) signaling, and activation of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors (AMPARs). These putative mechanisms of ketamine action are not mutually exclusive and may complement each other to induce potentiation of excitatory synapses in affective-regulating brain circuits, which results in amelioration of depression symptoms. We review these proposed mechanisms of ketamine action in the context of how such mechanisms are informing the development of novel putative rapid-acting antidepressant drugs. Such drugs that have undergone pre-clinical, and in some cases clinical, testing include the muscarinic acetylcholine receptor antagonist scopolamine, GluN2B-NMDAR antagonists (i.e., CP-101,606, MK-0657), (2R,6R)-HNK, NMDAR glycine site modulators (i.e., 4-chlorokynurenine, pro-drug of the glycineB NMDAR antagonist 7-chlorokynurenic acid), NMDAR agonists [i.e., GLYX-13 (rapastinel)], metabotropic glutamate receptor 2/3 (mGluR2/3) antagonists, GABAA receptor modulators, and drugs acting on various serotonin receptor subtypes. These ongoing studies suggest that the future acute treatment of depression will typically occur within hours, rather than months, of treatment initiation.
Collapse
Affiliation(s)
- Panos Zanos
- Department of Psychiatry, University of Maryland School of Medicine, Rm. 934F MSTF, 685 W. Baltimore St., Baltimore, MD, 21201, USA.
| | - Scott M Thompson
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Physiology, University of Maryland School of Medicine, St. BRB 5-007, 655 W. Baltimore St., Baltimore, MD, 21201, USA, Baltimore, MD, 21201, USA
| | - Ronald S Duman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Todd D Gould
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, University of Maryland School of Medicine, Rm. 936 MSTF, 685 W. Baltimore St., Baltimore, MD, 21201, USA
| |
Collapse
|