1
|
Franco R, Navarro G, Martínez-Pinilla E. The adenosine A 2A receptor in the basal ganglia: Expression, heteromerization, functional selectivity and signalling. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 170:49-71. [PMID: 37741696 DOI: 10.1016/bs.irn.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Adenosine is a neuroregulatory nucleoside that acts through four G protein-coupled receptors (GPCRs), A1, A2A, A2B and A3, which are widely expressed in cells of the nervous system. The A2A receptor (A2AR), the GPCR with the highest expression in the striatum, has a similar role to that of receptors for dopamine, one of the main neurotransmitters. Neuronal and glial A2ARs participate in the modulation of dopaminergic transmission and act in almost any action in which the basal ganglia is involved. This chapter revisits the expression of the A2AR in the basal ganglia in health and disease, and describes the diversity of signalling depending on whether the receptors are expressed as monomer or as heteromer. The A2AR can interact with other receptors as adenosine A1, dopamine D2, or cannabinoid CB1 to form heteromers with relevant functions in the basal ganglia. Heteromerization, with these and other GPCRs, provides diversity to A2AR-mediated signalling and to the modulation of neurotransmission. Thus, selective A2AR antagonists have neuroprotective potential acting directly on neurons, but also through modulation of glial cell activation, for example, by decreasing neuroinflammatory events that accompany neurodegenerative diseases. In fact, A2AR antagonists are safe and their potential in the therapy of Parkinson's disease has already led to the approval of one of them, istradefylline, in Japan and United States. The receptor also has a key role in reward circuits and, again, heteromers with dopamine receptors, but also with cannabinoid CB1 receptors, participate in the events triggered by drugs of abuse.
Collapse
Affiliation(s)
- Rafael Franco
- Molecular Neurobiology laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain; CiberNed, Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain; School of Chemistry, Universitat de Barcelona, Barcelona, Spain.
| | - Gemma Navarro
- CiberNed, Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain; Department of Biochemistry and Physiology, School of Pharmacy and Food Science Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| | - Eva Martínez-Pinilla
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Asturias, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Asturias, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain
| |
Collapse
|
2
|
Stella N. THC and CBD: Similarities and differences between siblings. Neuron 2023; 111:302-327. [PMID: 36638804 PMCID: PMC9898277 DOI: 10.1016/j.neuron.2022.12.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/14/2022] [Accepted: 12/13/2022] [Indexed: 01/13/2023]
Abstract
Δ9-tetrahydrocannabinol (THC) and its sibling, cannabidiol (CBD), are produced by the same Cannabis plant and have similar chemical structures but differ dramatically in their mechanisms of action and effects on brain functions. Both THC and CBD exhibit promising therapeutic properties; however, impairments and increased incidence of mental health diseases are associated with acute and chronic THC use, respectively, and significant side effects are associated with chronic use of high-dose CBD. This review covers recent molecular and preclinical discoveries concerning the distinct mechanisms of action and bioactivities of THC and CBD and their impact on human behavior and diseases. These discoveries provide a foundation for the development of cannabinoid-based therapeutics for multiple devastating diseases and to assure their safe use in the growing legal market of Cannabis-based products.
Collapse
Affiliation(s)
- Nephi Stella
- Department of Pharmacology, Department Psychiatry and Behavioral Sciences, Center for Cannabis Research, Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
3
|
Molecular Alterations of the Endocannabinoid System in Psychiatric Disorders. Int J Mol Sci 2022; 23:ijms23094764. [PMID: 35563156 PMCID: PMC9104141 DOI: 10.3390/ijms23094764] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/07/2023] Open
Abstract
The therapeutic benefits of the current medications for patients with psychiatric disorders contrast with a great variety of adverse effects. The endocannabinoid system (ECS) components have gained high interest as potential new targets for treating psychiatry diseases because of their neuromodulator role, which is essential to understanding the regulation of many brain functions. This article reviewed the molecular alterations in ECS occurring in different psychiatric conditions. The methods used to identify alterations in the ECS were also described. We used a translational approach. The animal models reproducing some behavioral and/or neurochemical aspects of psychiatric disorders and the molecular alterations in clinical studies in post-mortem brain tissue or peripheral tissues were analyzed. This article reviewed the most relevant ECS changes in prevalent psychiatric diseases such as mood disorders, schizophrenia, autism, attentional deficit, eating disorders (ED), and addiction. The review concludes that clinical research studies are urgently needed for two different purposes: (1) To identify alterations of the ECS components potentially useful as new biomarkers relating to a specific disease or condition, and (2) to design new therapeutic targets based on the specific alterations found to improve the pharmacological treatment in psychiatry.
Collapse
|
4
|
De Sa Nogueira D, Bourdy R, Alcala-Vida R, Filliol D, Andry V, Goumon Y, Zwiller J, Romieu P, Merienne K, Olmstead MC, Befort K. Hippocampal Cannabinoid 1 Receptors Are Modulated Following Cocaine Self-administration in Male Rats. Mol Neurobiol 2022; 59:1896-1911. [PMID: 35032317 DOI: 10.1007/s12035-022-02722-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023]
Abstract
Cocaine addiction is a complex pathology inducing long-term neuroplastic changes that, in turn, contribute to maladaptive behaviors. This behavioral dysregulation is associated with transcriptional reprogramming in brain reward circuitry, although the mechanisms underlying this modulation remain poorly understood. The endogenous cannabinoid system may play a role in this process in that cannabinoid mechanisms modulate drug reward and contribute to cocaine-induced neural adaptations. In this study, we investigated whether cocaine self-administration induces long-term adaptations, including transcriptional modifications and associated epigenetic processes. We first examined endocannabinoid gene expression in reward-related brain regions of the rat following self-administered (0.33 mg/kg intravenous, FR1, 10 days) cocaine injections. Interestingly, we found increased Cnr1 expression in several structures, including prefrontal cortex, nucleus accumbens, dorsal striatum, hippocampus, habenula, amygdala, lateral hypothalamus, ventral tegmental area, and rostromedial tegmental nucleus, with most pronounced effects in the hippocampus. Endocannabinoid levels, measured by mass spectrometry, were also altered in this structure. Chromatin immunoprecipitation followed by qPCR in the hippocampus revealed that two activating histone marks, H3K4Me3 and H3K27Ac, were enriched at specific endocannabinoid genes following cocaine intake. Targeting CB1 receptors using chromosome conformation capture, we highlighted spatial chromatin re-organization in the hippocampus, as well as in the nucleus accumbens, suggesting that destabilization of the chromatin may contribute to neuronal responses to cocaine. Overall, our results highlight a key role for the hippocampus in cocaine-induced plasticity and broaden the understanding of neuronal alterations associated with endocannabinoid signaling. The latter suggests that epigenetic modifications contribute to maladaptive behaviors associated with chronic drug use.
Collapse
Affiliation(s)
- David De Sa Nogueira
- Laboratoire de Neurosciences Cognitives Et Adaptatives (LNCA), Centre de La Recherche Nationale Scientifique, Université de Strasbourg, 12 rue Goethe, 67000, Strasbourg, France.,Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, 683 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Romain Bourdy
- Laboratoire de Neurosciences Cognitives Et Adaptatives (LNCA), Centre de La Recherche Nationale Scientifique, Université de Strasbourg, 12 rue Goethe, 67000, Strasbourg, France
| | - Rafael Alcala-Vida
- Laboratoire de Neurosciences Cognitives Et Adaptatives (LNCA), Centre de La Recherche Nationale Scientifique, Université de Strasbourg, 12 rue Goethe, 67000, Strasbourg, France
| | - Dominique Filliol
- Laboratoire de Neurosciences Cognitives Et Adaptatives (LNCA), Centre de La Recherche Nationale Scientifique, Université de Strasbourg, 12 rue Goethe, 67000, Strasbourg, France
| | - Virginie Andry
- Institut Des Neurosciences Cellulaires Et Intégratives (INCI), UPR 3212, CNRS, 8 Allée du Général Rouvillois, 67000, Strasbourg, France
| | - Yannick Goumon
- Institut Des Neurosciences Cellulaires Et Intégratives (INCI), UPR 3212, CNRS, 8 Allée du Général Rouvillois, 67000, Strasbourg, France
| | - Jean Zwiller
- Laboratoire de Neurosciences Cognitives Et Adaptatives (LNCA), Centre de La Recherche Nationale Scientifique, Université de Strasbourg, 12 rue Goethe, 67000, Strasbourg, France
| | - Pascal Romieu
- Laboratoire de Neurosciences Cognitives Et Adaptatives (LNCA), Centre de La Recherche Nationale Scientifique, Université de Strasbourg, 12 rue Goethe, 67000, Strasbourg, France
| | - Karine Merienne
- Laboratoire de Neurosciences Cognitives Et Adaptatives (LNCA), Centre de La Recherche Nationale Scientifique, Université de Strasbourg, 12 rue Goethe, 67000, Strasbourg, France
| | - Mary C Olmstead
- Department of Psychology, Center for Neuroscience Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Katia Befort
- Laboratoire de Neurosciences Cognitives Et Adaptatives (LNCA), Centre de La Recherche Nationale Scientifique, Université de Strasbourg, 12 rue Goethe, 67000, Strasbourg, France.
| |
Collapse
|
5
|
Bonm AV, Elezgarai I, Gremel CM, Viray K, Bamford NS, Palmiter RD, Grandes P, Lovinger DM, Stella N. Control of exploration, motor coordination and amphetamine sensitization by cannabinoid CB 1 receptors expressed in medium spiny neurons. Eur J Neurosci 2021; 54:4934-4952. [PMID: 34216157 DOI: 10.1111/ejn.15381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 12/29/2022]
Abstract
Activation of cannabinoid 1 receptors (CB1 R) modulates multiple behaviours, including exploration, motor coordination and response to psychostimulants. It is known that CB1 R expressed by either excitatory or inhibitory neurons mediates different behavioural responses to CB1 R activation, yet the involvement of CB1 R expressed by medium spiny neurons (MSNs), the neuronal subpopulation that expresses the highest level of CB1 R in the CNS, remains unknown. We report a new genetically modified mouse line that expresses functional CB1 R in MSN on a CB1 R knockout (KO) background (CB1 R(MSN) mice). The absence of cannabimimetic responses measured in CB1 R KO mice was not rescued in CB1 R(MSN) mice, nor was decreased spontaneous locomotion, impaired instrumental behaviour or reduced amphetamine-triggered hyperlocomotion measured in CB1 R KO mice. Significantly, reduced novel environment exploration of an open field and absence of amphetamine sensitization (AS) measured in CB1 R KO mice were fully rescued in CB1 R(MSN) mice. Impaired motor coordination in CB1 R KO mice measured on the Rotarod was partially rescued in CB1 R(MSN) mice. Thus, CB1 R expressed by MSN control exploration, motor coordination, and AS. Our study demonstrates a new functional roles for cell specific CB1 R expression and their causal link in the control of specific behaviors.
Collapse
Affiliation(s)
- Alipi V Bonm
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA
| | - Izaskun Elezgarai
- Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain.,Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Christina M Gremel
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Katie Viray
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA
| | - Nigel S Bamford
- Department of Pediatrics, Neurology and Cellular and Molecular Physiology, Yale University, New Haven, CT, USA.,Department of Neurology, University of Washington, Seattle, WA, USA
| | - Richard D Palmiter
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, USA
| | - Pedro Grandes
- Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country UPV/EHU, Leioa, Spain.,Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| | - David M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Nephi Stella
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|