1
|
Schwotzer D, Kulpa J, Gigliotti A, Dye W, Trexler K, Irshad H, Lefever T, Ware M, Bonn-Miller M, McDonald J. Biological Response after 14-Day Cannabidiol and Propylene Glycol Inhalation in Sprague-Dawley Rats. Cannabis Cannabinoid Res 2024. [PMID: 39441724 DOI: 10.1089/can.2023.0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Objective: Cannabidiol (CBD), a phytocannabinoid of increasing interest for its purported therapeutic effects, is primarily consumed via ingestion and inhalation. While the toxicology of orally administered CBD has been reported, little is known about the effects of CBD inhalation. Doses selected for the present analysis allowed for evaluation of dose-response at concentrations >100-fold higher than typical human consumption levels. Materials and Methods: CBD (98.89% pure) was formulated in propylene glycol (PG) and aerosolized by nebulization to evaluate biological response after nose-only inhalation. Sprague Dawley rats (n = 35 males, 30 females) were exposed to 1.0 and 1.3 mg/L nominal concentrations of CBD and PG, respectively, for 12-180 min. Resulting average daily presented dose ranges were 8.9-138.5 mg/kg CBD and 11.3-176.0 mg/kg PG. Aerosols of 1.4 µm median diameter were achieved. Biological response indicators included clinical signs, clinical chemistry, hematology, body/organ weights, and pulmonary/systemic histopathology. Results: Inflammatory and necrotic responses were observed in the nose at the highest doses of CBD. Limited findings in the larynx and lung were mainly observed at higher doses. There were no histological findings in extrapulmonary organs. Dosimetry modeling differentiated the no observable adverse effect level between the nasal region and lungs to be 2.8 and 10.6 mg/kg CBD, respectively. Conclusions: Dose-depending findings of histological changes in the respiratory tract are observed at high doses. At lower doses consistent with typical over-the-counter vape products there appears to be substantial safety margin in the present study (93- and 353-fold lower for nose and lung, respectively).
Collapse
Affiliation(s)
| | - Justyna Kulpa
- Canopy Growth Corporation, Smith Falls, Ontario, Canada
| | | | - Wendy Dye
- Lovelace Biomedical, Albuquerque, New Mexico, USA
| | | | | | - Tim Lefever
- Canopy Growth Corporation, Smith Falls, Ontario, Canada
| | - Mark Ware
- Canopy Growth Corporation, Smith Falls, Ontario, Canada
| | | | | |
Collapse
|
2
|
Basavarajappa BS, Subbanna S. Unveiling the Potential of Phytocannabinoids: Exploring Marijuana's Lesser-Known Constituents for Neurological Disorders. Biomolecules 2024; 14:1296. [PMID: 39456229 PMCID: PMC11506053 DOI: 10.3390/biom14101296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Cannabis sativa is known for producing over 120 distinct phytocannabinoids, with Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) being the most prominent, primarily in their acidic forms. Beyond Δ9-THC and CBD, a wide array of lesser-known phytocannabinoids, along with terpenes, flavonoids, and alkaloids, demonstrate diverse pharmacological activities, interacting with the endocannabinoid system (eCB) and other biological pathways. These compounds, characterized by phenolic structures and hydroxyl groups, possess lipophilic properties, allowing them to cross the blood-brain barrier (BBB) effectively. Notably, their antioxidant, anti-inflammatory, and neuro-modulatory effects position them as promising agents in treating neurodegenerative disorders. While research has extensively examined the neuropsychiatric and neuroprotective effects of Δ9-THC, other minor phytocannabinoids remain underexplored. Due to the well-established neuroprotective potential of CBD, there is growing interest in the therapeutic benefits of non-psychotropic minor phytocannabinoids (NMPs) in brain disorders. This review highlights the emerging research on these lesser-known compounds and their neuroprotective potential. It offers insights into their therapeutic applications across various major neurological conditions.
Collapse
Affiliation(s)
- Balapal S. Basavarajappa
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA;
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Shivakumar Subbanna
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA;
| |
Collapse
|
3
|
Gournay LR, Petry J, Bilsky S, Hill MA, Feldner M, Peters E, Bonn-Miller M, Leen-Feldner E. Cannabidiol Reduces Nicotine Withdrawal Severity and State Anxiety During an Acute E-cigarette Abstinence Period: A Novel, Open-Label Study. Cannabis Cannabinoid Res 2024; 9:996-1005. [PMID: 37167367 DOI: 10.1089/can.2022.0317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
Introduction: Despite efforts to curb nicotine use, 8.1 million adults in the United States use e-cigarettes. Notably, the majority of nicotine-containing e-cigarette users report wanting to quit in the near future, yet there is a dearth of research surrounding intervention efforts. Cannabidiol (CBD) has potential to facilitate e-cigarette quit attempts by decreasing withdrawal symptom intensity and anxiety during nicotine e-cigarette abstinence. Methods: This study employed an open-label, crossover design (n=20) to test the hypothesis that among daily nicotine-containing e-cigarette users, oral administration of 320 mg CBD would reduce self-reported nicotine withdrawal severity and state anxiety following a 4-h e-cigarette abstinence period compared to withdrawal and anxiety reported after abstinence in the absence of CBD. Results: After controlling for participants' positive CBD expectancies, results were consistent with hypotheses, suggesting CBD reduced both nicotine withdrawal symptom severity and state anxiety during e-cigarette abstinence. Conclusion: These preliminary findings suggest testing the impact of CBD on e-cigarette cessation attempts is warranted.
Collapse
Affiliation(s)
- L Riley Gournay
- Department of Psychological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Jordan Petry
- University of Texas at Dallas, Richardson, Texas, USA
- Steven A. Cohen Military and Family Clinic, Addison, Texas, USA
| | - Sarah Bilsky
- Department of Psychology, University of Mississippi, University, Mississippi, USA
| | - Morgan A Hill
- Department of Psychological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | | | - Erica Peters
- Canopy Growth Corporation, Smiths Falls, Ontario, Canada
| | | | - Ellen Leen-Feldner
- Department of Psychological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
4
|
Briânis RC, Moreira FA, Iglesias LP. Cannabidiol and addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 177:319-333. [PMID: 39029990 DOI: 10.1016/bs.irn.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Cannabidiol (CBD) has been investigated for several therapeutic applications, having reached the clinics for the treatment of certain types of epilepsies. This chapter reviews the potential of CBD for the treatment of substance use disorders (SUD). We will present a brief introduction on SUD and current treatments. In the second part, preclinical and clinical studies with CBD are discussed, focusing on its potential therapeutic application for SUD. Next, we will consider the potential molecular mechanism of action of CBD in SUD. Finally, we will summarize the main findings and perspectives in this field. There is a lack of studies on CBD and SUD in comparison to the extensive literature investigating the use of this phytocannabinoid for other neurological and psychiatric disorders, such as epilepsy. However, the few studies available do suggest a promising role of CBD in the pharmacotherapy of SUD, particularly related to cocaine and other psychostimulant drugs.
Collapse
Affiliation(s)
- Rayssa C Briânis
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fabrício A Moreira
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lia P Iglesias
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
5
|
Cheeks SN, Buzzi B, Valdez A, Mogul AS, Damaj MI, Fowler CD. Cannabidiol as a potential cessation therapeutic: Effects on intravenous nicotine self-administration and withdrawal symptoms in mice. Neuropharmacology 2024; 246:109833. [PMID: 38176534 PMCID: PMC10958588 DOI: 10.1016/j.neuropharm.2023.109833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Cigarette smoking remains a leading cause of preventable disease and death worldwide. Due to the devastating negative health effects of smoking, many users attempt to quit, but few are successful in the long-term. Thus, there is a critical need for novel therapeutic approaches. In these investigations, we sought to examine whether cannabidiol (CBD) has the potential to be repurposed as a nicotine cessation therapeutic. In the first study, male and female mice were trained to respond for intravenous nicotine infusions at either a low or moderate nicotine dose and then were pretreated with CBD prior to their drug-taking session. We found that CBD produced a significant decrease in the number of nicotine rewards earned, and this effect was evidenced across CBD doses and with both the low and moderate levels of nicotine intake. These effects on drug intake were not due to general motor-related effects, since mice self-administering food pellets did not alter their behavior with CBD administration. The potential effects of CBD in mitigating nicotine withdrawal symptoms were then investigated. We found that CBD attenuated the somatic signs of nicotine withdrawal and prevented nicotine's hyperalgesia-inducing effects. Taken together, these results demonstrate that modulation of cannabinoid signaling may be a viable therapeutic option as a smoking cessation aid.
Collapse
Affiliation(s)
- Samantha N Cheeks
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
| | - Belle Buzzi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Ashley Valdez
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
| | - Allison S Mogul
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Christie D Fowler
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
6
|
Shao J, Fei Y, Xiao J, Wang L, Zou S, Yang J. The role of miRNA-144-3p/Oprk1/KOR in nicotine dependence and nicotine withdrawal in male rats. Nicotine Tob Res 2023; 25:1856-1864. [PMID: 37455648 PMCID: PMC10664084 DOI: 10.1093/ntr/ntad118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/31/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
INTRODUCTION The kappa-opioid receptor (KOR) has been implicated in mediating the behavioral and biochemical effects associated with nicotine reward and withdrawal; however, its underlying mechanisms remain to be further explored. METHODS Adult male Sprague-Dawley rats were used to establish a nicotine dependence and withdrawal model by injecting nicotine (3 mg/kg/day, s.c.) or vehicle for 14 days, followed by the termination of nicotine for 7 days. Body weight gain, pain behaviors, and withdrawal scores were assessed in succession. MicroRNA (miRNA) sequencing was performed, and quantitative real-time PCR was used to detect the expression of candidate miRNAs and Oprk1. Western blotting was performed to examine KOR protein expression of KOR. Luciferase assay was conducted to validate the relationship of certain miRNAs/Oprk1. RESULTS The behavioral results showed that nicotine dependence and withdrawal induced behavioral changes. Biochemical analyses demonstrated that miR-144-3p expression decreased and Oprk1/KOR expression increased in the prefrontal cortex, nucleus accumben, and hippocampus. Further investigation suggested that miR-144-3p exerted an inhibitory effect on Oprk1 expression in PC12 cells. CONCLUSIONS This study revealed that miR-144-3p/Oprk1/KOR might be a potential pathway underlying the adverse effects induced by nicotine dependence and withdrawal, and might provide a novel therapeutic target for smoking cessation. IMPLICATIONS This study demonstrates an impact of nicotine dependence and nicotine withdrawal on behavioral outcomes and the expressions of miR-144-3p/Oprk1/KOR in male rats. These findings have important translational implications given the continued use of nicotine and the difficulty in smoking cessation worldwide, which can be applied to alleviated the adverse effects induced by nicotine dependence and withdrawal, thus assist smokers to quit smoking.
Collapse
Affiliation(s)
- Jiali Shao
- Department of Anesthesiology, Hunan Cancer Hospital, School of Xiangya Medicine, Central South University, Hunan, China
| | - Yanxia Fei
- Department of Anesthesiology, Women’s Hospital, School of Medicine Zhejiang University, Zhejiang, China
| | - Ji Xiao
- Department of Anesthesiology, Hunan Cancer Hospital, School of Xiangya Medicine, Central South University, Hunan, China
| | - Lijuan Wang
- Department of Anesthesiology, Hunan Cancer Hospital, School of Xiangya Medicine, Central South University, Hunan, China
| | - Shuangfa Zou
- Department of Anesthesiology, Hunan Cancer Hospital, School of Xiangya Medicine, Central South University, Hunan, China
| | - Jinfeng Yang
- Department of Anesthesiology, Hunan Cancer Hospital, School of Xiangya Medicine, Central South University, Hunan, China
| |
Collapse
|
7
|
Dulchavsky M, Mitra R, Wu K, Li J, Boer K, Liu X, Zhang Z, Vasquez C, Clark CT, Funckes K, Shankar K, Bonnet-Zahedi S, Siddiq M, Sepulveda Y, Suhandynata RT, Momper JD, Calabrese AN, George O, Stull F, Bardwell JCA. Directed evolution unlocks oxygen reactivity for a nicotine-degrading flavoenzyme. Nat Chem Biol 2023; 19:1406-1414. [PMID: 37770699 PMCID: PMC10611581 DOI: 10.1038/s41589-023-01426-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023]
Abstract
The flavoenzyme nicotine oxidoreductase (NicA2) is a promising injectable treatment to aid in the cessation of smoking, a behavior responsible for one in ten deaths worldwide. NicA2 acts by degrading nicotine in the bloodstream before it reaches the brain. Clinical use of NicA2 is limited by its poor catalytic activity in the absence of its natural electron acceptor CycN. Without CycN, NicA2 is instead oxidized slowly by dioxygen (O2), necessitating unfeasibly large doses in a therapeutic setting. Here, we report a genetic selection strategy that directly links CycN-independent activity of NicA2 to growth of Pseudomonas putida S16. This selection enabled us to evolve NicA2 variants with substantial improvement in their rate of oxidation by O2. The encoded mutations cluster around a putative O2 tunnel, increasing flexibility and accessibility to O2 in this region. These mutations further confer desirable clinical properties. A variant form of NicA2 is tenfold more effective than the wild type at degrading nicotine in the bloodstream of rats.
Collapse
Affiliation(s)
- Mark Dulchavsky
- Howard Hughes Medical Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Rishav Mitra
- Howard Hughes Medical Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Kevin Wu
- Howard Hughes Medical Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Joshua Li
- Howard Hughes Medical Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Karli Boer
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, USA
| | - Xiaomeng Liu
- Howard Hughes Medical Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Zhiyao Zhang
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, USA
| | - Cristian Vasquez
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, USA
| | | | - Kaitrin Funckes
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, USA
| | - Kokila Shankar
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Selene Bonnet-Zahedi
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Mohammad Siddiq
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Yadira Sepulveda
- School of Pharmacy and Pharmaceutical Science, University of California, San Diego, La Jolla, CA, USA
| | - Raymond T Suhandynata
- School of Pharmacy and Pharmaceutical Science, University of California, San Diego, La Jolla, CA, USA
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Jeremiah D Momper
- School of Pharmacy and Pharmaceutical Science, University of California, San Diego, La Jolla, CA, USA
| | - Antonio N Calabrese
- Astbury Centre for Structural Molecular Biology, S chool of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Olivier George
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Frederick Stull
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, USA
| | - James C A Bardwell
- Howard Hughes Medical Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Nguyen JD, Grant Y, Yang C, Gutierrez A, Taffe MA. Oxycodone Self-Administration in Female Rats is Enhanced by ∆ 9-tetrahydrocannabinol, but not by Cannabidiol, in a Progressive Ratio Procedure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564282. [PMID: 37961225 PMCID: PMC10634900 DOI: 10.1101/2023.10.26.564282] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Epidemiological evidence suggests that the legalization of cannabis may reduce opioid-related harms. Preclinical evidence of neuropharmacological interactions of endogenous cannabinoid and opioid systems prompts further investigation of cannabinoids as potential therapeutics for the non-medical use of opioids. In these studies female rats, previously trained to self-administer oxycodone (0.15 mg/kg/infusion) intravenously in 6 h sessions, were allowed to self-administer oxycodone after exposure to cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC) by vapor inhalation and THC by injection (5.0-20 mg/kg, i.p.). Self-administration was characterized under Progressive Ratio (PR) and Fixed Ratio (FR) 1 schedules of reinforcement in 3 h sessions. THC decreased IVSA of oxycodone in a FR procedure but increased reward seeking in a PR procedure. CBD decreased the IVSA of oxycodone in the FR but not the PR procedure. The results are consistent with an anti-reward effect of CBD but suggest THC acts to increase the reinforcing efficacy of oxycodone in this procedure.
Collapse
Affiliation(s)
- Jacques D. Nguyen
- Department of Psychiatry, University of California, San Diego; La Jolla, CA, USA
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
| | - Yanabel Grant
- Department of Psychiatry, University of California, San Diego; La Jolla, CA, USA
| | - Celine Yang
- Department of Psychiatry, University of California, San Diego; La Jolla, CA, USA
| | - Arnold Gutierrez
- Department of Psychiatry, University of California, San Diego; La Jolla, CA, USA
| | - Michael A. Taffe
- Department of Psychiatry, University of California, San Diego; La Jolla, CA, USA
| |
Collapse
|
9
|
Souza AJ, Guimarães FS, Gomes FV. Cannabidiol attenuates the expression of conditioned place aversion induced by naloxone-precipitated morphine withdrawal through the activation of 5-HT1A receptors. Behav Brain Res 2023; 450:114504. [PMID: 37209879 DOI: 10.1016/j.bbr.2023.114504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/03/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
The misuse of and addiction to opioids are serious public health problems in some countries, such as the USA. Drug addiction is a chronic and relapsing medical condition that involves motivational and memory-related processes due to the strong associations between drugs and consuming-related stimuli. These stimuli usually trigger continuous and compulsive use and are associated with relapses after periods of withdrawal. Several factors contribute to relapse, including withdrawal-induced mood changes. Therefore, drugs attenuating withdrawal-induced affective alterations could be useful alternative treatments for relapse prevention. Cannabidiol (CBD), a non-psychotomimetic component from the Cannabis sativa plant, has anti-anxiety and anti-stress properties and has been investigated as an alternative for the treatment of several mental disorders, including drug addiction. Here, we evaluated if CBD administered 30min prior to test for a conditioned place aversion (CPA) would attenuate the aversion induced by morphine withdrawal precipitated by the opioid receptor antagonist naloxone in male C57BL/6 mice. We also investigated if this effect involves the activation of 5-HT1A receptors, a mechanism previously associated with CBD anti-aversive effects. As expected, morphine-treated mice spent less time exploring the compartment paired with the naloxone-induced withdrawal, indicating a CPA induced by naloxone-precipitated morphine withdrawal. This effect was not observed in animals treated with CBD, at 30 and 60mg/kg, prior to the CPA test, indicating that CBD attenuated the expression of CPA induced by naloxone-precipitated morphine withdrawal. Pretreatment with the 5-HT1A receptor antagonist WAY100635 (0.3mg/kg) blocked CBD effects. Our findings suggest that CBD may reduce the expression of a previously established conditioned aversion induced by morphine withdrawal by a mechanism involving the activation of 5-HT1A receptors. Thus, CBD may be a therapeutic alternative for preventing relapse to opioid addiction by decreasing withdrawal-induced negative affective changes.
Collapse
Affiliation(s)
- Adriana Jesus Souza
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Felipe V Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Brazil.
| |
Collapse
|
10
|
Oz M, Yang KHS, Mahgoub MO. Effects of cannabinoids on ligand-gated ion channels. Front Physiol 2022; 13:1041833. [PMID: 36338493 PMCID: PMC9627301 DOI: 10.3389/fphys.2022.1041833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Phytocannabinoids such as Δ9-tetrahydrocannabinol and cannabidiol, endocannabinoids such as N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol, and synthetic cannabinoids such as CP47,497 and JWH-018 constitute major groups of structurally diverse cannabinoids. Along with these cannabinoids, CB1 and CB2 cannabinoid receptors and enzymes involved in synthesis and degradation of endocannabinoids comprise the major components of the cannabinoid system. Although, cannabinoid receptors are known to be involved in anti-convulsant, anti-nociceptive, anti-psychotic, anti-emetic, and anti-oxidant effects of cannabinoids, in recent years, an increasing number of studies suggest that, at pharmacologically relevant concentrations, these compounds interact with several molecular targets including G-protein coupled receptors, ion channels, and enzymes in a cannabinoid-receptor independent manner. In this report, the direct actions of endo-, phyto-, and synthetic cannabinoids on the functional properties of ligand-gated ion channels and the plausible mechanisms mediating these effects were reviewed and discussed.
Collapse
Affiliation(s)
- Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
- *Correspondence: Murat Oz,
| | - Keun-Hang Susan Yang
- Department of Biological Sciences, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, CA, United States
| | - Mohamed Omer Mahgoub
- Department of Health and Medical Sciences, Khawarizmi International College, Abu Dhabi, UAE
| |
Collapse
|
11
|
Navarrete F, Gasparyan A, Manzanares J. CBD-mediated regulation of heroin withdrawal-induced behavioural and molecular changes in mice. Addict Biol 2022; 27:e13150. [PMID: 35229949 DOI: 10.1111/adb.13150] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/12/2021] [Accepted: 01/11/2022] [Indexed: 11/25/2022]
Abstract
Cannabidiol (CBD) may represent a promising therapeutic tool for treating opioid use disorder (OUD). This study was aimed to evaluate the effects of CBD on the behavioural and gene expression alterations induced by spontaneous heroin withdrawal. Thirty hours after cessation of 8-day heroin treatment (5, 10, 20 and 40 mg·kg-1 /12 h; s.c.), spontaneous heroin withdrawal was evaluated in CD1 male mice. The effects of CBD (5, 10 and 20 mg·kg-1 ; i.p.) on withdrawal-related behaviour were evaluated by measuring anxiety-like behaviour, motor activity and somatic signs. Furthermore, gene expression changes of mu-opioid receptor (Oprm1), proopiomelanocortin (Pomc), cannabinoid CB1 (Cnr1) and CB2 (Cnr2) receptors in the nucleus accumbens (NAcc) and tyrosine hydroxylase (TH) and Pomc in the ventral tegmental area (VTA) were also evaluated by real-time PCR. Anxiety-like behaviour, motor activity and withdrawal-related somatic signs were significantly increased in heroin-treated mice compared to the control group. Interestingly, CBD treatment significantly reduced these behavioural impairments and normalized gene expression of Cnr1 and Pomc in the NAcc and TH in the VTA of mice exposed to spontaneous heroin withdrawal. Also, CBD induced an up-regulation of Cnr2, whereas it did not change the increased gene expression of Oprm1 in the NAcc of abstinent animals. The results suggest that CBD alleviates spontaneous heroin withdrawal and normalizes the associated gene expression changes. Future studies are needed to determine the relevance of CBD as a potential therapeutic tool for the treatment of heroin withdrawal.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias Universidad Miguel Hernández‐CSIC Avda. de Ramón y Cajal s/n, San Juan de Alicante Alicante Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER Madrid Spain
- Departamento de Medicina Clínica Universidad Miguel Hernández, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL) Alicante España
| | - Ani Gasparyan
- Instituto de Neurociencias Universidad Miguel Hernández‐CSIC Avda. de Ramón y Cajal s/n, San Juan de Alicante Alicante Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER Madrid Spain
- Departamento de Medicina Clínica Universidad Miguel Hernández, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL) Alicante España
| | - Jorge Manzanares
- Instituto de Neurociencias Universidad Miguel Hernández‐CSIC Avda. de Ramón y Cajal s/n, San Juan de Alicante Alicante Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER Madrid Spain
- Departamento de Medicina Clínica Universidad Miguel Hernández, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL) Alicante España
| |
Collapse
|
12
|
Saravia R, Ten-Blanco M, Pereda-Pérez I, Berrendero F. New Insights in the Involvement of the Endocannabinoid System and Natural Cannabinoids in Nicotine Dependence. Int J Mol Sci 2021; 22:13316. [PMID: 34948106 PMCID: PMC8715672 DOI: 10.3390/ijms222413316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/14/2022] Open
Abstract
Nicotine, the main psychoactive component in tobacco smoke, plays a major role in tobacco addiction, producing a high morbidity and mortality in the world. A great amount of research has been developed to elucidate the neural pathways and neurotransmitter systems involved in such a complex addictive behavior. The endocannabinoid system, which has been reported to participate in the addictive properties of most of the prototypical drugs of abuse, is also implicated in nicotine dependence. This review summarizes and updates the main behavioral and biochemical data involving the endocannabinoid system in the rewarding properties of nicotine as well as in nicotine withdrawal and relapse to nicotine-seeking behavior. Promising results from preclinical studies suggest that manipulation of the endocannabinoid system could be a potential therapeutic strategy for treating nicotine addiction.
Collapse
Affiliation(s)
- Rocio Saravia
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, 08003 Barcelona, Spain;
| | - Marc Ten-Blanco
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, UFV, Pozuelo de Alarcón, 28223 Madrid, Spain; (M.T.-B.); (I.P.-P.)
| | - Inmaculada Pereda-Pérez
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, UFV, Pozuelo de Alarcón, 28223 Madrid, Spain; (M.T.-B.); (I.P.-P.)
| | - Fernando Berrendero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, UFV, Pozuelo de Alarcón, 28223 Madrid, Spain; (M.T.-B.); (I.P.-P.)
| |
Collapse
|