1
|
Martínez-Romero R, González-Chávez SA, Urías-Rubí VR, Gómez-Moreno VM, Blanco-Cantero MF, Bernal-Velázquez HM, Luévano-González A, Pacheco-Tena C. Microarray Analysis of Visceral Adipose Tissue in Obese Women Reveals Common Crossroads Among Inflammation, Metabolism, Addictive Behaviors, and Cancer: AKT3 and MAPK1 Cross Point in Obesity. J Obes 2024; 2024:4541071. [PMID: 39484291 PMCID: PMC11527533 DOI: 10.1155/2024/4541071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/16/2024] [Indexed: 11/03/2024] Open
Abstract
Background: Visceral adipose tissue (VAT) abnormalities are directly associated with obesity-associated disorders. The underlying mechanisms that confer increased pathological risk to VAT in obesity have not been fully described. Methods: A case-control study was conducted that included 10 women with obesity (36.80 ± 7.39 years, BMI ≥ 30 kg/m2) and 10 women of normal weight (32.70 ± 9.45 years, BMI < 24.9 kg/m2). RNA was extracted from greater omentum biopsies, and, using a DNA microarray, differential transcriptomic expression of VAT in women with obesity was evaluated taking as a reference that of women with normal weight. The differentially expressed genes (DEGs) were classified into functional biological processes and signaling pathways; moreover, the protein-protein interaction (PPI) networks were integrated for a deeper analysis of the pathways and genes involved in the central obesity-associated disorders. The expression of TNF-α, MAPK, and AKT proteins was also quantified in VAT. Results: The VAT of women with obesity had 3808 DEGs, mainly associated with the cellular process of inflammation and carbohydrates and lipid metabolism. Overexpressed genes were associated with inflammatory, metabolic, hormonal, neuroendocrine, carcinogenic, and infectious pathways. Cellular processes related to addictive behaviors were notable. MAPK and PI3K-AKT pathways were overexpressed, and Mapk1 and Akt3 genes were common crossing points among obesity-associated disorders' pathways. The increased expression of MAPK, AKT, and TNF proteins was confirmed in the VAT of women with obesity. Conclusion: VAT confers a complex and blended pathogenic transcriptomic profile in obese patients, where abnormal processes are mainly controlled by activating intracellular signaling pathways that exhibit a high degree of redundancy. Identifying shared cross points between those pathways could allow specific targeting treatments to exert a widespread effect over multiple pathogenic processes.
Collapse
Affiliation(s)
- Rolando Martínez-Romero
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | - Susana Aideé González-Chávez
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | - Victor Roberto Urías-Rubí
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | | | | | | | - Arturo Luévano-González
- Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | - César Pacheco-Tena
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| |
Collapse
|
2
|
Maddern XJ, Walker LC, Anversa RG, Lawrence AJ, Campbell EJ. Understanding sex differences and the translational value of models of persistent substance use despite negative consequences. Neurobiol Learn Mem 2024; 213:107944. [PMID: 38825163 DOI: 10.1016/j.nlm.2024.107944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Persistent substance use despite negative consequences is a key facet of substance use disorder. The last decade has seen the preclinical field adopt the use of punishment to model adverse consequences associated with substance use. This has largely involved the pairing of drug use with either electric foot shock or quinine, a bitter tastant. Whilst at face value, these punishers may model aspects of the physical and psychological consequences of substance use, such models are yet to assist the development of approved medications for treatment. This review discusses progress made with animal models of punishment to understand the behavioral consequences of persistent substance use despite negative consequences. We highlight the importance of examining sex differences, especially when the behavioral response to punishment changes following drug exposure. Finally, we critique the translational value these models provide for the substance use disorder field.
Collapse
Affiliation(s)
- Xavier J Maddern
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, 3010, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, VIC, 3010, Australia
| | - Leigh C Walker
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, 3010, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, VIC, 3010, Australia
| | - Roberta G Anversa
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, 3010, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, VIC, 3010, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, 3010, Australia; Florey Department of Neuroscience and Mental Health, University of Melbourne, VIC, 3010, Australia
| | - Erin J Campbell
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia; Brain Neuromodulation Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| |
Collapse
|
3
|
Jones BO, Spencer HF, Cruz AM, Paladino MS, Handel SN, Smith RJ. Random interval schedule of reinforcement influences punishment resistance for cocaine in rats. Neurobiol Learn Mem 2024; 213:107961. [PMID: 39025429 DOI: 10.1016/j.nlm.2024.107961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
In an animal model of compulsive drug use, a subset of rats continues to self-administer cocaine despite footshock consequences and is considered punishment resistant. We recently found that punishment resistance is associated with habits that persist under conditions that typically encourage a transition to goal-directed control. Given that random ratio (RR) and random interval (RI) schedules of reinforcement influence whether responding is goal-directed or habitual, we investigated the influence of these schedules on punishment resistance for cocaine or food. Male and female Sprague Dawley rats were trained to self-administer either intravenous cocaine or food pellets on a seeking-taking chained schedule of reinforcement, with the seeking lever requiring completion of either an RR20 or RI60 schedule. Rats were then given four days of punishment testing with footshock administered at the completion of seeking on a random one-third of trials. For cocaine-trained rats, the RI60 schedule led to greater punishment resistance (i.e., more trials completed) than the RR20 schedule in males and females. For food-trained rats, the RI60 schedule led to greater punishment resistance (i.e., higher reward rates) than the RR20 schedule in female rats, although male rats showed punishment resistance on both RR20 and RI60 schedules. For both cocaine and food, we found that seeking responses were suppressed to a greater degree than reward rate with the RI60 schedule, whereas response rate and reward rate were equally suppressed with the RR20 schedule. This dissociation between punishment effects on reward rate and response rate with the RI60 schedule can be explained by the nonlinear relation between these variables on RI schedules, but it does not account for the enhanced resistance to punishment. Overall, the results show greater punishment resistance with the RI60 schedule as compared to the RR20 schedule, indicating that schedules of reinforcement are an influencing factor on resistance to negative consequences.
Collapse
Affiliation(s)
- Bradley O Jones
- Institute for Neuroscience, Texas A&M University, TAMU 3474, College Station, TX 77843, USA
| | - Haley F Spencer
- Department of Psychological and Brain Sciences, Texas A&M University, TAMU 4235, College Station, TX 77843, USA
| | - Adelis M Cruz
- Department of Psychological and Brain Sciences, Texas A&M University, TAMU 4235, College Station, TX 77843, USA
| | - Morgan S Paladino
- Department of Psychological and Brain Sciences, Texas A&M University, TAMU 4235, College Station, TX 77843, USA
| | - Sophia N Handel
- Department of Psychological and Brain Sciences, Texas A&M University, TAMU 4235, College Station, TX 77843, USA
| | - Rachel J Smith
- Institute for Neuroscience, Texas A&M University, TAMU 3474, College Station, TX 77843, USA; Department of Psychological and Brain Sciences, Texas A&M University, TAMU 4235, College Station, TX 77843, USA.
| |
Collapse
|
4
|
Jones BO, Paladino MS, Cruz AM, Spencer HF, Kahanek PL, Scarborough LN, Georges SF, Smith RJ. Punishment resistance for cocaine is associated with inflexible habits in rats. ADDICTION NEUROSCIENCE 2024; 11:100148. [PMID: 38859977 PMCID: PMC11164474 DOI: 10.1016/j.addicn.2024.100148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Addiction is characterized by continued drug use despite negative consequences. In an animal model, a subset of rats continues to self-administer cocaine despite footshock consequences, showing punishment resistance. We sought to test the hypothesis that punishment resistance arises from failure to exert goal-directed control over habitual cocaine seeking. While habits are not inherently permanent or maladaptive, continued use of habits under conditions that should encourage goal-directed control makes them maladaptive and inflexible. We trained male and female Sprague Dawley rats on a seeking-taking chained schedule of cocaine self-administration. We then exposed them to four days of punishment testing in which footshock was delivered randomly on one-third of trials. Before and after punishment testing (four days pre-punishment and ≥ four days post-punishment), we assessed whether cocaine seeking was goal-directed or habitual using outcome devaluation via cocaine satiety. We found that punishment resistance was associated with continued use of habits, whereas punishment sensitivity was associated with increased goal-directed control. Although punishment resistance for cocaine was not predicted by habitual responding pre-punishment, it was associated with habitual responding post-punishment. In parallel studies of food self-administration, we similarly observed that punishment resistance was associated with habitual responding post-punishment but not pre-punishment in males, although it was associated with habitual responding both pre- and post-punishment in females, indicating that punishment resistance was predicted by habitual responding in food-seeking females. These findings indicate that punishment resistance is related to habits that have become inflexible and persist under conditions that should encourage a transition to goal-directed behavior.
Collapse
Affiliation(s)
- Bradley O Jones
- Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Morgan S Paladino
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Adelis M Cruz
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Haley F Spencer
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Payton L Kahanek
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Lauren N Scarborough
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Sandra F Georges
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Rachel J Smith
- Institute for Neuroscience, Texas A&M University, College Station, TX, USA
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
5
|
Solinas M, Lardeux V, Leblanc PM, Longueville JE, Thiriet N, Vandaele Y, Panlilio LV, Jaafari N. Delay of punishment highlights differential vulnerability to developing addiction-like behavior toward sweet food. Transl Psychiatry 2024; 14:155. [PMID: 38509086 PMCID: PMC10954751 DOI: 10.1038/s41398-024-02863-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
Resistance to punishment is commonly used to measure the difficulty in refraining from rewarding activities when negative consequences ensue, which is a hallmark of addictive behavior. We recently developed a progressive shock strength (PSS) procedure in which individual rats can titrate the amount of punishment that they are willing to tolerate to obtain food rewards. Here, we investigated the effects of a range of delays (0-12 s) on resistance to punishment measured by PSS break points. As expected from delay discounting principles, we found that delayed shock was less effective as a punisher, as revealed by higher PSS breakpoints. However, this discounting effect was not equally distributed in the population of rats, and the introduction of a delay highlighted the existence of two populations: rats that were sensitive to immediate punishment were also sensitive to delayed shock, whereas rats that were resistant to immediate punishment showed strong temporal discounting of delayed punishment. Importantly, shock-sensitive rats suppressed responding even in subsequent non-punishment sessions, and they differed from shock-resistant rats in anxiety-like behavior, but not in sensitivity to pain. These results show that manipulation of temporal contingencies of punishment in the PSS procedure provides a valuable tool to identify individuals with a double vulnerability to addiction: low sensitivity to aversion and excessive discounting of negative future consequences. Conversely, the shock-sensitive population may provide a model of humans who are vulnerable to opportunity loss due to excessive anxiety.
Collapse
Affiliation(s)
- Marcello Solinas
- Université de Poitiers, INSERM, U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France.
- Unité de Recherche Clinique Intersectorielle en Psychiatrie, Centre Hospitalier Henri-Laborit, Poitiers, France.
| | - Virginie Lardeux
- Université de Poitiers, INSERM, U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Pierre-Marie Leblanc
- Unité de Recherche Clinique Intersectorielle en Psychiatrie, Centre Hospitalier Henri-Laborit, Poitiers, France
| | - Jean-Emmanuel Longueville
- Université de Poitiers, INSERM, U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Nathalie Thiriet
- Université de Poitiers, INSERM, U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Youna Vandaele
- Université de Poitiers, INSERM, U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Leigh V Panlilio
- Real-world Assessment, Prediction, and Treatment Unit, Translational Addiction Medicine Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Nematollah Jaafari
- Unité de Recherche Clinique Intersectorielle en Psychiatrie, Centre Hospitalier Henri-Laborit, Poitiers, France
- Université de Poitiers, CNRS, UMR 7295, Centre de Recherche sur la Cognition et l'apprentissage, Poitiers, France
| |
Collapse
|
6
|
Arnold ME, Schank JR. Aversion-associated drug and alcohol seeking in females. Front Neuroendocrinol 2023; 71:101095. [PMID: 37558185 DOI: 10.1016/j.yfrne.2023.101095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/27/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
Compulsive drug intake is characterized by the continuation of use regardless of negative consequences. This is modeled preclinically using procedures where a negative stimulus is delivered contingently with consumption of the reinforcer. In humans, women and men exhibit different drug taking behavior as it pertains to overall use, withdrawal symptoms, and rate of dependence. In substance use research, females have often been excluded from many studies due to concerns that circulating sex hormones may affect drug seeking behavior. However, the more recent inclusion of females in preclinical studies has identified interesting sex differences in aversion-resistant intake of drugs and alcohol. This review will serve to summarize key findings in aversion-related intake of alcohol, psychostimulants, and opioids in females by examining studies that have included female subjects. Further discussion will examine the effect of intake model, neuroanatomical pathways, and sex hormones in the expression of aversion-resistant drug and alcohol consumption.
Collapse
Affiliation(s)
- Miranda E Arnold
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Jesse R Schank
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
7
|
Birmingham EA, Wickens MM, Kirkland JM, Knouse MC, McGrath AG, Briand LA. Circulating ovarian hormones interact with protein interacting with C kinase (PICK1) within the medial prefrontal cortex to influence cocaine seeking in female mice. Horm Behav 2023; 155:105408. [PMID: 37541099 PMCID: PMC10543586 DOI: 10.1016/j.yhbeh.2023.105408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 08/06/2023]
Abstract
Protein interacting with C kinase 1 (PICK1) is an AMPA receptor binding protein that works in conjunction with glutamate receptor interacting protein (GRIP) to balance the number of GluA2-containing AMPARs in the synapse. In male mice, disrupting PICK1 in the medial prefrontal cortex (mPFC) leads to a decrease in cue-induced cocaine seeking and disrupting GRIP in the mPFC has the opposing effect, consistent with other evidence that removal of GluA2-containing AMPARs potentiates reinstatement. However, PICK1 does not seem to play the same role in female mice, as knockdown of either PICK1 or GRIP in the mPFC leads to similar increases in cue-induced cocaine seeking. These previous findings indicate that the role of PICK1 in the prefrontal cortex is sex specific. The goal of the current study was to examine whether ovarian hormones contribute to the effect of prefrontal PICK1 knockdown on reinstatement of cocaine seeking. While we replicated the increased cue-induced cocaine seeking in prefrontal PICK1 knockdown sham mice, we did not see any difference between the GFP control mice and PICK1 knockdowns following ovariectomy. However, this effect was driven primarily by an increase in cocaine seeking in ovariectomized GFP control mice while there was no effect ovariectomy in PICK1 knockdown mice. Taken together, these findings suggest that circulating ovarian hormones interact with the effects of PICK1 on cue-induced reinstatement.
Collapse
Affiliation(s)
| | - Megan M Wickens
- Department of Psychology & Neuroscience, Temple University, United States of America
| | - Julia M Kirkland
- Department of Psychology & Neuroscience, Temple University, United States of America
| | - Melissa C Knouse
- Department of Psychology & Neuroscience, Temple University, United States of America
| | - Anna G McGrath
- Department of Psychology & Neuroscience, Temple University, United States of America
| | - Lisa A Briand
- Department of Psychology & Neuroscience, Temple University, United States of America; Neuroscience Program, Temple University, United States of America.
| |
Collapse
|
8
|
Jones BO, Paladino MS, Cruz AM, Spencer HF, Kahanek PL, Scarborough LN, Georges SF, Smith RJ. Punishment resistance for cocaine is associated with inflexible habits in rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.08.544242. [PMID: 37333299 PMCID: PMC10274925 DOI: 10.1101/2023.06.08.544242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Addiction is characterized by continued drug use despite negative consequences. In an animal model, a subset of rats continues to self-administer cocaine despite footshock consequences, showing punishment resistance. We sought to test the hypothesis that punishment resistance arises from failure to exert goal-directed control over habitual cocaine seeking. While habits are not inherently permanent or maladaptive, continued use of habits under conditions that should encourage goal-directed control makes them maladaptive and inflexible. We trained male and female Sprague Dawley rats on a seeking-taking chained schedule of cocaine self-administration (2 h/day). We then exposed them to 4 days of punishment testing, in which footshock (0.4 mA, 0.3 s) was delivered randomly on one-third of trials, immediately following completion of seeking and prior to extension of the taking lever. Before and after punishment testing (4 days pre-punishment and ≥4 days post-punishment), we assessed whether cocaine seeking was goal-directed or habitual using outcome devaluation via cocaine satiety. We found that punishment resistance was associated with continued use of habits, whereas punishment sensitivity was associated with increased goal-directed control. Although punishment resistance was not predicted by habitual responding pre-punishment, it was associated with habitual responding post-punishment. In parallel studies of food self-administration, we similarly observed that punishment resistance was associated with habitual responding post-punishment but not pre-punishment. These findings indicate that punishment resistance is related to habits that have become inflexible and persist under conditions that should encourage a transition to goal-directed behavior.
Collapse
Affiliation(s)
- Bradley O. Jones
- Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Morgan S. Paladino
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Adelis M. Cruz
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Haley F. Spencer
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Payton L. Kahanek
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Lauren N. Scarborough
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Sandra F. Georges
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Rachel J. Smith
- Institute for Neuroscience, Texas A&M University, College Station, TX, USA
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
9
|
McNally GP, Jean-Richard-Dit-Bressel P, Millan EZ, Lawrence AJ. Pathways to the persistence of drug use despite its adverse consequences. Mol Psychiatry 2023; 28:2228-2237. [PMID: 36997610 PMCID: PMC10611585 DOI: 10.1038/s41380-023-02040-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 04/01/2023]
Abstract
The persistence of drug taking despite its adverse consequences plays a central role in the presentation, diagnosis, and impacts of addiction. Eventual recognition and appraisal of these adverse consequences is central to decisions to reduce or cease use. However, the most appropriate ways of conceptualizing persistence in the face of adverse consequences remain unclear. Here we review evidence that there are at least three pathways to persistent use despite the negative consequences of that use. A cognitive pathway for recognition of adverse consequences, a motivational pathway for valuation of these consequences, and a behavioral pathway for responding to these adverse consequences. These pathways are dynamic, not linear, with multiple possible trajectories between them, and each is sufficient to produce persistence. We describe these pathways, their characteristics, brain cellular and circuit substrates, and we highlight their relevance to different pathways to self- and treatment-guided behavior change.
Collapse
Affiliation(s)
- Gavan P McNally
- School of Psychology, UNSW Sydney, Sydney, NSW, 2052, Australia.
| | | | - E Zayra Millan
- School of Psychology, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3010, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3010, Australia
| |
Collapse
|
10
|
Dos Anjos Rosário B, de Fátima SantanaNazaré M, de Souza DV, Le Sueur-Maluf L, Estadella D, Ribeiro DA, de Barros Viana M. The influence of sex and reproductive cycle on cocaine-induced behavioral and neurobiological alterations: a review. Exp Brain Res 2022; 240:3107-3140. [PMID: 36264315 DOI: 10.1007/s00221-022-06479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 10/01/2022] [Indexed: 11/28/2022]
Abstract
This systematic review (SR) was aimed at answering two questions: (1) how sex and ovarian hormones alter behavior associated with cocaine use; (2) which possible neurobiological mechanisms explain behavioral differences. Three different researchers conducted a search in PUBMED for all kinds of articles published between the years of 1991 to 2021 on the theme "reproductive cycle and cocaine", "estrous cycle and cocaine", "menstrual cycle and cocaine", "fluctuation of ovarian hormones and cocaine", "estrogen and cocaine" and "progesterone and cocaine". Sixty original studies were identified and subdivided into experimental rodent studies and clinical trials. Experimental studies were characterized by author/year, species/strain, sex/number, age/weight, dose/route/time of administration, hormonal assessment, or administration. Clinical trials were characterized by author/year, sex/number, age, exclusion criterion, dose/route of administration/time of cocaine, and hormonal assessment. Results gathered showed that rodent females develop increased consumption, seeking behavior, craving, relapse, locomotion, increases in stress and anxiety, among other behavioral alterations during peaks of estrogen. These observations are related to the direct effects played by ovarian hormones (in particularly estradiol), in dopamine, but also in serotonin neurons, and in brain regions such as the tegmental area, the nucleus accumbens, the hypothalamus, the amygdala and the prefrontal cortex. Increased sensitization to cocaine presented by high estradiol females was linked to the activation of a CBR1-mediated mechanism and GABA-A-dependent suppression of inhibitory synaptic activity of the prelimbic prefrontal cortex. Estradiol facilitation of cocaine-increased locomotion and self-administration was shown to require the release of glutamate and the activation of metabotropic glutamate receptors subtype 5. Clinical studies also tend to point to a stimulatory effect of estradiol on cocaine sensitization and a neuroprotective effect of progesterone. In conclusion, the results of the present review indicate a need for further preclinical and clinical trials and neurobiological studies to better understand the relationship between sex and ovarian hormones on cocaine sensitization.
Collapse
Affiliation(s)
| | | | - Daniel Vitor de Souza
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | - Luciana Le Sueur-Maluf
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | - Débora Estadella
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | - Daniel Araki Ribeiro
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | - Milena de Barros Viana
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Santos, São Paulo, Brazil.
| |
Collapse
|
11
|
Durand A, Girardeau P, Freese L, Ahmed SH. Increased responsiveness to punishment of cocaine self-administration after experience with high punishment. Neuropsychopharmacology 2022; 47:444-453. [PMID: 34429520 PMCID: PMC8674259 DOI: 10.1038/s41386-021-01159-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023]
Abstract
One behavioral feature of drug addiction is continued drug use despite awareness that this causes negative consequences. Attempts to model this feature in animals typically involve punishing drug self-administration with electrical footshock to identify individuals whose drug use is differently suppressed by punishment. Here we sought to further study individual responsiveness of drug use to punishment in rats self-administering intravenous cocaine. Rats were first trained during several weeks to self-administer cocaine under a fixed-ratio 3 schedule of reinforcement. Then, their self-administration behavior was punished with increasing intensity of footshock (i.e., from 0.1 mA to 0.9 mA, every 30 min). With increasing intensity of punishment, rats first continued to self-administer cocaine before eventually stopping near completely. When retested, however, drug use became more responsive to punishment and was suppressed by a low and initially ineffective footshock intensity (i.e., 0.1 mA). This increase in responsiveness to punishment was seen in all individuals tested, albeit with varying degrees, and was acquired after one single experience with an intensity of punishment that near completely suppressed drug self-administration. Mere passive, non-contingent exposure to the same intensity, however, had no such effect. Once acquired, increased responsiveness to punishment persisted during at least one month when rats were tested every week, but not every day. Finally, increased responsiveness to punishment was not observed after exposure to a non-painful form of punishment (i.e., histamine). Overall, this study reveals that initial responsiveness of drug use to punishment can change rapidly and persistently with experience. We discuss several possible mechanisms that may account for this change in punishment responsiveness and also draw some of the implications and future perspectives for research on animal models of compulsion-like behavior.
Collapse
Affiliation(s)
| | - Paul Girardeau
- grid.412041.20000 0001 2106 639XUniversité de Bordeaux, UFR des Sciences Odontologiques, Bordeaux, France
| | - Luana Freese
- grid.412344.40000 0004 0444 6202Laboratory of Neuropsychopharmacology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul Brazil
| | - Serge H. Ahmed
- grid.462010.1Université de Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, France
| |
Collapse
|
12
|
Vanderschuren LJMJ, Ahmed SH. Animal Models of the Behavioral Symptoms of Substance Use Disorders. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a040287. [PMID: 32513674 PMCID: PMC8327824 DOI: 10.1101/cshperspect.a040287] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To more effectively manage substance use disorders, it is imperative to understand the neural, genetic, and psychological underpinnings of addictive behavior. To contribute to this understanding, considerable efforts have been made to develop translational animal models that capture key behavioral characteristics of addiction on the basis of DSM5 criteria of substance use disorders. In this review, we summarize empirical evidence for the occurrence of addiction-like behavior in animals. These symptoms include escalation of drug use, neurocognitive deficits, resistance to extinction, exaggerated motivation for drugs, increased reinstatement of drug seeking after extinction, preference for drugs over nondrug rewards, and resistance to punishment. The occurrence of addiction-like behavior in laboratory animals has opened the opportunity to investigate the neural, genetic, and psychological background of key aspects of addiction, which may ultimately contribute to the prevention and treatment of substance use disorders.
Collapse
Affiliation(s)
- Louk J M J Vanderschuren
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - Serge H Ahmed
- Université de Bordeaux, Bordeaux Neurocampus, Institut des Maladies Neurodégénératives, CNRS UMR 5293, F-33000 Bordeaux, France
| |
Collapse
|
13
|
Schmidt KT, Sharp JL, Ethridge SB, Pearson T, Ballard S, Potter KM, Smith MA. The effects of strain and estrous cycle on heroin- and sugar-maintained responding in female rats. Behav Brain Res 2021; 409:113329. [PMID: 33933523 DOI: 10.1016/j.bbr.2021.113329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/29/2022]
Abstract
Heroin intake decreases during the proestrus phase of the estrous cycle in female, Long-Evans rats. The purpose of this study was to (1) determine if proestrus-associated decreases in heroin intake extend across rat strains and (2) determine if proestrus-associated decreases in responding extend to a nondrug reinforcer. Female rats were implanted with intravenous catheters and trained to self-administer heroin. Estrous cycle was tracked daily for the duration of the study. During testing, Lewis, Sprague Dawley, and Long-Evans rats self-administered low (0.0025 mg/kg) and high (0.0075 mg /kg) doses of heroin and then self-administered sugar on fixed ratio (FR1) schedules of reinforcement. Heroin intake decreased significantly during proestrus in all three rat strains under at least one dose condition; however, sugar intake did not decrease during proestrus in any strain. These data suggest that responding maintained by heroin, but not a nondrug reinforcer, significantly decreases during proestrus in female rats and that these effects are consistent across rat strain.
Collapse
Affiliation(s)
- Karl T Schmidt
- Department of Psychology, Davidson College, Davidson, NC 28035, USA
| | - Jessica L Sharp
- Department of Psychology, Davidson College, Davidson, NC 28035, USA
| | - Sarah B Ethridge
- Department of Psychology, Davidson College, Davidson, NC 28035, USA
| | - Tallia Pearson
- Department of Psychology, Davidson College, Davidson, NC 28035, USA
| | - Shannon Ballard
- Department of Psychology, Davidson College, Davidson, NC 28035, USA
| | - Kenzie M Potter
- Department of Psychology, Davidson College, Davidson, NC 28035, USA
| | - Mark A Smith
- Department of Psychology, Davidson College, Davidson, NC 28035, USA.
| |
Collapse
|
14
|
Sun W, Yuill MB. Role of the GABA a and GABA b receptors of the central nucleus of the amygdala in compulsive cocaine-seeking behavior in male rats. Psychopharmacology (Berl) 2020; 237:3759-3771. [PMID: 32875348 PMCID: PMC7686280 DOI: 10.1007/s00213-020-05653-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 08/24/2020] [Indexed: 01/28/2023]
Abstract
RATIONALE Compulsive cocaine use, defined as the continued use despite the dire consequences, is a hallmark of cocaine addiction. Thus, understanding the brain mechanism regulating the compulsive cocaine-seeking and cocaine-taking behaviors is essential to understand cocaine addiction and the key to identification of the molecular targets for the development of medications against this condition. OBJECTIVE This study aimed to determine how the GABAa and GABAb receptors of the central nucleus of the amygdala (CeA) regulate the compulsive cocaine-seeking behavior. METHODS Male Wistar outbred rats were trained to self-administer intravenous cocaine (0.4 mg/kg/infusion) under a chained schedule. The compulsive cocaine-seeking behavior was measured as the cocaine-seeking behavior in the face of footshock punishment. The role of the GABA receptors of CeA in the regulation of such behavior was determined by measuring the dose-dependent effects of the GABAa agonist muscimol or the GABAb agonist baclofen bilaterally microinjected into the CeA on the punished cocaine-seeking behavior. RESULTS The cocaine-seeking behavior was inhibited by footshock punishment in an intensity-dependent manner. Both muscimol and baclofen dose-dependently increased the punished cocaine-seeking behavior. However, the potency of muscimol but not baclofen was negatively correlated with the effects of punishment. CONCLUSION These data indicate that the CeA GABAa receptors play a key role in the regulation of the compulsive cocaine-seeking behavior and suggest that an increase in the function of the GABAa receptors possibly induced by cocaine or genetic factors may be an important mechanism involved in the development of or vulnerability to the compulsive cocaine use and addiction.
Collapse
Affiliation(s)
- WenLin Sun
- Department of Pharmacology, University of Tennessee Health Science Center, 71 S. Manassas, Memphis, TN, 38103, USA.
| | - Matt B Yuill
- Department of Pharmacology, University of Tennessee Health Science Center, 71 S. Manassas, Memphis, TN, 38103, USA
| |
Collapse
|
15
|
Hogarth L. Addiction is driven by excessive goal-directed drug choice under negative affect: translational critique of habit and compulsion theory. Neuropsychopharmacology 2020; 45:720-735. [PMID: 31905368 PMCID: PMC7265389 DOI: 10.1038/s41386-020-0600-8] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 12/09/2019] [Accepted: 12/18/2019] [Indexed: 01/21/2023]
Abstract
Drug addiction may be a goal-directed choice driven by excessive drug value in negative affective states, a habit driven by strong stimulus-response associations, or a compulsion driven by insensitivity to costs imposed on drug seeking. Laboratory animal and human evidence for these three theories is evaluated. Excessive goal theory is supported by dependence severity being associated with greater drug choice/economic demand. Drug choice is demonstrably goal-directed (driven by the expected value of the drug) and can be augmented by stress/negative mood induction and withdrawal-effects amplified in those with psychiatric symptoms and drug use coping motives. Furthermore, psychiatric symptoms confer risk of dependence, and coping motives mediate this risk. Habit theory of addiction has weaker support. Habitual behaviour seen in drug-exposed animals often does not occur in complex decision scenarios, or where responding is rewarded, so habit is unlikely to explain most human addictive behaviour where these conditions apply. Furthermore, most human studies have not found greater propensity to habitual behaviour in drug users or as a function of dependence severity, and the minority that have can be explained by task disengagement producing impaired explicit contingency knowledge. Compulsion theory of addiction also has weak support. The persistence of punished drug seeking in animals is better explained by greater drug value (evinced by the association with economic demand) than by insensitivity to costs. Furthermore, human studies have provided weak evidence that propensity to discount cost imposed on drug seeking is associated with dependence severity. These data suggest that human addiction is primarily driven by excessive goal-directed drug choice under negative affect, and less by habit or compulsion. Addiction is pathological because negative states powerfully increase expected drug value acutely outweighing abstinence goals.
Collapse
Affiliation(s)
- Lee Hogarth
- School of Psychology, University of Exeter, Washington Singer Building, Perry Road, Exeter, EX4 4QG, UK.
| |
Collapse
|
16
|
Giacometti LL, Barker JM. Sex differences in the glutamate system: Implications for addiction. Neurosci Biobehav Rev 2020; 113:157-168. [PMID: 32173404 DOI: 10.1016/j.neubiorev.2020.03.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 01/21/2020] [Accepted: 03/08/2020] [Indexed: 12/21/2022]
Abstract
Clinical and preclinical research have identified sex differences in substance use and addiction-related behaviors. Historically, substance use disorders are more prevalent in men than women, though this gap is closing. Despite this difference, women appear to be more susceptible to the effects of many drugs and progress to substance abuse treatment more quickly than men. While the glutamate system is a key regulator of addiction-related behaviors, much of the work implicating glutamate signaling and glutamatergic circuits has been conducted in men and male rodents. An increasing number of studies have identified sex differences in drug-induced glutamate alterations as well as sex and estrous cycle differences in drug seeking behaviors. This review will describe sex differences in the glutamate system with an emphasis on implications for substance use disorders, highlighting the gaps in our current understanding of how innate and drug-induced alterations in the glutamate system may contribute to sex differences in addiction-related behaviors.
Collapse
Affiliation(s)
- L L Giacometti
- Department of Pharmacology and Physiology, Drexel University College of Medicine, United States.
| | - J M Barker
- Department of Pharmacology and Physiology, Drexel University College of Medicine, United States.
| |
Collapse
|
17
|
Ishikawa J, Sakurai Y, Ishikawa A, Mitsushima D. Contribution of the prefrontal cortex and basolateral amygdala to behavioral decision-making under reward/punishment conflict. Psychopharmacology (Berl) 2020; 237:639-654. [PMID: 31912190 DOI: 10.1007/s00213-019-05398-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/08/2019] [Indexed: 01/09/2023]
Abstract
RATIONALE Control of reward-seeking behavior under conditions of punishment is an important function for survival. OBJECTIVES AND METHODS We designed a task in which rats could choose to either press a lever and obtain a food pellet accompanied by a footshock or refrain from pressing the lever to avoid footshock, in response to tone presentation. In the task, footshock intensity steadily increased, and the task was terminated when the lever press probability reached < 25% (last intensity). Rats were trained until the last intensity was stable. Subsequently, we investigated the effects of the pharmacological inactivation of the ventromedial prefrontal cortex (vmPFC), lateral orbitofrontal cortex (lOFC), and basolateral amygdala (BLA) on task performance. RESULTS Bilateral inactivation of the vmPFC, lOFC, and BLA did not alter lever press responses at the early stage of the task. The number of lever presses increased following vmPFC and BLA inactivation but decreased following lOFC inactivation during the later stage of the task. The last intensity was elevated by vmPFC or BLA inactivation but lowered by lOFC inactivation. Disconnection of the vmPFC-BLA pathway induced behavioral alterations that were similar to vmPFC or BLA inactivation. Inactivation of any regions did not alter footshock sensitivity and anxiety levels. CONCLUSIONS Our results demonstrate a strong role of the vmPFC and BLA and their interactions in reward restraint to avoid punishment and a prominent role of the lOFC in reward-seeking under reward/punishment conflict situations.
Collapse
Affiliation(s)
- Junko Ishikawa
- Neurophysiology, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - Yoshio Sakurai
- Laboratory of Neural Information, Systems Neuroscience, Doshisha University Graduate School of Brain Science, 1-3 Tatara Miyakodani, Kyotanabe-shi, Kyoto, 610-0394, Japan
| | - Akinori Ishikawa
- Neurophysiology, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Dai Mitsushima
- Neurophysiology, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
18
|
Alonso L, Peeva P, Ramos-Prats A, Alenina N, Winter Y, Rivalan M. Inter-individual and inter-strain differences in cognitive and social abilities of Dark Agouti and Wistar Han rats. Behav Brain Res 2020; 377:112188. [PMID: 31473288 DOI: 10.1016/j.bbr.2019.112188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/06/2019] [Accepted: 08/28/2019] [Indexed: 01/12/2023]
Abstract
Healthy animals displaying extreme behaviours that resemble human psychiatric symptoms are relevant models to study the natural psychobiological processes of maladapted behaviours. Using a Rat Gambling Task, healthy individuals spontaneously making poor decisions (PDMs) were found to co-express a combination of other cognitive and reward-based characteristics similar to symptoms observed in human patients with impulse-control disorders. The main goals of this study were to 1) confirm the existence of PDMs and their unique behavioural phenotypes in Dark Agouti (DA) and Wistar Han (WH) rats, 2) to extend the behavioural profile of the PDMs to probability-based decision-making and social behaviours and 3) to extract key discriminative traits between DA and WH strains, relevant for biomedical research. We have compared cognitive abilities, natural behaviours and physiological responses in DA and WH rats at the strain and at the individual level. Here we found that the naturally occurring PDM's profile was consistent between both rat lines. Then, although the PDM individuals did not take more risks in probability discounting task, they seemed to be of higher social ranks. Finally and despite their similarities in performance, WH and DA lines differed in degree of reward sensitivity, impulsivity, locomotor activity and open space-occupation. The reproducibility and conservation of the complex phenotypes of PDMs and GDMs (good decision makers) in these two genetically different strains support their translational potential. Both strains, present large phenotypic variation in behaviours pertinent for the study of the underlying mechanisms of poor decision making and associated disorders.
Collapse
Affiliation(s)
- Lucille Alonso
- Humboldt University, Berlin, Germany; Charité University Medicine, Berlin, Germany
| | - Polina Peeva
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Arnau Ramos-Prats
- Department of Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | - Natalia Alenina
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - York Winter
- Humboldt University, Berlin, Germany; Charité University Medicine, Berlin, Germany
| | - Marion Rivalan
- Humboldt University, Berlin, Germany; Charité University Medicine, Berlin, Germany.
| |
Collapse
|
19
|
Lerner TN. Interfacing behavioral and neural circuit models for habit formation. J Neurosci Res 2020; 98:1031-1045. [PMID: 31916623 DOI: 10.1002/jnr.24581] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 12/26/2022]
Abstract
Habits are an important mechanism by which organisms can automate the control of behavior to alleviate cognitive demand. However, transitions to habitual control are risky because they lead to inflexible responding in the face of change. The question of how the brain controls transitions into habit is thus an intriguing one. How do we regulate when our repeated actions become automated? When is it advantageous or disadvantageous to release actions from cognitive control? Decades of research have identified a variety of methods for eliciting habitual responding in animal models. Progress has also been made to understand which brain areas and neural circuits control transitions into habit. Here, I discuss existing research on behavioral and neural circuit models for habit formation (with an emphasis on striatal circuits), and discuss strategies for combining information from different paradigms and levels of analysis to prompt further progress in the field.
Collapse
Affiliation(s)
- Talia N Lerner
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
20
|
Cadet JL, Patel R, Jayanthi S. Compulsive methamphetamine taking and abstinence in the presence of adverse consequences: Epigenetic and transcriptional consequences in the rat brain. Pharmacol Biochem Behav 2019; 179:98-108. [PMID: 30797763 DOI: 10.1016/j.pbb.2019.02.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/04/2019] [Accepted: 02/20/2019] [Indexed: 02/06/2023]
Abstract
Methamphetamine addiction is characterized by compulsive binges of drug intake despite adverse life consequences. A model of methamphetamine self-administration that includes contingent footshocks to constitute adverse consequences has helped to segregate rats that reduce or stop lever pressing for methamphetamine (sensitive) from those that continue to lever press for the drug (resistant) in the presence of negative outcomes. We have observed differential DNA hydroxymethylation and increased expression of potassium channel mRNAs in the nucleus accumbens of sensitive compared to resistant rats, suggesting a role of these channels in suppressing methamphetamine intake. There were also significant increases in nerve growth factor (NGF) expression and activation of its downstream signaling pathway (NGF-TrkA and p75NTR/MAPK signaling) in only the dorsal striatum of sensitive rats after a month of abstinence. In contrast, oxytocin mRNA expression was increased in only the nucleus accumbens of resistant rats compared to sensitive rats euthanized after that time. These results indicate that footshocks can differentiate two behavioral phenotypes with differential biochemical and epigenetic consequences in the ventral and dorsal striatum.
Collapse
Affiliation(s)
- Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD, USA.
| | - Ravish Patel
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD, USA
| | - Subramaniam Jayanthi
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD, USA
| |
Collapse
|