1
|
Mendonça I, Silva D, Conde T, Maurício T, Cardoso H, Pereira H, Bartolomeu M, Vieira C, Domingues MR, Almeida A. Insight into the efficiency of microalgae' lipidic extracts as photosensitizers for Antimicrobial Photodynamic Therapy against Staphylococcus aureus. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 259:112997. [PMID: 39137701 DOI: 10.1016/j.jphotobiol.2024.112997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/08/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024]
Abstract
Antibacterial resistance causes around 1.27 million deaths annually around the globe and has been recognized as a top 3 priority health threat. Antimicrobial photodynamic therapy (aPDT) is considered a promising alternative to conventional antibiotic treatments. Algal lipid extracts have shown antibacterial effects when used as photosensitizers (PSs) in aPDT. In this work we assessed the photodynamic efficiency of lipidic extracts of microalgae belonging to different phyla (Bacillariophyta, Chlorophyta, Cyanobacteria, Haptophyta, Ochrophyta and Rhodophyta). All the extracts (at 1 mg mL-1) demonstrated a reduction of Staphylococcus aureus >3 log10 (CFU mL-1), exhibiting bactericidal activity. Bacillariophyta and Haptophyta extracts were the top-performing phyla against S. aureus, achieving a reduction >6 log10 (CFU mL-1) with light doses of 60 J cm-2 (Bacillariophyta) and 90 J cm-2 (Haptophyta). The photodynamic properties of the Bacillariophyta Phaeodactylum tricornutum and the Haptophyta Tisochrysis lutea, the best effective microalgae lipid extracts, were also assessed at lower concentrations (75 μg mL-1, 7.5 μg mL-1, and 3.75 μg mL-1), reaching, in general, inactivation rates higher than those obtained with the widely used PSs, such as Methylene Blue and Chlorine e6, at lower concentration and light dose. The presence of chlorophyll c, which can absorb a greater amount of energy than chlorophylls a and b; rich content of polyunsaturated fatty acids (PUFAs) and fucoxanthin, which can also produce ROS, e.g. singlet oxygen (1O2), when photo-energized; a lack of photoprotective carotenoids such as β-carotene, and low content of tocopherol, were associated with the algal extracts with higher antimicrobial activity against S. aureus. The bactericidal activity exhibited by the extracts seems to result from the photooxidation of microalgae PUFAs by the 1O2 and/or other ROS produced by irradiated chlorophylls/carotenoids, which eventually led to bacterial lipid peroxidation and cell death, but further studies are needed to confirm this hypothesis. These results revealed the potential of an unexplored source of natural photosensitizers (microalgae lipid extracts) that can be used as PSs in aPDT as an alternative to conventional antibiotic treatments, and even to conventional PSs, to combat antibacterial resistance.
Collapse
Affiliation(s)
- Inês Mendonça
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Daniela Silva
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Tiago Conde
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Tatiana Maurício
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Helena Cardoso
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril 19, 2445-287 Pataias, Portugal
| | - Hugo Pereira
- GreenColab - Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Maria Bartolomeu
- Universidade Católica Portuguesa, Faculty of Dental Medicine (FMD), Center for Interdisciplinary Research in Health (CIIS), 3504-505 Viseu, Portugal
| | - Cátia Vieira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - M Rosário Domingues
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Adelaide Almeida
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal.
| |
Collapse
|
2
|
Carreon-Gonzalez M, Alvarez-Idaboy JR. The Synergy between Glutathione and Phenols-Phenolic Antioxidants Repair Glutathione: Closing the Virtuous Circle-A Theoretical Insight. Antioxidants (Basel) 2023; 12:antiox12051125. [PMID: 37237991 DOI: 10.3390/antiox12051125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Glutathione (GSH) and phenols are well-known antioxidants, and previous research has suggested that their combination can enhance antioxidant activity. In this study, we used Quantum Chemistry and computational kinetics to investigate how this synergy occurs and elucidate the underlying reaction mechanisms. Our results showed that phenolic antioxidants could repair GSH through sequential proton loss electron transfer (SPLET) in aqueous media, with rate constants ranging from 3.21 × 106 M-1 s-1 for catechol to 6.65 × 108 M-1 s-1 for piceatannol, and through proton-coupled electron transfer (PCET) in lipid media with rate constants ranging from 8.64 × 106 M-1 s-1 for catechol to 5.53 × 107 M-1 s-1 for piceatannol. Previously it was found that superoxide radical anion (O2•-) can repair phenols, thereby completing the synergistic circle. These findings shed light on the mechanism underlying the beneficial effects of combining GSH and phenols as antioxidants.
Collapse
Affiliation(s)
- Mirzam Carreon-Gonzalez
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Juan Raúl Alvarez-Idaboy
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
3
|
Hang DTN, Hoa NT, Bich HN, Mechler A, Vo QV. The hydroperoxyl radical scavenging activity of natural hydroxybenzoic acids in oil and aqueous environments: Insights into the mechanism and kinetics. PHYTOCHEMISTRY 2022; 201:113281. [PMID: 35738432 DOI: 10.1016/j.phytochem.2022.113281] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Foods that contain hydroxybenzoic acid derivatives (HBA) include red fruits, black radish, onion, and potato peel. HBA are widely known for their anti-inflammatory, anti-cancer, and especially antioxidant capabilities; however, a comprehensive study of the mechanism and kinetics of the antiradical action of these compounds has not been performed. Here, we report a study on the mechanisms and kinetics of hydroperoxyl radical scavenging activity of HBA by density functional theory (DFT) calculations. According to the results, HBA exert low HOO• antiradical activity in the nonpolar environment with overall rate constants in the range of koverall = 5.90 × 10-6 - 4.10 × 103 M-1 s-1. However, most HBA exhibit significant HOO• antiradical activity (koverall = 105 - 108 M-1 s-1) by the single electron transfer (SET) reaction of the phenoxide anions in water at physiological pH. The overall rate constant increases with increasing pH values in the majority of the substances studied. At pH ≤ 4, gentisic acid had the best HOO• antiradical activity (log(koverall) = 3.7-4.8), however at pH > 4, the largest HOO• radical scavenging activity (log(koverall) = 4.8-9.8) was almost exclusively found for gallic and syringic acids. Salicylic and 5-sulphosalicylic acids have the lowest antiradical activity across most of the pH range. The activities of the majority of the acids in this study are faster than the reference compound Trolox. Thus, in the aqueous physiological environment, these HBA are good natural antioxidants.
Collapse
Affiliation(s)
- Do Thi Ngoc Hang
- The University of Danang - University of Technology and Education, Danang 550000, Viet Nam
| | - Nguyen Thi Hoa
- The University of Danang - University of Technology and Education, Danang 550000, Viet Nam
| | - Huynh Ngoc Bich
- The University of Danang - University of Technology and Education, Danang 550000, Viet Nam
| | - Adam Mechler
- Department of Chemistry and Physics, La Trobe University, Victoria 3086, Australia
| | - Quan V Vo
- The University of Danang - University of Technology and Education, Danang 550000, Viet Nam.
| |
Collapse
|
4
|
Biela M, Kleinová A, Klein E. Phenolic acids and their carboxylate anions: Thermodynamics of primary antioxidant action. PHYTOCHEMISTRY 2022; 200:113254. [PMID: 35623472 DOI: 10.1016/j.phytochem.2022.113254] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Phenolic acids represent naturally occurring antioxidants and play important role in free radicals scavenging. In this work, we have studied thermodynamics of the first step of primary antioxidant action for phenolic OH groups of benzoic and cinnamic acid derivatives, and their carboxylate anions. M06-2X/6-311++G(d,p) reaction enthalpies related to Hydrogen Atom Transfer (HAT), Single Electron Transfer - Proton Transfer (SET-PT), and Sequential Proton-Loss Electron-Transfer (SPLET) mechanisms were computed for model non-polar environment (benzene) and aqueous solution. The effect of acid structure on found reaction enthalpies was investigated, as well. For HAT, representing relevant reaction path in both environments, the lowest O-H bond dissociation enthalpies, BDE, were found for sinapic acid (347 kJ mol-1 in benzene and 337 kJ mol-1 in water). With two exceptions, carboxylate anions show lower BDEs than parent acids. In aqueous solution, enthalpies of the first step of SPLET from phenolic OH groups are low (135-199 kJ mol-1). It indicates thermodynamic feasibility of the mechanism for acids, as well as their carboxylate anions. Although enthalpies of electron transfer from dianions formed after successive deprotonations of carboxyl and phenolic groups in water are usually higher than BDEs, differences are within 25 kJ mol-1. Demethylation of OCH3 groups may affect radical scavenging activity of studied substances due to O-CH3 BDE considerably lower (230-269 kJ mol-1) in comparison to O-H ones.
Collapse
Affiliation(s)
- Monika Biela
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37, Bratislava, Slovakia
| | - Andrea Kleinová
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37, Bratislava, Slovakia
| | - Erik Klein
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37, Bratislava, Slovakia.
| |
Collapse
|
5
|
Belaya NI, Belyi AV, Shcherbakov IN, Budnikova EA. Two-Variable Predictive Model of the Antiradical Activity of Hydroxybenzoic Acids in Media with Physiological pH. KINETICS AND CATALYSIS 2022. [DOI: 10.1134/s002315842106001x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Antioxidants into Nopal ( Opuntia ficus-indica), Important Inhibitors of Free Radicals' Formation. Antioxidants (Basel) 2021; 10:antiox10122006. [PMID: 34943109 PMCID: PMC8698577 DOI: 10.3390/antiox10122006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 11/16/2022] Open
Abstract
Nopal (Opuntia ficus indica) belonging to the Cactacea family has many nutritional benefits attributed to a wide variety of phenolic and flavonoid compounds. Coumaric acid (COA), ferulic acid (FLA), protocatechuic acid (PRA), and gallic acid (GAA) are the phenolic acids (PhAs) present in nopal. In this study, the role of these PhAs in copper-induced oxidative stress was investigated using the density functional theory (DFT). The PhAs form 5 thermodynamically favorable complexes with Cu(II), their conditional Gibbs free energies of reaction (ΔG’, at pH = 7.4, in kcal/mol) are from −23 kcal/mol to −18 kcal/mol. All of them are bi-dentate complexes. The complexes of PRA and GAA are capable of inhibiting the Cu(II) reduction by both O2•− and Asc−, their reactions with the chelated metal are endergonic having rate constants about ~10−5–102 M−1 s−1, PhAs can prevent the formation of hydroxyl free radicals by chelating the copper ions. Once the hydroxyl radicals are formed by Fenton reactions, the complexes of PhAs with Cu(II) can immediately react with them, thus inhibiting the damage that they can cause to molecules of biological interest. The reactions between PhAs-Cu(II) complexes and hydroxyl free radical were estimated to be diffusion-limited (~108 M−1s−1). Thus, these chelates can reduce the harmful effects caused by the most reactive free radical existent immediately after it is formed by Fenton reactions.
Collapse
|
7
|
Vo QV, Hoa NT, Thong NM, Mechler A. The hydroperoxyl and superoxide anion radical scavenging activity of anthocyanidins in physiological environments: Theoretical insights into mechanisms and kinetics. PHYTOCHEMISTRY 2021; 192:112968. [PMID: 34598044 DOI: 10.1016/j.phytochem.2021.112968] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
The HOO• and O2•- scavenging activities of 12 natural anthocyanidins were investigated in physiological environments by using DFT calculations. The results suggest high HOO• scavenging activity in aqueous medium with overall rate constants in the range of koverall = 1.58 × 108 - 7.59 × 109 M-1 s-1, whereas in lipid medium only weak activity is predicted. O2•- scavenging is also fast in water with kapp = ∼109 M-1 s-1. Like in the case of many other antioxidants that contain acidic moieties, the anion states (H3A- and H2A2-) and the single electron transfer mechanism play a dominant role in the HOO• scavenging activity of anthocyanidins in water at pH = 7.4. Analysis of the mechanism suggests that the O2•- and HOO• radical scavenging can occur as a regeneration cycle that might increase the protective efficiency of anthocyanidins against oxidative stress.
Collapse
Affiliation(s)
- Quan V Vo
- The University of Danang-University of Technology and Education, Danang, 550000, Viet Nam.
| | - Nguyen Thi Hoa
- The University of Danang-University of Technology and Education, Danang, 550000, Viet Nam
| | - Nguyen Minh Thong
- The University of Danang, Campus in Kon Tum, 704 Phan Dinh Phung, Kon Tum, Viet Nam
| | - Adam Mechler
- Department of Chemistry and Physics, La Trobe University, Victoria, 3086, Australia
| |
Collapse
|
8
|
Ortiz‐Escarza JM, Medina ME, Trigos A. On the peroxyl radical scavenging ability of β‐sitosterol in lipid media: A theoretical study. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Manuel E. Medina
- Centro de Investigación en Micología Aplicada Universidad Veracruzana Xalapa Mexico
| | - Angel Trigos
- Centro de Investigación en Micología Aplicada Universidad Veracruzana Xalapa Mexico
| |
Collapse
|
9
|
Belaya NI, Belyi AV, Zarechnaya OM, Shcherbakov IN, Doroshkevich VS. Phenolcarboxylic Acids in the Reaction with Electrogenerated
Hydroperoxyl Radical. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220100023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Castañeda-Arriaga R, Pérez-González A, Reina M, Galano A. Computer-designed melatonin derivatives: potent peroxyl radical scavengers with no pro-oxidant behavior. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-02641-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Mello ADA, Geihs MA, Nogueira TDS, Allodi S, Vargas MA, de Barros CM. Oxidative stress: Noradrenaline as an integrator of responses in the neuroendocrine and immune systems of the ascidian Phallusia nigra. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 105:103573. [PMID: 31918205 DOI: 10.1016/j.dci.2019.103573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
Neurotransmitters play key roles in regulating the homeostasis of organisms in stressful environments. Noradrenaline (NA) is the main neurotransmitter known to modulate immunological parameters, and is important in the crosstalk between the neuroendocrine and immune systems. In this study, using the ascidian Phallusia nigra, we analyzed the level of catecholamines (CA) in the plasma after mechanical stress, and the effect of NA on the oxidative stress (OS) displayed by immune cells. We measured the concentration of reactive oxygen species (ROS), and analyzed whether α- and/or β-adrenoreceptors (ARs) are involved in ROS modulation, lipid peroxidation (LPO), antioxidant capacity against peroxyl radicals (ACAP), and activity of the enzymes catalase (CAT) and glutathione S transferase (GST) in immune cells after incubation with different concentrations of NA, with or without zymosan (ZnA) challenge. The results showed that NA reduced ROS production, even in immune cells challenged with ZnA, and that this modulation occurred through α1-and β1-ARs. ACAP levels showed different responses, depending on whether immune cells were challenged or not with ZnA, and also depending on the NA concentration: 1.0 μM NA increased ACAP levels, but 10.0 μM reduced ACAP levels. NA enhanced the activity of CAT and GST in ZnA-challenged and non-challenged immune cells, while 1.0 and 10.0 μM NA effectively reduced LPO. Taken together, these results show that NA can protect cells from ROS damage, decreasing ROS production and LPO, and enhancing ACAP as well as the activity of CAT and GST. The approach used here with this model contributes to understanding the relationship between the neuroendocrine and immune systems, revealing new effects of NA on OS regulation in ascidians.
Collapse
Affiliation(s)
- Andressa de Abreu Mello
- Laboratório Integrado de Biociências Translacionais, Instituto de Biodiversidade e Sustentabilidade, NUPEM, Universidade Federal do Rio de Janeiro, Av. São José Barreto, 764, Macaé, RJ, 27965-045, Brazil; Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373 Bloco G2-001, Rio de Janeiro, RJ, 21941-902, Brazil; Programa de Pós-Graduação em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro, Campus UFRJ, Av. Aluizio da Silva Gomes, 50, Macaé, RJ, 27930-560, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Biofísica), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373 Bloco G1-003, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Márcio Alberto Geihs
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Av. Itália, Km 8, Rio Grande, RS, 96201-900, Brazil
| | - Thuany da Silva Nogueira
- Laboratório Integrado de Biociências Translacionais, Instituto de Biodiversidade e Sustentabilidade, NUPEM, Universidade Federal do Rio de Janeiro, Av. São José Barreto, 764, Macaé, RJ, 27965-045, Brazil
| | - Silvana Allodi
- Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373 Bloco G2-001, Rio de Janeiro, RJ, 21941-902, Brazil; Programa de Pós-Graduação em Ciências Biológicas (Biofísica), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373 Bloco G1-003, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Marcelo Alves Vargas
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Av. Itália, Km 8, Rio Grande, RS, 96201-900, Brazil
| | - Cintia Monteiro de Barros
- Laboratório Integrado de Biociências Translacionais, Instituto de Biodiversidade e Sustentabilidade, NUPEM, Universidade Federal do Rio de Janeiro, Av. São José Barreto, 764, Macaé, RJ, 27965-045, Brazil; Programa de Pós-Graduação em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro, Campus UFRJ, Av. Aluizio da Silva Gomes, 50, Macaé, RJ, 27930-560, Brazil.
| |
Collapse
|
12
|
Amić A, Marković Z, Dimitrić Marković JM, Milenković D, Stepanić V. Antioxidative potential of ferulic acid phenoxyl radical. PHYTOCHEMISTRY 2020; 170:112218. [PMID: 31812108 DOI: 10.1016/j.phytochem.2019.112218] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
The vast majority of previous studies dealing with antioxidant potency of (poly)phenols does not investigate the fate of phenoxyl radical obtained after single free radical scavenging. We investigated possible pathways of inactivation of ferulic acid phenoxyl radical (FAPR) using DFT method. Direct coupling with a set of 10 physiologically important free radicals, H-atom donation and dimerization were analysed by estimation of Gibbs free energy changes related to these processes. The former two processes are thermodynamically feasible to inactivate more dangerous free radicals such as hydroxyl, alkoxyl and carbon-centered radicals. Among dimerization reactions, the least energy demanding is formation of C-5-C-5 dimer of ferulic acid (FA), which has higher antiradical potency than FA itself. Obtained results reveal that FAPR, a priori considered as stable and unreactive, may contribute to the overall antioxidant activity of FA. This is a beneficial behavior, which makes FA a particularly valuable protector against oxidative stress. Hence, the contribution of phenoxyl radicals to the antioxidant activity of (poly)phenolic compounds should be taken into account, what has been scarcely considered until now.
Collapse
Affiliation(s)
- Ana Amić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8a, 31000, Osijek, Croatia.
| | - Zoran Marković
- Department of Chemical-Technological Sciences, State University of Novi Pazar, Vuka Karadžića bb, 36300, Novi Pazar, Serbia
| | | | - Dejan Milenković
- Bioengineering Research and Development Center, Prvoslava Stojanovića 6, 34000, Kragujevac, Serbia
| | - Višnja Stepanić
- Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| |
Collapse
|
13
|
Park Y, Kim D. Chemical stability enhancement of Nafion membrane by impregnation of a novel organic ·OH radical scavenger, 3,4-dihydroxy-cinnamic acid. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.08.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
Medina ME, Galano A, Trigos Á. Scavenging Ability of Homogentisic Acid and Ergosterol toward Free Radicals Derived from Ethanol Consumption. J Phys Chem B 2018; 122:7514-7521. [DOI: 10.1021/acs.jpcb.8b04619] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Manuel E. Medina
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Av. Luis Castelazo s/n, Col. Industrial Animas, Xalapa, Veracruz 91190, México
| | - Annia Galano
- Departamento de Química, División de Ciencias Básica e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, México D. F. 09340, México
| | - Ángel Trigos
- Laboratorio de Alta Tecnología de Xalapa, Universidad Veracruzana, Calle Médicos 5, Col. Unidad del Bosque, Xalapa, Veracruz 91010, México
| |
Collapse
|
15
|
Castañeda-Arriaga R, Pérez-González A, Reina M, Alvarez-Idaboy JR, Galano A. Comprehensive Investigation of the Antioxidant and Pro-oxidant Effects of Phenolic Compounds: A Double-Edged Sword in the Context of Oxidative Stress? J Phys Chem B 2018; 122:6198-6214. [PMID: 29771524 DOI: 10.1021/acs.jpcb.8b03500] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Oxidative stress (OS) is a health-threatening process that is involved, at least partially, in the development of several diseases. Although antioxidants can be used as a chemical defense against OS, they might also exhibit pro-oxidant effects, depending on environmental conditions. In this work, such a dual behavior was investigated for phenolic compounds (PhCs) within the framework of the density functional theory and based on kinetic data. Multiple reaction mechanisms were considered in both cases. The presence of redox metals, the pH, and the possibility that PhCs might be transformed into benzoquinones were identified as key aspects in the antioxidant versus pro-oxidant effects of these compounds. The main virtues of PhCs as antioxidants are their radical trapping activity, their regeneration under physiological conditions, and their behavior as OH-inactivating ligands. The main risks of PhCs as pro-oxidants are predicted to be the role of phenolate ions in the reduction of metal ions, which can promote Fenton-like reactions, and the formation of benzoquinones that might cause protein arylation at cysteine sites. Although the benefits seem to overcome the hazards, to properly design chemical strategies against OS using PhCs, it is highly recommended to carefully explore their duality in this context.
Collapse
Affiliation(s)
- Romina Castañeda-Arriaga
- Departamento de Química , Universidad Autónoma Metropolitana-Iztapalapa , San Rafael Atlixco 186 , Col. Vicentina, Iztapalapa , C.P. 09340 México City , México
| | - Adriana Pérez-González
- CONACYT-Universidad Autónoma Metropolitana-Iztapalapa , San Rafael Atlixco 186, Col. Vicentina, Iztapalapa , C.P. 09340 México City , México
| | - Miguel Reina
- Departamento de Química , Universidad Autónoma Metropolitana-Iztapalapa , San Rafael Atlixco 186 , Col. Vicentina, Iztapalapa , C.P. 09340 México City , México
| | - J Raúl Alvarez-Idaboy
- Facultad de Química, Departamento de Física y Química Teórica , Universidad Nacional Autónoma de México , C.P. 04510 México City , México
| | - Annia Galano
- Departamento de Química , Universidad Autónoma Metropolitana-Iztapalapa , San Rafael Atlixco 186 , Col. Vicentina, Iztapalapa , C.P. 09340 México City , México
| |
Collapse
|
16
|
Jeremić S, Amić A, Stanojević-Pirković M, Marković Z. Selected anthraquinones as potential free radical scavengers and P-glycoprotein inhibitors. Org Biomol Chem 2018; 16:1890-1902. [DOI: 10.1039/c8ob00060c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this article, we estimated the scavenger capacity of six selected anthraquinones toward free radicals and their efficacy as inhibitors of P-glycoproteins.
Collapse
Affiliation(s)
- S. Jeremić
- Department of Chemical-Technological Sciences
- State University of Novi Pazar
- 36300 Novi Pazar
- Serbia
| | - A. Amić
- Department of Chemistry
- Josip Juraj Strossmayer University of Osijek
- 31000 Osijek
- Croatia
| | | | - Z. Marković
- Department of Chemical-Technological Sciences
- State University of Novi Pazar
- 36300 Novi Pazar
- Serbia
| |
Collapse
|
17
|
Krzysztoforska K, Mirowska-Guzel D, Widy-Tyszkiewicz E. Pharmacological effects of protocatechuic acid and its therapeutic potential in neurodegenerative diseases: Review on the basis of in vitro and in vivo studies in rodents and humans. Nutr Neurosci 2017; 22:72-82. [PMID: 28745142 DOI: 10.1080/1028415x.2017.1354543] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Protocatechuic acid has very promising properties potentially useful in the inhibition of neurodegenerative diseases progression. It is the main metabolite of the complex polyphenolic compounds and is believed to be responsible for beneficial effects associated with consumption of the food products rich in polyphenols. Protocatechuic acid is present in the circulation significantly longer and at higher concentrations than parent compounds and easily crosses the blood brain barrier. The aim of the following paper is to provide an extensive and actual report on protocatechuic acid and its pharmacological potential in prevention and/or treatment of neurodegenerative diseases in humans based on existing data from both in vitro and in vivo studies. Experimental studies strongly support the role of protocatechuic acid in the prevention of neurodegenerative processes, including Alzheimer's and Parkinson's diseases, due to its favorable influence on processes underlying cognitive and behavioral impairment, namely accumulation of the β-amyloid plaques in brain tissues, hyperphosphorylation of tau protein in neurons, excessive formation of reactive oxygen species and neuroinflammation. There is a growing evidence that protocatechuic acid may become in the future efficacious and safe substance that protects against neurodegenerative disorders.
Collapse
Affiliation(s)
- Kinga Krzysztoforska
- a Department of Experimental and Clinical Pharmacology , Centre for Preclinical Research and Technology CePT, Medical University of Warsaw , Warsaw , Poland
| | - Dagmara Mirowska-Guzel
- a Department of Experimental and Clinical Pharmacology , Centre for Preclinical Research and Technology CePT, Medical University of Warsaw , Warsaw , Poland
| | - Ewa Widy-Tyszkiewicz
- a Department of Experimental and Clinical Pharmacology , Centre for Preclinical Research and Technology CePT, Medical University of Warsaw , Warsaw , Poland
| |
Collapse
|
18
|
Free radical scavenging potency of quercetin catecholic colonic metabolites: Thermodynamics of 2H+/2e− processes. Food Chem 2017; 218:144-151. [DOI: 10.1016/j.foodchem.2016.09.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 07/11/2016] [Accepted: 09/05/2016] [Indexed: 01/05/2023]
|
19
|
Dossi N, Toniolo R, Impellizzieri F, Tubaro F, Bontempelli G, Terzi F, Piccin E. A paper-based platform with a pencil-drawn dual amperometric detector for the rapid quantification of ortho-diphenols in extravirgin olive oil. Anal Chim Acta 2017; 950:41-48. [DOI: 10.1016/j.aca.2016.11.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 11/25/2022]
|
20
|
Phenolic Melatonin-Related Compounds: Their Role as Chemical Protectors against Oxidative Stress. Molecules 2016; 21:molecules21111442. [PMID: 27801875 PMCID: PMC6274579 DOI: 10.3390/molecules21111442] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 10/17/2016] [Accepted: 10/24/2016] [Indexed: 12/22/2022] Open
Abstract
There is currently no doubt about the serious threat that oxidative stress (OS) poses to human health. Therefore, a crucial strategy to maintain a good health status is to identify molecules capable of offering protection against OS through chemical routes. Based on the known efficiency of the phenolic and melatonin (MLT) families of compounds as antioxidants, it is logical to assume that phenolic MLT-related compounds should be (at least) equally efficient. Unfortunately, they have been less investigated than phenols, MLT and its non-phenolic metabolites in this context. The evidence reviewed here strongly suggests that MLT phenolic derivatives can act as both primary and secondary antioxidants, exerting their protection through diverse chemical routes. They all seem to be better free radical scavengers than MLT and Trolox, while some of them also surpass ascorbic acid and resveratrol. However, there are still many aspects that deserve further investigations for this kind of compounds.
Collapse
|
21
|
Galano A, Mazzone G, Alvarez-Diduk R, Marino T, Alvarez-Idaboy JR, Russo N. Food Antioxidants: Chemical Insights at the Molecular Level. Annu Rev Food Sci Technol 2016; 7:335-52. [DOI: 10.1146/annurev-food-041715-033206] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, C. P. 09340, Ciudad de México, D. F., México
| | - Gloria Mazzone
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, Italy;
| | - Ruslán Alvarez-Diduk
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, C. P. 09340, Ciudad de México, D. F., México
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, Italy;
| | - J. Raúl Alvarez-Idaboy
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, 04510 Ciudad de México, D. F., Mexico
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, Italy;
| |
Collapse
|
22
|
Amić A, Marković Z, Dimitrić Marković JM, Lučić B, Stepanić V, Amić D. The 2H+/2e− free radical scavenging mechanisms of uric acid: thermodynamics of NH bond cleavage. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2015.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
23
|
Medina ME, Iuga C, Trigos Á. Mechanism and kinetics of the oxidative damage to ergosterol induced by peroxyl radicals in lipid media: a theoretical quantum chemistry study. J PHYS ORG CHEM 2015. [DOI: 10.1002/poc.3520] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Manuel E. Medina
- Centro de Investigaciones Biomédicas; Universidad Veracruzana; Av. Luis Castelazo s/n, Col. Industrial Animas Xalapa Veracruz 91190 Mexico
| | - Cristina Iuga
- Departamento de Sistemas Biológicos; Universidad Autónoma Metropolitana-Xochimilco; Calzada del Hueso 1100 México D.F. 04960 Mexico
| | - Ángel Trigos
- Laboratorio de Alta Tecnología de Xalapa; Universidad Veracruzana; Calle Médicos No. 5, Col. Unidad del Bosque Xalapa Veracruz 91010 Mexico
| |
Collapse
|
24
|
Villuendas-Rey Y, Alvarez-Idaboy JR, Galano A. Assessing the Protective Activity of a Recently Discovered Phenolic Compound against Oxidative Stress Using Computational Chemistry. J Chem Inf Model 2015; 55:2552-61. [PMID: 26624520 DOI: 10.1021/acs.jcim.5b00513] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The protection exerted by 3,5-dihydroxy-4-methoxybenzyl alcohol (DHMBA), a phenolic compound recently isolated from the Pacific oyster, against oxidative stress (OS) is investigated using the density functional theory. Our results indicate that DHMBA is an outstanding peroxyl radical scavenger, being about 15 times and 4 orders of magnitude better than Trolox for that purpose in lipid and aqueous media, respectively. It was also found to react faster with HOO(•) than other known antioxidants such as resveratrol and ascorbic acid. DHMBA is also predicted to be able to sequester Cu(II) ions, consequently inhibiting the OS induced by Cu(II)-ascorbate mixtures and downgrading the (•)OH production via the Haber-Weiss reaction. However, it is proposed that DHMBA is more efficient as a primary antioxidant (free radical scavenger), than as a secondary antioxidant (metal ion chelator). In addition, it was found that DHMBA can be efficiently regenerated in aqueous solution, at physiological pH. Such regeneration is expected to contribute to increase the antioxidant protection exerted by DHMBA. These results suggest that probably synthetic routes for this compound should be pursued, because albeit its abundance in nature is rather low, its antioxidant activity is exceptional.
Collapse
Affiliation(s)
- Yenny Villuendas-Rey
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa , San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C. P., 09340 México D. F., México
| | - Juan Raul Alvarez-Idaboy
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México , México D. F. 04510, México
| | - Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa , San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C. P., 09340 México D. F., México
| |
Collapse
|
25
|
QSAR of the free radical scavenging potency of selected hydroxybenzoic acids and simple phenolics. CR CHIM 2015. [DOI: 10.1016/j.crci.2014.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Chandra IK, Angkawijaya AE, Santoso SP, Ismadji S, Soetaredjo FE, Ju YH. Solution equilibria studies of complexes of divalent metal ions with 2-aminophenol and 3,4-dihydroxybenzoic acid. Polyhedron 2015. [DOI: 10.1016/j.poly.2014.11.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Iuga C, Campero A, Vivier-Bunge A. Antioxidant vs. prooxidant action of phenothiazine in a biological environment in the presence of hydroxyl and hydroperoxyl radicals: a quantum chemistry study. RSC Adv 2015. [DOI: 10.1039/c4ra14918a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In aqueous solution, phenothiazine regenerates and acts as an excellent antioxidant while in lipid media, it behaves as a prooxidant.
Collapse
Affiliation(s)
- C. Iuga
- Departamento de Sistemas Biológicos
- Universidad Autónoma Metropolitana-Xochimilco
- 04960 México
- México
| | - A. Campero
- Departamento de Química
- Universidad Autónoma Metropolitana-Iztapalapa
- 09340 México
- México
| | - A. Vivier-Bunge
- Departamento de Química
- Universidad Autónoma Metropolitana-Iztapalapa
- 09340 México
- México
| |
Collapse
|
28
|
Marino T, Galano A, Russo N. Radical Scavenging Ability of Gallic Acid toward OH and OOH Radicals. Reaction Mechanism and Rate Constants from the Density Functional Theory. J Phys Chem B 2014; 118:10380-9. [DOI: 10.1021/jp505589b] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Tiziana Marino
- Dipartimento
di Chimica e Tecnologie Chimiche, University of Calabria, Arcavacata di Rende, Cosenza, 87036, Italy
| | - Annia Galano
- Departamento
de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina C.P., 09340, Mexico
| | - Nino Russo
- Dipartimento
di Chimica e Tecnologie Chimiche, University of Calabria, Arcavacata di Rende, Cosenza, 87036, Italy
- Departamento
de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina C.P., 09340, Mexico
| |
Collapse
|
29
|
Castañeda-Arriaga R, Alvarez-Idaboy JR. Lipoic acid and dihydrolipoic acid. A comprehensive theoretical study of their antioxidant activity supported by available experimental kinetic data. J Chem Inf Model 2014; 54:1642-52. [PMID: 24881907 DOI: 10.1021/ci500213p] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The free radical scavenging activity of lipoic acid (LA) and dihydrolipoic acid (DHLA) has been studied in nonpolar and aqueous solutions, using the density functional theory and several oxygen centered radicals. It was found that lipoic acid is capable of scavenging only very reactive radicals, while the dehydrogenated form is an excellent scavenger via a hydrogen transfer mechanism. The environment plays an important role in the free radical scavenging activity of DHLA because in water it is deprotonated, and this enhances its activity. In particular, the reaction rate constant of DHLA in water with an HOO(•) radical is close to the diffusion limit. This has been explained on the basis of the strong H-bonding interactions found in the transition state, which involve the carboxylate moiety, and it might have implications for other biological systems in which this group is present.
Collapse
Affiliation(s)
- Romina Castañeda-Arriaga
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autonoma de Mexico , Av Universidad 3000, Copilco Universidad, Coyoacán, Ciudad de Mexico DF 04510, Mexico
| | | |
Collapse
|
30
|
Galano A, Francisco Marquez M, Pérez-González A. Ellagic acid: an unusually versatile protector against oxidative stress. Chem Res Toxicol 2014; 27:904-18. [PMID: 24697747 DOI: 10.1021/tx500065y] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Several aspects related to the antioxidant activity of ellagic acid were investigated using the density functional theory. It was found that this compound is unusually versatile for protecting against the toxic effects caused by oxidative stress. Ellagic acid, in aqueous solution at physiological pH, is able of deactivating a wide variety of free radicals, which is a desirable capability since in biological systems, these species are diverse. Under such conditions, the ellagic acid anion is proposed as the key species for its protective effects. It is predicted to be efficiently and continuously regenerated after scavenging two free radicals per cycle. This is an advantageous and unusual behavior that contributes to increase its antioxidant activity at low concentrations. In addition, the ellagic acid metabolites are also capable of efficiently scavenging a wide variety of free radicals. Accordingly, it is proposed that the ellagic acid efficiency for that purpose is not reduced after being metabolized. On the contrary, it provides continuous protection against oxidative stress through a free radical scavenging cascade. This is an uncommon and beneficial behavior, which makes ellagic acid particularly valuable to that purpose. After deprotonation, ellagic acid is also capable of chelating copper, in a concentration dependent way, decreasing the free radical production. In summary, ellagic acid is proposed to be an efficient multiple-function protector against oxidative stress.
Collapse
Affiliation(s)
- Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa , San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C.P. 09340 México D. F., México
| | | | | |
Collapse
|
31
|
Pérez-González A, Galano A, Alvarez-Idaboy JR. Dihydroxybenzoic acids as free radical scavengers: mechanisms, kinetics, and trends in activity. NEW J CHEM 2014. [DOI: 10.1039/c4nj00071d] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
32
|
Medina ME, Galano A, Alvarez-Idaboy JR. Theoretical study on the peroxyl radicals scavenging activity of esculetin and its regeneration in aqueous solution. Phys Chem Chem Phys 2014; 16:1197-207. [DOI: 10.1039/c3cp53889c] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Medina ME, Iuga C, Álvarez-Idaboy JR. Antioxidant activity of fraxetin and its regeneration in aqueous media. A density functional theory study. RSC Adv 2014. [DOI: 10.1039/c4ra08394f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fraxetin is an excellent and versatile antioxidant in aqueous media. In addition it regenerates, scavenging two radical equivalents per cycle.
Collapse
Affiliation(s)
- M. E. Medina
- Departamento de Física y Química Teórica
- Facultad de Química
- Universidad Nacional Autónoma de México
- México, Mexico
| | - C. Iuga
- Departamento de Sistemas Biológicos
- Universidad Autónoma Metropolitana-Xochimilco
- 04960 México, Mexico
| | - J. R. Álvarez-Idaboy
- Departamento de Física y Química Teórica
- Facultad de Química
- Universidad Nacional Autónoma de México
- México, Mexico
| |
Collapse
|
34
|
Cordova-Gomez M, Galano A, Alvarez-Idaboy JR. Piceatannol, a better peroxyl radical scavenger than resveratrol. RSC Adv 2013. [DOI: 10.1039/c3ra42923g] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|