1
|
Kuhn BN, Cannella N, Crow AD, Lunerti V, Gupta A, Walterhouse SJ, Allen C, Chalhoub RM, Dereschewitz E, Roberts AT, Cockerham M, Beeson A, Nall RW, Palmer AA, Hardiman G, Solberg Woods LC, Chung D, Ciccocioppo R, Kalivas PW. A multi-symptomatic model of heroin use disorder in rats reveals distinct behavioral profiles and neuronal correlates of heroin vulnerability versus resiliency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.22.581440. [PMID: 39211180 PMCID: PMC11361156 DOI: 10.1101/2024.02.22.581440] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Objective The behavioral and diagnostic heterogeneity within human opioid use disorder (OUD) diagnosis is not readily captured in current animal models, limiting translational relevance of the mechanistic research that is conducted in experimental animals. We hypothesize that a non-linear clustering of OUD-like behavioral traits will capture population heterogeneity and yield subpopulations of OUD vulnerable rats with distinct behavioral and neurocircuit profiles. Methods Over 900 male and female heterogeneous stock rats, a line capturing genetic and behavioral heterogeneity present in humans, were assessed for several measures of heroin use and rewarded and non-rewarded seeking behaviors. Using a non-linear stochastic block model clustering analysis, rats were assigned to OUD vulnerable, intermediate and resilient clusters. Additional behavioral tests and circuit analyses using c-fos protein activation were conducted on the vulnerable and resilient subpopulations. Results OUD vulnerable rats exhibited greater heroin taking and seeking behaviors relative to those in the intermediate and resilient clusters. Akin to human OUD diagnosis, further vulnerable rat sub-clustering revealed subpopulations with different combinations of behavioral traits, including sex differences. Lastly, heroin cue-induced neuronal patterns of circuit activation differed between resilient and vulnerable phenotypes. Behavioral sex differences were recapitulated in patterns of circuitry activation, including males preferentially engaging extended amygdala stress circuitry, and females cortico-striatal drug cue-seeking circuitry. Conclusion Using a non-linear clustering approach in rats, we captured behavioral diagnostic heterogeneity reflective of human OUD diagnosis. OUD vulnerability and resiliency were associated with distinct neuronal activation patterns, posing this approach as a translational tool in assessing neurobiological mechanisms underpinning OUD.
Collapse
|
2
|
Kuhn BN, Cannella N, Chitre AS, Nguyen KMH, Cohen K, Chen D, Peng B, Ziegler KS, Lin B, Johnson BB, Missfeldt Sanches T, Crow AD, Lunerti V, Gupta A, Dereschewitz E, Soverchia L, Hopkins JL, Roberts AT, Ubaldi M, Abdulmalek S, Kinen A, Hardiman G, Chung D, Polesskaya O, Solberg Woods LC, Ciccocioppo R, Kalivas PW, Palmer AA. Genome-wide association study reveals multiple loci for nociception and opioid consumption behaviors associated with heroin vulnerability in outbred rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582340. [PMID: 38712202 PMCID: PMC11071306 DOI: 10.1101/2024.02.27.582340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The increased prevalence of opioid use disorder (OUD) makes it imperative to disentangle the biological mechanisms contributing to individual differences in OUD vulnerability. OUD shows strong heritability, however genetic variants contributing toward vulnerability remain poorly defined. We performed a genome-wide association study using over 850 male and female heterogeneous stock (HS) rats to identify genes underlying behaviors associated with OUD such as nociception, as well as heroin-taking, extinction and seeking behaviors. By using an animal model of OUD, we were able to identify genetic variants associated with distinct OUD behaviors while maintaining a uniform environment, an experimental design not easily achieved in humans. Furthermore, we used a novel non-linear network-based clustering approach to characterize rats based on OUD vulnerability to assess genetic variants associated with OUD susceptibility. Our findings confirm the heritability of several OUD-like behaviors, including OUD susceptibility. Additionally, several genetic variants associated with nociceptive threshold prior to heroin experience, heroin consumption, escalation of intake, and motivation to obtain heroin were identified. Tom1 , a microglial component, was implicated for nociception. Several genes involved in dopaminergic signaling, neuroplasticity and substance use disorders, including Brwd1 , Pcp4, Phb1l2 and Mmp15 were implicated for the heroin traits. Additionally, an OUD vulnerable phenotype was associated with genetic variants for consumption and break point, suggesting a specific genetic contribution for OUD-like traits contributing to vulnerability. Together, these findings identify novel genetic markers related to the susceptibility to OUD-relevant behaviors in HS rats.
Collapse
|
3
|
Peart DR, Claridge EV, Karlovcec JM, El Azali R, LaDouceur KE, Sikic A, Thomas A, Stone AP, Murray JE. Generalization of a positive-feature interoceptive morphine occasion setter across the rat estrous cycle. Horm Behav 2024; 162:105541. [PMID: 38583235 DOI: 10.1016/j.yhbeh.2024.105541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/17/2024] [Accepted: 03/29/2024] [Indexed: 04/09/2024]
Abstract
INTRODUCTION Interoceptive stimuli elicited by drug administration acquire conditioned modulatory properties of the induction of conditioned appetitive behaviours by exteroceptive cues. This effect may be modeled using a drug discrimination task in which the drug stimulus is trained as a positive-feature (FP) occasion setter (OS) that disambiguates the relation between an exteroceptive light conditioned stimulus (CS) and a sucrose unconditioned stimulus (US). We previously reported that females are less sensitive to generalization of a FP morphine OS than males, so we investigated the role of endogenous ovarian hormones in this difference. METHODS Male and female rats received intermixed injections of 3.2 mg/kg morphine or saline before each daily training session. Training consisted of 8 presentations of the CS, each followed by access to sucrose on morphine, but not saline sessions. Following acquisiton, rats were tested for generalization of the morphine stimulus to 0, 1.0, 3.2, and 5.4 mg/kg morphine. Female rats were monitored for estrous cyclicity using vaginal cytology throughout the study. RESULTS Both sexes acquired stable drug discrimination. A gradient of generalization was measured across morphine doses and this behaviour did not differ by sex, nor did it differ across the estrous cycle in females. CONCLUSIONS Morphine generalization is independent of fluctuations in levels of sex and endogenous gonadal hormones in females under these experimental conditions.
Collapse
Affiliation(s)
- Davin R Peart
- Department of Psychology, University of Guelph, Guelph, ON, Canada; Collaborative Neurosciences Graduate Program, University of Guelph, Guelph, ON, Canada
| | - Ella V Claridge
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Jessica M Karlovcec
- Department of Psychology, University of Guelph, Guelph, ON, Canada; Collaborative Neurosciences Graduate Program, University of Guelph, Guelph, ON, Canada
| | - Rita El Azali
- Department of Psychology, University of Guelph, Guelph, ON, Canada; Collaborative Neurosciences Graduate Program, University of Guelph, Guelph, ON, Canada
| | - Kathleen E LaDouceur
- Department of Psychology, University of Guelph, Guelph, ON, Canada; Collaborative Neurosciences Graduate Program, University of Guelph, Guelph, ON, Canada
| | - Anita Sikic
- Department of Psychology, University of Guelph, Guelph, ON, Canada; Collaborative Neurosciences Graduate Program, University of Guelph, Guelph, ON, Canada
| | - Abina Thomas
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Adiia P Stone
- Department of Psychology, University of Guelph, Guelph, ON, Canada; Collaborative Neurosciences Graduate Program, University of Guelph, Guelph, ON, Canada
| | - Jennifer E Murray
- Department of Psychology, University of Guelph, Guelph, ON, Canada; Collaborative Neurosciences Graduate Program, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
4
|
Cannella N, Tambalo S, Lunerti V, Scuppa G, de Vivo L, Abdulmalek S, Kinen A, Mackle J, Kuhn B, Solberg Woods LC, Chung D, Kalivas P, Soverchia L, Ubaldi M, Hardiman G, Bifone A, Ciccocioppo R. Long-access heroin self-administration induces region specific reduction of grey matter volume and microglia reactivity in the rat. Brain Behav Immun 2024; 118:210-220. [PMID: 38452987 DOI: 10.1016/j.bbi.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/08/2024] [Accepted: 03/02/2024] [Indexed: 03/09/2024] Open
Abstract
In opioid use disorder (OUD) patients, a decrease in brain grey matter volume (GMV) has been reported. It is unclear whether this is the consequence of prolonged exposure to opioids or is a predisposing causal factor in OUD development. To investigate this, we conducted a structural MRI longitudinal study in NIH Heterogeneous Stock rats exposed to heroin self-administration and age-matched naïve controls housed in the same controlled environment. Structural MRI scans were acquired before (MRI1) and after (MRI2) a prolonged period of long access heroin self-administration resulting in escalation of drug intake. Heroin intake resulted in reduced GMV in various cortical and sub-cortical brain regions. In drug-naïve controls no difference was found between MRI1 and MRI2. Notably, the degree of GMV reduction in the medial prefrontal cortex (mPFC) and the insula positively correlated with the amount of heroin consumed and the escalation of heroin use. In a preliminary gene expression analysis, we identified a number of transcripts linked to immune response and neuroinflammation. This prompted us to hypothesize a link between changes in microglia homeostasis and loss of GMV. For this reason, we analyzed the number and morphology of microglial cells in the mPFC and insula. The number of neurons and their morphology was also evaluated. The primary motor cortex, where no GMV change was observed, was used as negative control. We found no differences in the number of neurons and microglia cells following heroin. However, in the same regions where reduced GMV was detected, we observed a shift towards a rounder shape and size reduction in microglia, suggestive of their homeostatic change towards a reactive state. Altogether these findings suggest that escalation of heroin intake correlates with loss of GMV in specific brain regions and that this phenomenon is linked to changes in microglial morphology.
Collapse
Affiliation(s)
- Nazzareno Cannella
- School of Pharmacy, Pharmacology Unit, Center for Neuroscience, University of Camerino, Camerino, Italy.
| | - Stefano Tambalo
- CIMeC, Center for Mind/Brain Science, University of Trento, Trento, Italy
| | - Veronica Lunerti
- School of Pharmacy, Pharmacology Unit, Center for Neuroscience, University of Camerino, Camerino, Italy
| | - Giulia Scuppa
- Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Luisa de Vivo
- School of Pharmacy, Pharmacology Unit, Center for Neuroscience, University of Camerino, Camerino, Italy
| | | | - Analia Kinen
- School of Pharmacy, Pharmacology Unit, Center for Neuroscience, University of Camerino, Camerino, Italy; Faculty of Medicine, Queen's University Belfast, UK
| | - James Mackle
- Faculty of Medicine, Queen's University Belfast, UK
| | - Brittany Kuhn
- Department of Neuroscience, Medical University of South Carolina (MUSC), Charleston (SC), USA
| | | | - Dongjun Chung
- Department of Biomedical Informatics, The Ohio State University, Columbus (OH), USA
| | - Peter Kalivas
- Department of Neuroscience, Medical University of South Carolina (MUSC), Charleston (SC), USA
| | - Laura Soverchia
- School of Pharmacy, Pharmacology Unit, Center for Neuroscience, University of Camerino, Camerino, Italy
| | - Massimo Ubaldi
- School of Pharmacy, Pharmacology Unit, Center for Neuroscience, University of Camerino, Camerino, Italy
| | | | - Angelo Bifone
- Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy; Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, Center for Neuroscience, University of Camerino, Camerino, Italy
| |
Collapse
|
5
|
Cannella N, Tambalo S, Lunerti V, Scuppa G, de Vivo L, Abdulmalek S, Kinen A, Mackle J, Kuhn B, Solberg Woods LC, Chung D, Kalivas P, Soverchia L, Ubaldi M, Hardiman G, Bifone A, Ciccocioppo R. Long-access heroin self-administration induces region specific reduction of grey matter volume and microglia reactivity in the rat. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582024. [PMID: 38463974 PMCID: PMC10925188 DOI: 10.1101/2024.02.26.582024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
In opioid use disorder (OUD) patients, a decrease in brain grey matter volume (GMV) has been reported. It is unclear whether this is the consequence of prolonged exposure to opioids or is a predisposing causal factor in OUD development. To investigate this, we conducted a structural MRI longitudinal study in NIH Heterogeneous Stock rats exposed to heroin self-administration and age-matched naïve controls housed in the same controlled environment. Structural MRI scans were acquired before (MRI 1 ) and after (MRI 2 ) a prolonged period of long access heroin self-administration resulting in escalation of drug intake. Heroin intake resulted in reduced GMV in various cortical and sub-cortical brain regions. In drug-naïve controls no difference was found between MRI 1 and MRI 2 . Notably, the degree of GMV reduction in the medial prefrontal cortex (mPFC) and the insula positively correlated with the amount of heroin consumed and the escalation of heroin use. In a preliminary gene expression analysis, we identified a number of transcripts linked to immune response and neuroinflammation. This prompted us to hypothesize a link between changes in microglia homeostasis and loss of GMV. For this reason, we analyzed the number and morphology of microglial cells in the mPFC and insula. The number of neurons and their morphology was also evaluated. The primary motor cortex, where no GMV change was observed, was used as negative control. We found no differences in the number of neurons and microglia cells following heroin. However, in the same regions where reduced GMV was detected, we observed a shift towards a rounder shape and size reduction in microglia, suggestive of their homeostatic change towards a reactive state. Altogether these findings suggest that escalation of heroin intake correlates with loss of GMV in specific brain regions and that this phenomenon is linked to changes in microglial morphology.
Collapse
|
6
|
Olsen CM, Glaeser BL, Szabo A, Raff H, Everson CA. The effects of sleep restriction during abstinence on oxycodone seeking: Sex-dependent moderating effects of behavioral and hypothalamic-pituitary-adrenal axis-related phenotypes. Physiol Behav 2023; 272:114372. [PMID: 37805135 PMCID: PMC10841994 DOI: 10.1016/j.physbeh.2023.114372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/11/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
During opioid use and abstinence, sleep disturbances are common and are thought to exacerbate drug craving. In this study, we tested the hypothesis that sleep restriction during abstinence from oxycodone self-administration would increase drug seeking during extinction and footshock reinstatement tests. We also performed behavioral phenotyping to determine if individual variation in responses to stressors and/or pain are associated with oxycodone seeking during abstinence, as stress, pain and sleep disturbance are often co-occurring phenomena. Sleep restriction during abstinence did not have selective effects on oxycodone seeking for either sex in extinction and footshock reinstatement tests. Some phenotypes were associated with drug seeking; these associations differed by sex and type of drug seeking assessment. In female rats, pain-related phenotypes were related to high levels of drug seeking during the initial extinction session. In male rats, lower anxiety-like behavior in the open field was associated with greater drug seeking, although this effect was lost when correcting for oxycodone intake. Adrenal sensitivity prior to oxycodone exposure was positively associated with footshock reinstatement in females. This work identifies sex-dependent relationships between HPA axis function and opioid seeking, indicating that HPA axis function could be a therapeutic target for the treatment of opioid use disorder, with tailored approaches based on sex. Sleep disturbance during abstinence did not appear to be a major contributing factor to opioid seeking.
Collapse
Affiliation(s)
- Christopher M Olsen
- Departments of Pharmacology & Toxicology and Neurosurgery, Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank, Milwaukee, WI 53226, USA.
| | - Breanna L Glaeser
- Department of Pharmacology & Toxicology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Aniko Szabo
- Division of Biostatistics, Institute for Health & Equity, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hershel Raff
- Department of Medicine (Endocrinology and Molecular Medicine), Surgery, and Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Advocate Aurora Research Institute, Milwaukee, WI, USA
| | - Carol A Everson
- Department of Medicine (Endocrinology and Molecular Medicine) and Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
7
|
Abstract
This paper is the forty-fifth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2022 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, USA.
| |
Collapse
|
8
|
Liiver K, Imbeault S, Školnaja M, Kaart T, Kanarik M, Laugus K, De Wettinck J, Pulver A, Shimmo R, Harro J. Active vs passive novelty-related strategies: Sex differences in exploratory behaviour and monoaminergic systems. Behav Brain Res 2023; 441:114297. [PMID: 36641084 DOI: 10.1016/j.bbr.2023.114297] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/02/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Sex differences are apparent in numerous behavioural characteristics. In order to compare and characterise male and female variability of exploratory behaviour, 365 male and 401 female rats were assessed in a task where a bimodal response distribution had previously been established in males. Female rats had significantly higher exploratory activity, and presented normal distribution of the behaviour, very differently from the bimodal distribution of males. No major effect of litter or oestrous cycle was detected. Several differences between male and female rats were found in monoamine metabolism measured ex vivo. Male rats had lower levels of dopamine (DA) in frontal cortex, and higher levels of 3,4-dihydroxyphenylacetic acid (DOPAC) in raphe area; higher levels of serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) in dorsal striatum but lower levels of 5-HT and 5-HIAA in locus coeruleus area, 5-HIAA levels were also lower in hippocampus as compared to females. Males had higher noradrenaline (NA) levels in hippocampus and lower normetanephrine (NMN) levels in striatum, in both brain regions male animals had lower NMN/NA ratio. No sex difference was found in accumbens. The only brain region with an interaction between sex and the expression of exploratory activity was raphe: Here 5-HT levels were lower, and DOPAC levels and DOPAC/DA and 5-HIAA/5-HT ratios higher in low exploring male but not female rats. Conclusively, female rats not only display higher levels of exploration but the population distribution of this behaviour is distinct; this may be related to differences in the monoaminergic systems between female and male animals.
Collapse
Affiliation(s)
- Kristi Liiver
- School of Natural Sciences and Health, Tallinn University, Narva Road 25, 10120 Tallinn, Estonia
| | - Sophie Imbeault
- School of Natural Sciences and Health, Tallinn University, Narva Road 25, 10120 Tallinn, Estonia
| | - Marianna Školnaja
- School of Natural Sciences and Health, Tallinn University, Narva Road 25, 10120 Tallinn, Estonia; Laboratory Animal Centre, Tallinn University of Technology, Akadeemia Road 15, 12618 Tallinn, Estonia
| | - Tanel Kaart
- Institute of Veterinary Medicine and Animal Science, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Margus Kanarik
- Division of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu, Estonia
| | - Karita Laugus
- Division of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu, Estonia
| | - Jade De Wettinck
- School of Natural Sciences and Health, Tallinn University, Narva Road 25, 10120 Tallinn, Estonia
| | - Aleksander Pulver
- School of Natural Sciences and Health, Tallinn University, Narva Road 25, 10120 Tallinn, Estonia
| | - Ruth Shimmo
- School of Natural Sciences and Health, Tallinn University, Narva Road 25, 10120 Tallinn, Estonia
| | - Jaanus Harro
- School of Natural Sciences and Health, Tallinn University, Narva Road 25, 10120 Tallinn, Estonia; Division of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu, Estonia; Institute of Biotechnology, HiLIFE, University of Helsinki, Viikinkaari 5D, 00014 Helsinki, Finland.
| |
Collapse
|