1
|
Ait Bentaleb K, Boisvert M, Tourjman V, Potvin S. A Meta-Analysis of Functional Neuroimaging Studies of Ketamine Administration in Healthy Volunteers. J Psychoactive Drugs 2024; 56:211-224. [PMID: 36921026 DOI: 10.1080/02791072.2023.2190758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/22/2023] [Indexed: 03/17/2023]
Abstract
Ketamine administration leads to a psychotomimetic state when taken in large bolus doses, making it a valid model of psychosis. Therefore, understanding ketamine's effects on brain functioning is particularly relevant. This meta-analysis focused on neuroimaging studies that examined ketamine-induced brain activation at rest and during a task. Included are 10 resting-state studies and 23 task-based studies, 9 of which were measuring executive functions. Using a stringent statistical threshold (TFCE <0.05), the results showed increased activity at rest in the dorsal anterior cingulate cortex (ACC), and increased activation of the right Heschl's gyrus during executive tasks, following ketamine administration. Uncorrected results showed increased activation at rest in the right (anterior) insula and the right-fusiform gyrus, as well as increased activation during executive tasks in the rostral ACC. Rest-state studies highlighted alterations in core hubs of the salience network, while task-based studies suggested an impact on task-irrelevant brain regions. Increased activation in the rostral ACC may indicate a failure to deactivate the default mode network during executive tasks following ketamine administration. The results are coherent with alterations found in schizophrenia, which confer external validity to the ketamine model of psychosis. Studies investigating the neural mechanisms of ketamine's antidepressant action are warranted.
Collapse
Affiliation(s)
- Karim Ait Bentaleb
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montréal, Canada
- Department of psychiatry and addiction, Université de Montréal, Montréal, Canada
| | - Mélanie Boisvert
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montréal, Canada
- Department of psychiatry and addiction, Université de Montréal, Montréal, Canada
| | - Valérie Tourjman
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montréal, Canada
- Department of psychiatry and addiction, Université de Montréal, Montréal, Canada
| | - Stéphane Potvin
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montréal, Canada
- Department of psychiatry and addiction, Université de Montréal, Montréal, Canada
| |
Collapse
|
2
|
Wasserthal S, Lehmann M, Neumann C, Delis A, Philipsen A, Hurlemann R, Ettinger U, Schultz J. Effects of NMDA-receptor blockade by ketamine on mentalizing and its neural correlates in humans: a randomized control trial. Sci Rep 2023; 13:17184. [PMID: 37821513 PMCID: PMC10567921 DOI: 10.1038/s41598-023-44443-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/08/2023] [Indexed: 10/13/2023] Open
Abstract
Schizophrenia is associated with various deficits in social cognition that remain relatively unaltered by antipsychotic treatment. While faulty glutamate signaling has been associated with general cognitive deficits as well as negative symptoms of schizophrenia, no direct link between manipulation of glutamate signaling and deficits in mentalizing has been demonstrated thus far. Here, we experimentally investigated whether ketamine, an uncompetitive N-methyl-D-aspartate receptor antagonist known to induce psychotomimetic effects, influences mentalizing and its neural correlates. In a randomized, placebo-controlled between-subjects experiment, we intravenously administered ketamine or placebo to healthy participants performing a video-based social cognition task during functional magnetic resonance imaging. Psychotomimetic effects of ketamine were assessed using the Positive and Negative Syndrome Scale. Compared to placebo, ketamine led to significantly more psychotic symptoms and reduced mentalizing performance (more "no mentalizing" errors). Ketamine also influenced blood oxygen level dependent (BOLD) response during mentalizing compared to placebo. Specifically, ketamine increased BOLD in right posterior superior temporal sulcus (pSTS) and increased connectivity between pSTS and anterior precuneus. These increases may reflect a dysfunctional shift of attention induced by ketamine that leads to mentalizing deficits. Our findings show that a psychotomimetic dose of ketamine impairs mentalizing and influences its neural correlates, a result compatible with the notion that deficient glutamate signaling may contribute to deficits in mentalizing in schizophrenia. The results also support efforts to seek novel psychopharmacological treatments for psychosis and schizophrenia targeting glutamatergic transmission.
Collapse
Affiliation(s)
- Sven Wasserthal
- Division of Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Mirko Lehmann
- Department of Psychology, University of Bonn, Bonn, Germany
| | - Claudia Neumann
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Achilles Delis
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University Hospital of Bonn, Bonn, Germany
| | - René Hurlemann
- Department of Psychiatry, School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | | | - Johannes Schultz
- Center for Economics and Neuroscience, University of Bonn, Bonn, Germany
- Institute for Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
3
|
Cai XL, Pu CC, Zhou SZ, Wang Y, Huang J, Lui SSY, Møller A, Cheung EFC, Madsen KH, Xue R, Yu X, Chan RCK. Anterior cingulate glutamate levels associate with functional activation and connectivity during sensory integration in schizophrenia: a multimodal 1H-MRS and fMRI study. Psychol Med 2023; 53:4904-4914. [PMID: 35791929 DOI: 10.1017/s0033291722001817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Glutamatergic dysfunction has been implicated in sensory integration deficits in schizophrenia, yet how glutamatergic function contributes to behavioural impairments and neural activities of sensory integration remains unknown. METHODS Fifty schizophrenia patients and 43 healthy controls completed behavioural assessments for sensory integration and underwent magnetic resonance spectroscopy (MRS) for measuring the anterior cingulate cortex (ACC) glutamate levels. The correlation between glutamate levels and behavioural sensory integration deficits was examined in each group. A subsample of 20 pairs of patients and controls further completed an audiovisual sensory integration functional magnetic resonance imaging (fMRI) task. Blood Oxygenation Level Dependent (BOLD) activation and task-dependent functional connectivity (FC) were assessed based on fMRI data. Full factorial analyses were performed to examine the Group-by-Glutamate Level interaction effects on fMRI measurements (group differences in correlation between glutamate levels and fMRI measurements) and the correlation between glutamate levels and fMRI measurements within each group. RESULTS We found that schizophrenia patients exhibited impaired sensory integration which was positively correlated with ACC glutamate levels. Multimodal analyses showed significantly Group-by-Glutamate Level interaction effects on BOLD activation as well as task-dependent FC in a 'cortico-subcortical-cortical' network (including medial frontal gyrus, precuneus, ACC, middle cingulate gyrus, thalamus and caudate) with positive correlations in patients and negative in controls. CONCLUSIONS Our findings indicate that ACC glutamate influences neural activities in a large-scale network during sensory integration, but the effects have opposite directionality between schizophrenia patients and healthy people. This implicates the crucial role of glutamatergic system in sensory integration processing in schizophrenia.
Collapse
Affiliation(s)
- Xin-Lu Cai
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Centre for Education and Research, Beijing, China
| | - Cheng-Cheng Pu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Shu-Zhe Zhou
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jia Huang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Simon S Y Lui
- Department of Psychiatry, School of Clinical Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Arne Møller
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Centre for Education and Research, Beijing, China
- Centre of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Eric F C Cheung
- Castle Peak Hospital, Hong Kong Special Administrative Region, China
| | - Kristoffer H Madsen
- Sino-Danish Centre for Education and Research, Beijing, China
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital, Amager and Hvidovre, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Rong Xue
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Centre for Education and Research, Beijing, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Brain Disorders, Beijing, China
| | - Xin Yu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Centre for Education and Research, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Department of Diagnostic Radiology, the University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
4
|
Nano-hesperetin attenuates ketamine-induced schizophrenia-like symptoms in mice: participation of antioxidant parameters. Psychopharmacology (Berl) 2023; 240:1063-1074. [PMID: 36879073 DOI: 10.1007/s00213-023-06344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023]
Abstract
RATIONALE Antioxidant natural herb hesperetin (Hst) offers powerful medicinal properties. Despite having noticeable antioxidant properties, it has limited absorption, which is a major pharmacological obstacle. OBJECTIVES The goal of the current investigation was to determine if Hst and nano-Hst might protect mice against oxidative stress and schizophrenia (SCZ)-like behaviors brought on by ketamine (KET). METHODS Seven treatment groups (n=7) were created for the animals. For 10 days, they received distilled water or KET (10 mg/kg) intraperitoneally (i.p). From the 11th to the 40th day, they received daily oral administration of Hst and nano-Hst (10, 20 mg/kg) or vehicle. With the use of the forced swimming test (FST), open field test (OFT), and novel object recognition test (NORT), SCZ-like behaviors were evaluated. Malondialdehyde (MDA) and glutathione levels and antioxidant enzyme activities were assessed in the cerebral cortex. RESULTS Our findings displayed that behavioral disorders induced by KET would be improved by nano-Hst treated. MDA levels were much lower after treatment with nano-Hst, and brain antioxidant levels and activities were noticeably higher. The mice treated with nano-Hst had improved outcomes in the behavioral and biochemical tests when compared to the Hst group. CONCLUSIONS Our study's findings showed that nano-Hst had a stronger neuroprotective impact than Hst. In cerebral cortex tissues, nano-Hst treatment dramatically reduced KET-induced (SCZ)-like behavior and oxidative stress indicators. As a result, nano-Hst may have more therapeutic potential and may be effective in treating behavioral impairments and oxidative damage brought on by KET.
Collapse
|
5
|
Effects of psychotropic drugs on ocular parameters relevant to traffic safety: A systematic review. Neurosci Biobehav Rev 2022; 141:104831. [PMID: 35995080 PMCID: PMC10067018 DOI: 10.1016/j.neubiorev.2022.104831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022]
Abstract
Driving is a complex neurobehavioural task necessitating the rapid selection, uptake, and processing of visual information. Eye movements that are critical for the execution of visually guided behaviour such as driving are also sensitive to the effects of psychotropic substances. The Embase (via Ovid), EBSCOHost, Psynet, Pubmed, Scopus and Web of Science databases were examined from January 01st, 2000 to December 31st, 2021. Study selection, data extraction and Cochrane Risk of Bias (RoB2) assessments were conducted according to PRISMA guidelines. The review was prospectively registered (CRD42021267554). In total, 36 full-text articles examined the effects of six principal psychotropic drug classes on measures of oculomotor parameters relevant to driving. Centrally depressing substances affect oculomotor responses in a dose-dependent manner. Psychostimulants improve maximal speed, but not accuracy, of visual search behaviours. Inhaled Δ-9-tetrahydrocannabinol (THC) increases inattention (saccadic inaccuracy) but does not consistently affect other oculomotor parameters. Alterations to composite ocular parameters due to psychoactive substance usage likely differently compromises performance precision during driving through impaired ability to select and process dynamic visual information.
Collapse
|
6
|
Lehmann M, Neumann C, Wasserthal S, Delis A, Schultz J, Hurlemann R, Ettinger U. Ketamine increases fronto-posterior functional connectivity during meta-perceptual confidence ratings. Behav Brain Res 2022; 430:113925. [DOI: 10.1016/j.bbr.2022.113925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 04/12/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022]
|
7
|
Sami MB, Annibale L, O'Neill A, Collier T, Onyejiaka C, Eranti S, Das D, Kelbrick M, McGuire P, Williams SCR, Rana A, Ettinger U, Bhattacharyya S. Eye movements in patients in early psychosis with and without a history of cannabis use. NPJ SCHIZOPHRENIA 2021; 7:24. [PMID: 33980870 PMCID: PMC8115050 DOI: 10.1038/s41537-021-00155-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 04/09/2021] [Indexed: 11/20/2022]
Abstract
It is unclear whether early psychosis in the context of cannabis use is different from psychosis without cannabis. We investigated this issue by examining whether abnormalities in oculomotor control differ between patients with psychosis with and without a history of cannabis use. We studied four groups: patients in the early phase of psychosis with a history of cannabis use (EPC; n = 28); patients in the early phase of psychosis without (EPNC; n = 25); controls with a history of cannabis use (HCC; n = 16); and controls without (HCNC; n = 22). We studied smooth pursuit eye movements using a stimulus with sinusoidal waveform at three target frequencies (0.2, 0.4 and 0.6 Hz). Participants also performed 40 antisaccade trials. There were no differences between the EPC and EPNC groups in diagnosis, symptom severity or level of functioning. We found evidence for a cannabis effect (χ2 = 23.14, p < 0.001), patient effect (χ2 = 4.84, p = 0.028) and patient × cannabis effect (χ2 = 4.20, p = 0.04) for smooth pursuit velocity gain. There was a large difference between EPC and EPNC (g = 0.76-0.86) with impairment in the non cannabis using group. We found no significant effect for antisaccade error whereas patients had fewer valid trials compared to controls. These data indicate that impairment of smooth pursuit in psychosis is more severe in patients without a history of cannabis use. This is consistent with the notion that the severity of neurobiological alterations in psychosis is lower in patients whose illness developed in the context of cannabis use.
Collapse
Affiliation(s)
- Musa Basseer Sami
- Institute of Psychiatry, Psychology and Neurosciences King's College London, London, UK.
- Institute of Mental Health, Nottingham University, Nottingham, England.
| | - Luciano Annibale
- Institute of Psychiatry, Psychology and Neurosciences King's College London, London, UK
| | - Aisling O'Neill
- Institute of Psychiatry, Psychology and Neurosciences King's College London, London, UK
| | - Tracy Collier
- Institute of Psychiatry, Psychology and Neurosciences King's College London, London, UK
| | - Chidimma Onyejiaka
- Institute of Psychiatry, Psychology and Neurosciences King's College London, London, UK
| | | | - Debasis Das
- Leicestershire Partnership NHS Trust, Leicester, UK
| | | | - Philip McGuire
- Institute of Psychiatry, Psychology and Neurosciences King's College London, London, UK
| | | | - Anas Rana
- Centre for Computational Biology, University of Birmingham, Birmingham, UK
| | | | - Sagnik Bhattacharyya
- Institute of Psychiatry, Psychology and Neurosciences King's College London, London, UK
| |
Collapse
|
8
|
Lehmann M, Neumann C, Wasserthal S, Schultz J, Delis A, Trautner P, Hurlemann R, Ettinger U. Effects of ketamine on brain function during metacognition of episodic memory. Neurosci Conscious 2021; 2021:niaa028. [PMID: 33747545 PMCID: PMC7959215 DOI: 10.1093/nc/niaa028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/14/2020] [Accepted: 11/23/2020] [Indexed: 12/19/2022] Open
Abstract
Only little research has been conducted on the pharmacological underpinnings of metacognition. Here, we tested the modulatory effects of a single intravenous dose (100 ng/ml) of the N-methyl-D-aspartate-glutamate-receptor antagonist ketamine, a compound known to induce altered states of consciousness, on metacognition and its neural correlates. Fifty-three young, healthy adults completed two study phases of an episodic memory task involving both encoding and retrieval in a double-blind, placebo-controlled fMRI study. Trial-by-trial confidence ratings were collected during retrieval. Effects on the subjective state of consciousness were assessed using the 5D-ASC questionnaire. Confirming that the drug elicited a psychedelic state, there were effects of ketamine on all 5D-ASC scales. Acute ketamine administration during retrieval had deleterious effects on metacognitive sensitivity (meta-d') and led to larger metacognitive bias, with retrieval performance (d') and reaction times remaining unaffected. However, there was no ketamine effect on metacognitive efficiency (meta-d'/d'). Measures of the BOLD signal revealed that ketamine compared to placebo elicited higher activation of posterior cortical brain areas, including superior and inferior parietal lobe, calcarine gyrus, and lingual gyrus, albeit not specific to metacognitive confidence ratings. Ketamine administered during encoding did not significantly affect performance or brain activation. Overall, our findings suggest that ketamine impacts metacognition, leading to significantly larger metacognitive bias and deterioration of metacognitive sensitivity as well as unspecific activation increases in posterior hot zone areas of the neural correlates of consciousness.
Collapse
Affiliation(s)
- Mirko Lehmann
- Department of Psychology, University of Bonn, Bonn, Germany
| | - Claudia Neumann
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Sven Wasserthal
- Department of Psychiatry and Division of Medical Psychology, University Hospital Bonn, Bonn, Germany
| | - Johannes Schultz
- Center for Economics and Neuroscience, University of Bonn, Bonn, Germany
- Institute for Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
| | - Achilles Delis
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Peter Trautner
- Center for Economics and Neuroscience, University of Bonn, Bonn, Germany
- Institute for Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
- Department for NeuroCognition, Life & Brain Center, Bonn, Germany
| | - René Hurlemann
- Department of Psychiatry and Division of Medical Psychology, University Hospital Bonn, Bonn, Germany
- Department of Psychiatry, School of Medicine & Health Sciences, University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | | |
Collapse
|
9
|
Nilsen AS, Juel BE, Farnes N, Romundstad L, Storm JF. Behavioral effects of sub-anesthetic ketamine in a go/no-go task. JOURNAL OF PSYCHEDELIC STUDIES 2021. [DOI: 10.1556/2054.2020.00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
AbstractBackground and aimsWhile psychedelic agents are known to have powerful, but largely unexplained, effects on contents of consciousness, there is an increasing interest in the potential clinical usefulness of such drugs for therapy, and legalization is discussed in some countries. Thus, it is relevant to study the effects of psychedelic compounds not only on experience, but also on behavioral performance.MethodsSeven healthy participants performed a motor response inhibition task before, during, and after sub-anesthetic doses of intravenously administered ketamine. The infusion rate was individually adjusted to produce noticeable subjective psychedelic effects.ResultsWe observed no statistically significant impact of sub-anesthetic ketamine on reaction times, omission errors, or post error slowing, relative to the preceding drug-free condition. However, we did observe significant correlations between performance impairment and self-reported, subjective altered states of consciousness, specifically experience of “anxiety” and “complex imagery.”ConclusionsConsidering the limited number of participants and large variation in strength of self-reported experiences, further studies with wider ranges of ketamine doses and behavioral tasks are needed to determine the presence and strength of potential behavioral effects.
Collapse
Affiliation(s)
- André Sevenius Nilsen
- 1Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Bjørn Erik Juel
- 1Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Nadine Farnes
- 1Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Luis Romundstad
- 2Department of Anesthesia, and Intervention Centre, Oslo University Hospital, Oslo, Norway
| | - Johan Frederik Storm
- 1Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Kumari V, Ettinger U. Controlled sleep deprivation as an experimental medicine model of schizophrenia: An update. Schizophr Res 2020; 221:4-11. [PMID: 32402603 DOI: 10.1016/j.schres.2020.03.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 12/22/2022]
Abstract
In recent years there has been a surge of interest and corresponding accumulation of knowledge about the role of sleep disturbance in schizophrenia. In this review, we provide an update on the current status of experimentally controlled sleep deprivation (SD) as an experimental medicine model of psychosis, and also consider, given the complexity and heterogeneity of schizophrenia, whether this (state) model can be usefully combined with other state or trait model systems to more powerfully model the pathophysiology of psychosis. We present evidence of dose-dependent aberrations that qualitatively resemble positive, negative and cognitive symptoms of schizophrenia as well as deficits in a range of translational biomarkers for schizophrenia, including prepulse inhibition, smooth pursuit and antisaccades, following experimentally controlled SD, relative to standard sleep, in healthy volunteers. Studies examining the combination of SD and schizotypy, a trait model of schizophrenia, revealed only occasional, task-dependent superiority of the combination model, relative to either of the two models alone. Overall, we argue that experimentally controlled SD is a valuable experimental medicine model of schizophrenia to advance our understanding of the pathophysiology of the clinical disorder and discovery of more effective or novel treatments. Future studies are needed to test its utility in combination with other, especially state, model systems of psychosis such as ketamine.
Collapse
Affiliation(s)
- Veena Kumari
- Centre for Cognitive Neuroscience, College of Health and Life Sciences, Brunel University London, Uxbridge, UK.
| | | |
Collapse
|