1
|
Hrelja KM, Kawkab C, Avramidis DK, Ramaiah S, Winstanley CA. Increased risky choice during forced abstinence from fentanyl on the cued rat gambling task. Psychopharmacology (Berl) 2025; 242:173-187. [PMID: 39078498 DOI: 10.1007/s00213-024-06659-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
RATIONALE The use of illicit opioids has arguably never been more risky; street drug potency can be dangerously high, is often unknown to the consumer, and results in multiple daily fatalities worldwide. Furthermore, substance use disorder (SUD) is associated with increased maladaptive, risky decisions in laboratory-based gambling tasks. Animal studies can help determine whether this decision-making deficit is a cause or consequence of drug use. However, most experiments have only assessed psychostimulant drugs. OBJECTIVES To assess differences in decision-making strategies both before, during, and after self-administration of fentanyl in male and female Long Evans rats. METHODS Male and female Long Evans rats were trained to perform the rat gambling task (rGT), loosely based on the Iowa Gambling Task (IGT) used clinically, and/or self-administer fentanyl. We used the cued version of the rGT, in which sound and light stimuli signal sugar pellet rewards, as cocaine self-administration has the greatest effects on decision making in this task variant. RESULTS After training on the cued rGT, female rats self-administered fentanyl more readily, an effect that was most apparent in optimal decision-makers. Contrary to previous reports using cocaine self-administration, decision-making was unaffected during fentanyl self-administration training in either sex. However, risky decision-making increased throughout forced abstinence from fentanyl in males. CONCLUSIONS These findings complement those from human subjects, in whom preference for uncertain outcomes increased before relapse. These data highlight an abstinence-induced change in cognition that is unique to opiates as compared to psychostimulants, and which may critically contribute to the maintenance of addiction and relapse.
Collapse
Affiliation(s)
- Kelly M Hrelja
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| | - Carol Kawkab
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Dimitrios K Avramidis
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Shrishti Ramaiah
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Catharine A Winstanley
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
2
|
Lim TV, Cardinal RN, Ziauddeen H, Regenthal R, Sahakian BJ, Robbins TW, Ersche KD. Atomoxetine Reduces Decisional Impulsivity in Human Cocaine Addiction. Biol Psychiatry 2024:S0006-3223(24)01708-6. [PMID: 39481776 DOI: 10.1016/j.biopsych.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Impulsivity is a well-known determinant of maladaptive behavior in cocaine use disorder (CUD), but there are currently no effective strategies for managing excessive impulsivity. Growing evidence from preclinical and clinical studies suggests that atomoxetine, a selective noradrenaline reuptake inhibitor, is effective in improving impulse control in both healthy individuals and individuals with neuropsychiatric conditions. METHODS We investigated the effects of atomoxetine on decisional impulsivity in patients with CUD. In a randomized, double-blind, placebo-controlled, crossover study, 28 patients diagnosed with moderate-to-severe CUD and 28 matched healthy control participants completed the Cambridge Gambling Task in 2 separate sessions, where they received either placebo or a single dose of 40 mg atomoxetine at each session. Computational modeling was used to break down decision making into 3 separable components: value, probability, and decisional impulsivity. RESULTS Our analyses revealed that patients with CUD were impaired in all components of decision making. Atomoxetine selectively reduced decisional impulsivity in patients with CUD by reducing their risk-seeking tendencies while enhancing their ability to tolerate delays. By contrast, atomoxetine did not affect impulsivity in control participants, but increased their sensitivity to prospective losses. CONCLUSIONS Taken together, our findings support the hypothesis of noradrenergic dysfunction in patients with CUD and provide novel translational evidence for the efficacy of atomoxetine in remediating decisional impulsivity in CUD.
Collapse
Affiliation(s)
- Tsen Vei Lim
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom.
| | - Rudolf N Cardinal
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Liaison Psychiatry Service, Cambridgeshire and Peterborough National Health Service Foundation Trust, Cambridge, United Kingdom
| | - Hisham Ziauddeen
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Mental Health Service, Fiona Stanley and Fremantle Hospital Group, Perth, Western Australia
| | - Ralf Regenthal
- Division of Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Barbara J Sahakian
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Trevor W Robbins
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Karen D Ersche
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Addictive Behaviour and Addiction Medicine, University of Heidelberg, Central Institute of Mental Health, Mannheim, Germany.
| |
Collapse
|
3
|
Feng GW, Rutledge RB. Surprising sounds influence risky decision making. Nat Commun 2024; 15:8027. [PMID: 39271674 PMCID: PMC11399252 DOI: 10.1038/s41467-024-51729-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
Adaptive behavior depends on appropriate responses to environmental uncertainty. Incidental sensory events might simply be distracting and increase errors, but alternatively can lead to stereotyped responses despite their irrelevance. To evaluate these possibilities, we test whether task-irrelevant sensory prediction errors influence risky decision making in humans across seven experiments (total n = 1600). Rare auditory sequences preceding option presentation systematically increase risk taking and decrease choice perseveration (i.e., increased tendency to switch away from previously chosen options). The risk-taking and perseveration effects are dissociable by manipulating auditory statistics: when rare sequences end on standard tones, including when rare sequences consist only of standard tones, participants are less likely to perseverate after rare sequences but not more likely to take risks. Computational modeling reveals that these effects cannot be explained by increased decision noise but can be explained by value-independent risky bias and perseveration parameters, decision biases previously linked to dopamine. Control experiments demonstrate that both surprise effects can be eliminated when tone sequences are presented in a balanced or fully predictable manner, and that surprise effects cannot be explained by erroneous beliefs. These findings suggest that incidental sounds may influence many of the decisions we make in daily life.
Collapse
Affiliation(s)
- Gloria W Feng
- Department of Psychology, Yale University, New Haven, CT, USA.
| | - Robb B Rutledge
- Department of Psychology, Yale University, New Haven, CT, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, USA.
- Department of Psychiatry, Yale University, New Haven, CT, USA.
- Wellcome Centre for Human Neuroimaging, UCL, London, UK.
| |
Collapse
|
4
|
Yates JR, Adhikari S, Bako RE, Berling KL, Broderick MR, Mains R, Zwick B. Methamphetamine increases risky choice in rats, but only when magnitude and probability of reinforcement are manipulated within a session. Pharmacol Biochem Behav 2024; 239:173751. [PMID: 38548247 PMCID: PMC11220734 DOI: 10.1016/j.pbb.2024.173751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 05/12/2024]
Abstract
Risky choice is associated with maladaptive behaviors, particularly substance use disorders. Current animal models of risky choice are often confounded by other constructs like behavioral flexibility and suboptimal choice. The purpose of the current experiment was to determine if the psychostimulant methamphetamine, a drug whose popularity has increased in recent years, increases risky choice in an equivalent expected value (EEV) task. In the EEV task, rats are given a choice between two reinforcer alternatives that differ in magnitude and probability of delivery, but have equivalent expected value. Forty-eight Sprague Dawley rats were tested in three versions of the EEV task. In the first version of the EEV task, both reinforcer magnitude and probability were adjusted across blocks of trials for both alternatives. In the second and the third versions of the EEV task, reinforcer magnitude was held constant across each block of trials (either 1 vs. 2 pellets or 4 vs. 5 pellets). We found that male rats preferred the "riskier" option, except when reinforcer magnitudes were held constant at 4 and 5 pellets across each block of trials. Methamphetamine (0.5 mg/kg) increased preference for the risky option in both males and females, but only when both reinforcer magnitude and probability were manipulated across blocks of trials for each alternative. The current results demonstrate that both magnitude of reinforcement and probability of reinforcement interact to influence risky choice. Overall, this study provides additional support for using reinforcers with expected value to measure risky choice.
Collapse
Affiliation(s)
- Justin R Yates
- Department of Psychological Science, Northern Kentucky University, Highland Heights, KY 41099, United States of America.
| | - Shreeukta Adhikari
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, United States of America
| | - Rayah E Bako
- Department of Psychological Science, Northern Kentucky University, Highland Heights, KY 41099, United States of America
| | - Kevin L Berling
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, United States of America
| | - Maria R Broderick
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, United States of America; Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14260, United States of America
| | - Reuben Mains
- Department of Psychological Science, Northern Kentucky University, Highland Heights, KY 41099, United States of America; Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, United States of America
| | - Bradley Zwick
- Department of Psychological Science, Northern Kentucky University, Highland Heights, KY 41099, United States of America; Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099, United States of America
| |
Collapse
|
5
|
Laino Chiavegatti G, Floresco SB. Acute stress differentially alters reward-related decision making and inhibitory control under threat of punishment. Neurobiol Stress 2024; 30:100633. [PMID: 38623397 PMCID: PMC11016806 DOI: 10.1016/j.ynstr.2024.100633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/11/2024] [Accepted: 03/29/2024] [Indexed: 04/17/2024] Open
Abstract
Acute stress has various effects on cognition, executive function and certain forms of cost/benefit decision making. Recent studies in rodents indicate that acute stress differentially alters reward-related decisions involving particular types of costs and slows choice latencies. Yet, how stress alters decisions where rewards are linked to punishment is less clear. We examined how 1 h restraint stress, followed by behavioral testing 10 min later altered action-selection on two tasks involving reward-seeking under threat of punishment in well-trained male and female rats. One study used a risky decision-making task involving choice between a small/safe reward and a large/risky one that could coincide with shock, delivered with a probability that increased over blocks of trials. Stress increased risk aversion and punishment sensitivity, reducing preference for the larger/risky reward, while increasing decision latencies and trial omissions in both sexes, when rats were teste. A second study used a "behavioral control" task, requiring inhibition of approach towards a readily available reward associated with punishment. Here, food pellets were delivered over discrete trials, half of which coincided with a 12 s audiovisual cue, signalling that reward retrieval prior to cue termination would deliver shock. Stress exerted sex- and timing-dependent effects on inhibitory control. Males became more impulsive and received more shocks on the stress test, whereas females were unaffected on the stress test, and were actually less impulsive when tested 24 h later. None of the effects of restraint stress were recapitulated by systemic treatment with physiological doses of corticosterone. These findings suggest acute stress induces qualitatively distinct and sometimes sex-dependent effects on punished reward-seeking that are critically dependent on whether animals must either choose between different actions or withhold them to obtain rewards and avoid punishment.
Collapse
Affiliation(s)
- Giulio Laino Chiavegatti
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Canada
| | - Stan B. Floresco
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Canada
| |
Collapse
|
6
|
Hathaway BA, Li A, Brodie HG, Silveira MM, Tremblay M, Seo YS, Winstanley CA. Dopamine activity in the nigrostriatal pathway alters cue-induced risky choice patterns in female rats. Eur J Neurosci 2024; 59:1621-1637. [PMID: 38369911 DOI: 10.1111/ejn.16287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 02/20/2024]
Abstract
Deficits in cost/benefit decision making is a critical risk factor for gambling disorder. Reward-paired cues may play an important role, as these stimuli can enhance risk preference in rats. Despite extensive research implicating the dorsal striatum in the compulsive aspects of addiction, the role of nigrostriatal dopaminergic activity in cue-induced risk preference remains unclear, particularly in females. Accordingly, we examined the effects of manipulating the dopaminergic nigrostriatal pathway on cue-induced risky choice in female rats. TH:Cre rats were trained on the cued version of the rat Gambling Task. This task was designed such that maximal reward is attained by avoiding the high-risk, high-reward options and instead favouring the options associated with lower per-trial gains, as they feature less frequent and shorter time-out penalties. Adding reward-paired audiovisual cues to the task leads to greater risky choice on average. To assess the role of the nigrostriatal pathway, a viral vector carrying either Cre-dependent inhibitory or excitatory DREADD was infused into the substantia nigra. Rats then received clozapine-N-oxide either during task acquisition or after a stable performance baseline was reached. Inhibition of this pathway accelerated the development of risk preference in early sessions and increased risky choice during performance, but long-term inhibition actually improved decision making. Activation of this pathway had minimal effects. These results provide evidence for the involvement of the dopaminergic nigrostriatal pathway in cue-induced risk preference in females, therefore shedding light on its role in cost/benefit decision-making deficits and expanding our knowledge of the female dopaminergic system.
Collapse
Affiliation(s)
- Brett A Hathaway
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Andrew Li
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Hannah G Brodie
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Mason M Silveira
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Melanie Tremblay
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Yeon Soo Seo
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Catharine A Winstanley
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| |
Collapse
|
7
|
Chernoff CS, Hynes TJ, Schumacher JD, Ramaiah S, Avramidis DK, Mortazavi L, Floresco SB, Winstanley CA. Noradrenergic regulation of cue-guided decision making and impulsivity is doubly dissociable across frontal brain regions. Psychopharmacology (Berl) 2024; 241:767-783. [PMID: 38001266 DOI: 10.1007/s00213-023-06508-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
RATIONALE Win-paired stimuli can promote risk taking in experimental gambling paradigms in both rats and humans. We previously demonstrated that atomoxetine, a noradrenaline reuptake inhibitor, and guanfacine, a selective α2A adrenergic receptor agonist, reduced risk taking on the cued rat gambling task (crGT), a rodent assay of risky choice in which wins are accompanied by salient cues. Both compounds also decreased impulsive premature responding. OBJECTIVE The key neural loci mediating these effects were unknown. The lateral orbitofrontal cortex (lOFC) and the medial prefrontal cortex (mPFC), which are highly implicated in risk assessment, action selection, and impulse control, receive dense noradrenergic innervation. We therefore infused atomoxetine and guanfacine directly into either the lOFC or prelimbic (PrL) mPFC prior to task performance. RESULTS When infused into the lOFC, atomoxetine improved decision making score and adaptive lose-shift behaviour in males, but not in females, without altering motor impulsivity. Conversely, intra-PrL atomoxetine improved impulse control in risk preferring animals of both sexes, but did not alter decision making. Guanfacine administered into the PrL, but not lOFC, also altered motor impulsivity in all subjects, though in the opposite direction to atomoxetine. CONCLUSIONS These data highlight a double dissociation between the behavioural effects of noradrenergic signaling across frontal regions with respect to risky choice and impulsive action. Given that the influence of noradrenergic manipulations on motor impulsivity could depend on baseline risk preference, these data also suggest that the noradrenaline system may function differently in subjects that are susceptible to the risk-promoting lure of win-associated cues.
Collapse
Affiliation(s)
- Chloe S Chernoff
- Graduate Program in Neuroscience, Faculty of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
- Department of Psychology, Downing Site, University of Cambridge, Cambridge, UK.
| | - Tristan J Hynes
- Graduate Program in Neuroscience, Faculty of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, Downing Site, University of Cambridge, Cambridge, UK
| | - Jackson D Schumacher
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Shrishti Ramaiah
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Dimitrios K Avramidis
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, University of Concordia, Montreal, QC, Canada
| | - Leili Mortazavi
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Stan B Floresco
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Catharine A Winstanley
- Graduate Program in Neuroscience, Faculty of Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
8
|
Siviy SM, Martin MA, Campbell CM. Noradrenergic modulation of play in Sprague-Dawley and F344 rats. Psychopharmacology (Berl) 2023:10.1007/s00213-023-06419-2. [PMID: 37428218 DOI: 10.1007/s00213-023-06419-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
RATIONALE For many mammals, engaging in social play behavior as a juvenile is important for cognitive, social, and emotional health as an adult. A playful phenotype reflects a dynamic interplay between genetic framework and experiences that operate on hard-wired brain systems so the relative lack of play in an otherwise playful species may be useful for identifying neural substrates that modulate play behavior. The inbred F344 rat has been identified as a strain that is consistently less playful than other strains commonly used in behavioral research. Norepinephrine (NE) acting on alpha-2 receptors has an inhibitory effect on play and F344 rats differ from a number of other strains in NE functioning. As such, the F344 rat may be particularly useful for gaining insight into NE involvement in play. OBJECTIVE The objective of this study was to determine whether the F344 rat is differentially sensitive to compounds that affect NE functioning and that are known to affect play behavior. METHODS Using pouncing and pinning to quantify play, the effects of the NE reuptake inhibitor atomoxetine, the NE alpha-2 receptor agonist guanfacine, and the NE alpha-2 receptor antagonist RX821002 on play behavior were assessed in juvenile Sprague-Dawley (SD) and F344 rats. RESULTS Atomoxetine and guanfacine reduced play in both SD and F344 rats. RX821002 increased pinning to a comparable extent in both strains but F344 rats were more sensitive to the play-enhancing effects of RX821002 on pounces. CONCLUSIONS Strain differences in NE alpha-2 receptor dynamics may contribute to the lower levels of play in F344 rats.
Collapse
Affiliation(s)
- Stephen M Siviy
- Department of Psychology, Gettysburg College, Gettysburg, PA, 17325, USA.
| | - Michelle A Martin
- Department of Psychology, Gettysburg College, Gettysburg, PA, 17325, USA
| | - Celeste M Campbell
- Department of Psychology, Gettysburg College, Gettysburg, PA, 17325, USA
| |
Collapse
|
9
|
Orlando IF, Shine JM, Robbins TW, Rowe JB, O'Callaghan C. Noradrenergic and cholinergic systems take centre stage in neuropsychiatric diseases of ageing. Neurosci Biobehav Rev 2023; 149:105167. [PMID: 37054802 DOI: 10.1016/j.neubiorev.2023.105167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/28/2023] [Accepted: 03/28/2023] [Indexed: 04/15/2023]
Abstract
Noradrenergic and cholinergic systems are among the most vulnerable brain systems in neuropsychiatric diseases of ageing, including Alzheimer's disease, Parkinson's disease, Lewy body dementia, and progressive supranuclear palsy. As these systems fail, they contribute directly to many of the characteristic cognitive and psychiatric symptoms. However, their contribution to symptoms is not sufficiently understood, and pharmacological interventions targeting noradrenergic and cholinergic systems have met with mixed success. Part of the challenge is the complex neurobiology of these systems, operating across multiple timescales, and with non-linear changes across the adult lifespan and disease course. We address these challenges in a detailed review of the noradrenergic and cholinergic systems, outlining their roles in cognition and behaviour, and how they influence neuropsychiatric symptoms in disease. By bridging across levels of analysis, we highlight opportunities for improving drug therapies and for pursuing personalised medicine strategies.
Collapse
Affiliation(s)
- Isabella F Orlando
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Australia
| | - James M Shine
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Australia
| | - Trevor W Robbins
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, CB2 3EB, United Kingdom
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, CB2 0SZ, United Kingdom
| | - Claire O'Callaghan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Australia.
| |
Collapse
|
10
|
Zaydlin M, Cruz A, Bez Y, Coffey BJ. A Targeted Combined Pharmacotherapy Approach for Aggressive Behavior in a Child with Autism Spectrum Disorder. J Child Adolesc Psychopharmacol 2023; 33:195-199. [PMID: 37339440 DOI: 10.1089/cap.2023.29241.bjc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Affiliation(s)
- Michelle Zaydlin
- Department of Psychiatry, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Psychiatry, Jackson Health System, Miami, Florida, USA
| | - Alyssa Cruz
- University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Yasin Bez
- Department of Psychiatry, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Psychiatry, Jackson Health System, Miami, Florida, USA
| | - Barbara J Coffey
- Department of Psychiatry, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Psychiatry, Jackson Health System, Miami, Florida, USA
| |
Collapse
|
11
|
Mortazavi L, Hynes TJ, Chernoff CS, Ramaiah S, Brodie HG, Russell B, Hathaway BA, Kaur S, Winstanley CA. D 2/3 Agonist during Learning Potentiates Cued Risky Choice. J Neurosci 2023; 43:979-992. [PMID: 36623876 PMCID: PMC9908318 DOI: 10.1523/jneurosci.1459-22.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/29/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Impulse control and/or gambling disorders can be triggered by dopamine agonist therapies used to treat Parkinson's disease, but the cognitive and neurobiological mechanisms underlying these adverse effects are unknown. Recent data show that adding win-paired sound and light cues to the rat gambling task (rGT) potentiates risky decision-making and impulsivity via the dopamine system, and that changing dopaminergic tone has a greater influence on behavior while subjects are learning task contingencies. Dopamine agonist therapy may therefore be potentiating risk-taking by amplifying the behavioral impact of gambling-related cues on novel behavior. Here, we show that ropinirole treatment in male rats transiently increased motor impulsivity but robustly and progressively increased choice of the high-risk/high-reward options when administered during acquisition of the cued but not uncued rGT. Early in training, ropinirole increased win-stay behavior after large unlikely wins on the cued rGT, indicative of enhanced model-free learning, which mediated the drug's effect on later risk preference. Ex vivo cFos imaging showed that both chronic ropinirole and the addition of win-paired cues suppressed the activity of dopaminergic midbrain neurons. The ratio of midbrain:prefrontal cFos+ neurons was lower in animals with suboptimal choice patterns and tended to predict risk preference across all rats. Network analyses further suggested that ropinirole induced decoupling of the dopaminergic cells of the VTA and nucleus accumbens but only when win-paired cues were present. Frontostriatal activity uninformed by the endogenous dopaminergic teaching signal therefore appeared to perpetuate risky choice, and ropinirole exaggerated this disconnect in synergy with reward-paired cues.SIGNIFICANCE STATEMENT D2/3 receptor agonists, used to treat Parkinson's disease, can cause gambling disorder through an unknown mechanism. Ropinirole increased risky decision-making in rats, but only when wins were paired with casino-inspired sounds and lights. This was mediated by increased win-stay behavior after large unlikely wins early in learning, indicating enhanced model-free learning. cFos imaging showed that ropinirole suppressed activity of midbrain dopamine neurons, an effect that was mimicked by the addition of win-paired cues. The degree of risky choice rats exhibited was uniquely predicted by the ratio of midbrain dopamine:PFC activity. Depriving the PFC of the endogenous dopaminergic teaching signal may therefore drive risky decision-making on-task, and ropinirole acts synergistically with win-paired cues to amplify this.
Collapse
Affiliation(s)
- Leili Mortazavi
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Tristan J Hynes
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Chloe S Chernoff
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Shrishti Ramaiah
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Hannah G Brodie
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Brittney Russell
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Brett A Hathaway
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Sukhbir Kaur
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Catharine A Winstanley
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
12
|
Serotonin 2C Antagonism in the Lateral Orbitofrontal Cortex Ameliorates Cue-Enhanced Risk Preference and Restores Sensitivity to Reinforcer Devaluation in Male Rats. eNeuro 2021; 8:ENEURO.0341-21.2021. [PMID: 34815296 PMCID: PMC8670605 DOI: 10.1523/eneuro.0341-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/27/2021] [Accepted: 11/16/2021] [Indexed: 11/21/2022] Open
Abstract
Previous research has indicated that reward-paired cues can enhance disadvantageous risky choice in both humans and rodents. Systemic administration of a serotonin 2C receptor antagonist can attenuate this cue-induced risk preference in rats. However, the neurocognitive mechanisms mediating this effect are currently unknown. We therefore assessed whether the serotonin 2C receptor antagonist RS 102221 is able to attenuate cue-enhanced risk preference via its actions in the lateral orbitofrontal cortex (lOFC) or prelimbic (PrL) area of the medial prefrontal cortex (mPFC). A total of 32 male Long–Evans rats were trained on the cued version of the rat gambling task (rGT), a rodent analog of the human Iowa gambling task, and bilateral guide cannulae were implanted into the lOFC or PrL. Intra-lOFC infusions of the 5-HT2C antagonist RS 102221 reduced risky choice in animals that showed a preference for the risky options of the rGT at baseline. This effect was not observed in optimal decision-makers, nor those that received infusions targeting the PrL. Given prior data showing that 5-HT2C antagonists also improve reversal learning through the same neural locus, we hypothesized that reward-concurrent cues may amplify risky decision-making through cognitive inflexibility. We therefore devalued the sugar pellet rewards used in the cued rGT (crGT) through satiation and observed that decision-making patterns did not shift unless animals also received intra-lOFC RS 102221. Collectively, these data suggest that the lOFC is one critical site through which reward-concurrent cues promote risky choice patterns that are insensitive to reinforcer devaluation, and that 5-HT2C antagonism may optimize choice by facilitating exploration.
Collapse
|
13
|
Clueless about cues: the impact of reward-paired cues on decision making under uncertainty. Curr Opin Behav Sci 2021. [DOI: 10.1016/j.cobeha.2021.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|