1
|
Abstract
The reversible interaction between an affinity ligand and a complementary receptor has been widely explored in purification systems for several biomolecules. The development of tailored affinity ligands highly specific toward particular target biomolecules is one of the options in affinity purification systems. However, both genetic and chemical modifications in proteins and peptides widen the application of affinity ligand-tag receptors pairs toward universal capture and purification strategies. In particular, this chapter will focus on two case studies highly relevant for biotechnology and biomedical areas, namely the affinity tags and receptors employed on the production of recombinant fusion proteins, and the chemical modification of phosphate groups on proteins and peptides and the subsequent specific capture and enrichment, a mandatory step before further proteomic analysis.
Collapse
|
2
|
Affinity chromatography assisted comprehensive phosphoproteomics analysis of human saliva for lung cancer. Anal Chim Acta 2020; 1111:103-113. [PMID: 32312387 DOI: 10.1016/j.aca.2020.03.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022]
Abstract
Affinity chromatography is a powerful technology for phosphopeptide enrichment from body fluids. Saliva is a non-invasive body fluid for disease diagnosis, while few studies applied affinity enrichment for saliva phosphoproteome. In this study, we tested two kinds of affinity chromatography materials, Ti4+-IMAC (immobilized metal affinity chromatography) and CaTiO3, for the enrichment of phosphopeptides. Through comparison, Ti4+-IMAC method was demonstrated as the superior one, which was utilized for the comprehensive analysis of salivary phosphoproteome. More than 360 phosphoproteins were specifically extracted and identified from human saliva. Ti4+-IMAC method was further applied to compare the phosphoprotein profiling in the saliva of lung cancer group and normal control group through label-free quantification. Accordingly, 477 and 699 phosphopeptides were enriched, respectively, which corresponded to 339 and 466 proteins. In total, 796 unique phosphopeptides were revealed for 517 saliva phosphoproteins. In particular, 709 phosphorylation sites were identified, among which 26 were up-regulated (>1.5) and 149 were down-regulated (<0.66) in lung cancer. Their corresponding proteins were mainly associated with cancer promotion, system disorder, and organismal injury. Our data collectively demonstrated that salivary phosphopeptides can be comprehensively characterized through Ti4+-IMAC method. These discovered phosphoprotein candidates might be used for lung cancer detection through salivary diagnostics.
Collapse
|
3
|
Gao C, Bai J, He Y, Zheng Q, Ma W, Lei Z, Zhang M, Wu J, Fu F, Lin Z. Postsynthetic Functionalization of Zr 4+-Immobilized Core-Shell Structured Magnetic Covalent Organic Frameworks for Selective Enrichment of Phosphopeptides. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13735-13741. [PMID: 30892013 DOI: 10.1021/acsami.9b03330] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Chemical modification of covalent organic frameworks (COFs) is indispensable for integrating functionalities of greater complexity and accessing advanced COF materials suitable for more potential applications. Reported here is a novel strategy for fabricating controllable core-shell structured Zr4+-immobilized magnetic COFs (MCNC@COF@Zr4+) composed of a high-magnetic-response magnetic colloid nanocrystal cluster (MCNC) core, Zr4+ ion-functionalized two-dimensional COFs as the shell by sequential postsynthetic functionalization and, for the first time, the application of the MCNC@COF@Zr4+ composites for efficient and selective enrichment of phosphopeptides. The as-prepared MCNC@COF@Zr4+ composites possess regular porosity with large surface areas, high Zr4+ loading amount, strong magnetic responsiveness, and good thermal/chemical stability, which can serve as an ideal adsorbent for selective enrichment of phosphopeptides and simultaneous size exclusion of biomacromolecules, such as proteins. The high detection sensitivity (10 fmol) together with the excellent recovery of phosphopeptides is also obtained. These outstanding features suggest that the MCNC@COF@Zr4+ composites are of great benefit for pretreatment prior to mass spectrometry analysis of phosphopeptides. In addition, the performance of the developed approach in selective enrichment of phosphopeptides from the tryptic digests of defatted milk and directly specific capture of endogenous phosphopeptides from human serum gives powerful proof for its high selectivity and effectiveness in identifying the low-abundance phosphopeptides from complicated biological samples. This study not only provides a strategy for versatile functionalization of magnetic COFs but also opens a new avenue in their use in phosphoproteome analysis.
Collapse
Affiliation(s)
- Chaohong Gao
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Jing Bai
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Yanting He
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Qiong Zheng
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Wende Ma
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Zhixian Lei
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Mingyue Zhang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Jie Wu
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Fengfu Fu
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| |
Collapse
|
4
|
Leitner A. A review of the role of chemical modification methods in contemporary mass spectrometry-based proteomics research. Anal Chim Acta 2018; 1000:2-19. [DOI: 10.1016/j.aca.2017.08.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/11/2017] [Accepted: 08/15/2017] [Indexed: 12/20/2022]
|
5
|
Buncherd H, Roseboom W, Chokchaichamnankit D, Sawangareetrakul P, Phongdara A, Srisomsap C, de Jong L, Svasti J. β-Elimination coupled with strong cation-exchange chromatography for phosphopeptide analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:1695-1704. [PMID: 28328035 DOI: 10.1002/rcm.7606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE Since the last decade, mass spectrometry (MS) has become an essential technique for phosphoprotein analysis. Formidable analytical challenges of MS for phosphoprotein study are both the low abundance of phosphopeptides and the lack of an unambiguous diagnostic fragment ion for identification of phospho residues. These challenges can be met by a charge-based isolation of β-elimination products after tryptic digestion using diagonal strong cation-exchange chromatography. METHODS β-Elimination combined with diagonal strong cation-exchange chromatography (BE/2SCX) was used for the enrichment of phosphorylated peptides prior to a mass spectrometric analysis by liquid chromatography/ion trap tandem mass spectrometry (MS/MS). Bovine α-casein (≥70% purity) was used as a model protein. RESULTS Conditions for β-elimination were optimized to maximize the efficiency of the reaction. With a β-elimination, all four model phosphopeptides from enolase (yeast) were correctly identified. The application of the BE/2SCX enrichment strategy for the analysis of β-elimination products of α-casein (bovine) allowed the identification of 11 phosphorylated products. CONCLUSIONS The introduction of a BE/2SCX-based enrichment step prior to LC/MS/MS analysis of β-elimination products facilitates the identification of phosphopeptides. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Hansuk Buncherd
- Faculty of Medical Technology, Prince of Songkla University, Hatyai, Songkhla, 90110, Thailand
| | - Winfried Roseboom
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 HX, Amsterdam, The Netherlands
| | | | | | - Amornrat Phongdara
- Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, 90110, Thailand
| | | | - Luitzen de Jong
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 HX, Amsterdam, The Netherlands
| | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Bangkok, Thailand
| |
Collapse
|
6
|
Slade WO, Werth EG, Chao A, Hicks LM. Phosphoproteomics in photosynthetic organisms. Electrophoresis 2014; 35:3441-51. [PMID: 24825726 DOI: 10.1002/elps.201400154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/18/2014] [Accepted: 04/29/2014] [Indexed: 02/04/2023]
Abstract
As primarily sessile organisms, photosynthetic species survive in dynamic environments by using elegant signaling pathways to manifest molecular responses to extracellular cues. These pathways exploit phosphorylation of specific amino acids (e.g. serine, threonine, tyrosine), which impact protein structure, function, and localization. Despite substantial progress in implementation of phosphoproteomics to understand photosynthetic organisms, researchers still struggle to translate a biological question into an experimental strategy and vice versa. This review evaluates the current status of phosphoproteomics in photosynthetic organisms and concludes with recommendations based on current knowledge.
Collapse
Affiliation(s)
- William O Slade
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | |
Collapse
|
7
|
Valsasina B, Kalisz HM, Isacchi A. Kinase selectivity profiling by inhibitor affinity chromatography. Expert Rev Proteomics 2014; 1:303-15. [PMID: 15966827 DOI: 10.1586/14789450.1.3.303] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
As new drugs rapidly advance into clinical trials, comprehensive identification of their intracellular targets becomes fundamental for the full understanding of the molecular basis of their efficacy and toxicity. This is particularly important when the targets belong to a large family and the inhibitors recognize a conserved site among different members of the class. A typical example is the kinase family, where efforts are aimed at the development of inhibitors of distinct kinases for therapeutic applications in oncology, inflammation and other disease areas. In this case, inhibitors targeting the ATP pocket may cross react with different kinases, as well as with other proteins that bind ATP. This review critically discusses the available approaches for kinase selectivity profiling. It also reviews some examples of inhibitor affinity chromatography applied to inhibitors of kinases and other protein families as a tool to identify and characterize their intracellular targets.
Collapse
|
8
|
Pina AS, Batalha IL, Roque ACA. Affinity tags in protein purification and peptide enrichment: an overview. Methods Mol Biol 2014; 1129:147-68. [PMID: 24648075 DOI: 10.1007/978-1-62703-977-2_14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The reversible interaction between an affinity ligand and a complementary receptor has been widely explored in purification systems for several biomolecules. The development of tailored affinity ligands highly specific towards particular target biomolecules is one of the options in affinity purification systems. However, both genetic and chemical modifications on proteins and peptides widen the application of affinity ligand-tag receptor pairs towards universal capture and purification strategies. In particular, this chapter will focus on two case studies highly relevant for biotechnology and biomedical areas, namely, the affinity tags and receptors employed on the production of recombinant fusion proteins and the chemical modification of phosphate groups on proteins and peptides and the subsequent specific capture and enrichment, a mandatory step before further proteomic analysis.
Collapse
Affiliation(s)
- Ana Sofia Pina
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | | | | |
Collapse
|
9
|
Chen RC, Chuang LY, Tseng WL, Tyan YC, Lu CY. Determination of phosphoserine/threonine by nano ultra-performance liquid chromatography-tandem mass spectrometry coupled with microscale labeling. Anal Biochem 2013; 443:187-96. [PMID: 23994561 DOI: 10.1016/j.ab.2013.08.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 08/17/2013] [Accepted: 08/21/2013] [Indexed: 11/18/2022]
Abstract
Protein phosphorylation is an important regulatory post-translational modification in many biochemical processes. The phosphopeptide analysis strategies developed in this study were all at microscale. After using a standard microwave oven to assist protein digestion, phosphoserine and phosphothreonine were tagged with chemical analogues, such as 2-mercaptoethanol and 3-mercapto-1-propanol, to enable simultaneously relative quantitation and identification. This method enabled the use of thio alcohols for direct labeling of phosphorylated sites (not labeled at the mercapto, amino, hydroxyl, or carboxyl groups) of phosphopeptides. Various digestion parameters (e.g., microwave power, reaction time, NH4HCO3 concentration) and derivatization efficiency parameters (e.g., reaction time, labeling tag concentration) were studied and optimized. In both control and experimental samples, microwave-assisted digestion coupled with relative quantitation using analogue tags enabled calculation of phosphopeptide ratios in the same sequence. A non-labeling method was also established for quantifying phosphopeptides in human plasma by using the abundant protein albumin as an internal control for normalizing relative quantities of phosphopeptides. Nano ultra-performance liquid chromatography (nanoUPLC) was combined with LTQ Orbitrap to enable simultaneous protein relative quantitation and identification. These strategies proved to be effective for quantifying phosphopeptides in biological samples.
Collapse
Affiliation(s)
- Rong-Chun Chen
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | | | | | | | | |
Collapse
|
10
|
Fukuda I, Hirabayashi-Ishioka Y, Sakikawa I, Ota T, Yokoyama M, Uchiumi T, Morita A. Optimization of Enrichment Conditions on TiO2 Chromatography Using Glycerol As an Additive Reagent for Effective Phosphoproteomic Analysis. J Proteome Res 2013; 12:5587-97. [DOI: 10.1021/pr400546u] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Isao Fukuda
- Shionogi Pharmaceutical Research Center, Shionogi & Co. Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Yoshino Hirabayashi-Ishioka
- Shionogi Pharmaceutical Research Center, Shionogi & Co. Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Ikue Sakikawa
- Shionogi Pharmaceutical Research Center, Shionogi & Co. Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Takeshi Ota
- Shionogi Pharmaceutical Research Center, Shionogi & Co. Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Mari Yokoyama
- Shionogi Pharmaceutical Research Center, Shionogi & Co. Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Takaoki Uchiumi
- Shionogi Pharmaceutical Research Center, Shionogi & Co. Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Atsushi Morita
- Shionogi Pharmaceutical Research Center, Shionogi & Co. Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| |
Collapse
|
11
|
Nika H, Nieves E, Hawke DH, Angeletti RH. Optimization of the β-elimination/michael addition chemistry on reversed-phase supports for mass spectrometry analysis of O-linked protein modifications. J Biomol Tech 2013; 24:132-53. [PMID: 23997661 PMCID: PMC3703673 DOI: 10.7171/jbt.13-2403-005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We previously adapted the β-elimination/Michael addition chemistry to solid-phase derivatization on reversed-phase supports, and demonstrated the utility of this reaction format to prepare phosphoseryl peptides in unfractionated protein digests for mass spectrometric identification and facile phosphorylation-site determination. Here, we have expanded the use of this technique to β-N-acetylglucosamine peptides, modified at serine/threonine, phosphothreonyl peptides, and phosphoseryl/phosphothreonyl peptides, followed in sequence by proline. The consecutive β-elimination with Michael addition was adapted to optimize the solid-phase reaction conditions for throughput and completeness of derivatization. The analyte remained intact during derivatization and was recovered efficiently from the silica-based, reversed-phase support with minimal sample loss. The general use of the solid-phase approach for enzymatic dephosphorylation was demonstrated with phosphoseryl and phosphothreonyl peptides and was used as an orthogonal method to confirm the identity of phosphopeptides in proteolytic mixtures. The solid-phase approach proved highly suitable to prepare substrates from low-level amounts of protein digests for phosphorylation-site determination by chemical-targeted proteolysis. The solid-phase protocol provides for a simple, robust, and efficient tool to prepare samples for phosphopeptide identification in MALDI mass maps of unfractionated protein digests, using standard equipment available in most biological laboratories. The use of a solid-phase analytical platform is expected to be readily expanded to prepare digest from O-glycosylated- and O-sulfonated proteins for mass spectrometry-based structural characterization.
Collapse
Affiliation(s)
- Heinz Nika
- Laboratory for Macromolecular Analysis and Proteomics and
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA; and
| | - Edward Nieves
- Laboratory for Macromolecular Analysis and Proteomics and
| | - David H. Hawke
- Department of Pathology, MD Anderson Cancer Center, University of Texas, Houston, Texas 77030, USA
| | - Ruth Hogue Angeletti
- Laboratory for Macromolecular Analysis and Proteomics and
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA; and
| |
Collapse
|
12
|
Nika H, Nieves E, Hawke DH, Angeletti RH. Phosphopeptide enrichment by covalent chromatography after derivatization of protein digests immobilized on reversed-phase supports. J Biomol Tech 2013; 24:154-77. [PMID: 23997662 PMCID: PMC3750845 DOI: 10.7171/jbt.13-2403-004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A rugged sample-preparation method for comprehensive affinity enrichment of phosphopeptides from protein digests has been developed. The method uses a series of chemical reactions to incorporate efficiently and specifically a thiol-functionalized affinity tag into the analyte by barium hydroxide catalyzed β-elimination with Michael addition using 2-aminoethanethiol as nucleophile and subsequent thiolation of the resulting amino group with sulfosuccinimidyl-2-(biotinamido) ethyl-1,3-dithiopropionate. Gentle oxidation of cysteine residues, followed by acetylation of α- and ε-amino groups before these reactions, ensured selectivity of reversible capture of the modified phosphopeptides by covalent chromatography on activated thiol sepharose. The use of C18 reversed-phase supports as a miniaturized reaction bed facilitated optimization of the individual modification steps for throughput and completeness of derivatization. Reagents were exchanged directly on the supports, eliminating sample transfer between the reaction steps and thus, allowing the immobilized analyte to be carried through the multistep reaction scheme with minimal sample loss. The use of this sample-preparation method for phosphopeptide enrichment was demonstrated with low-level amounts of in-gel-digested protein. As applied to tryptic digests of α-S1- and β-casein, the method enabled the enrichment and detection of the phosphorylated peptides contained in the mixture, including the tetraphosphorylated species of β-casein, which has escaped chemical procedures reported previously. The isolates proved highly suitable for mapping the sites of phosphorylation by collisionally induced dissociation. β-Elimination, with consecutive Michael addition, expanded the use of the solid-phase-based enrichment strategy to phosphothreonyl peptides and to phosphoseryl/phosphothreonyl peptides derived from proline-directed kinase substrates and to their O-sulfono- and O-linked β-N-acetylglucosamine (O-GlcNAc)-modified counterparts. Solid-phase enzymatic dephosphorylation proved to be a viable tool to condition O-GlcNAcylated peptide in mixtures with phosphopeptides for selective affinity purification. Acetylation, as an integral step of the sample-preparation method, precluded reduction in recovery of the thiolation substrate caused by intrapeptide lysine-dehydroalanine cross-link formation. The solid-phase analytical platform provides robustness and simplicity of operation using equipment readily available in most biological laboratories and is expected to accommodate additional chemistries to expand the scope of solid-phase serial derivatization for protein structural characterization.
Collapse
Affiliation(s)
- Heinz Nika
- Laboratory for Macromolecular Analysis and Proteomics and
- Department for Molecular and Developmental Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA; and
| | - Edward Nieves
- Laboratory for Macromolecular Analysis and Proteomics and
| | - David H. Hawke
- Department of Pathology, University of Texas, M.D. Anderson Cancer Center Houston, Texas 77030, USA
| | - Ruth Hogue Angeletti
- Laboratory for Macromolecular Analysis and Proteomics and
- Department for Molecular and Developmental Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA; and
| |
Collapse
|
13
|
Parker LL, Kron SJ. Kinase activation in circulating cells: opportunities for biomarkers for diagnosis and therapeutic monitoring. ACTA ACUST UNITED AC 2013; 2:33-46. [PMID: 23485115 DOI: 10.1517/17530059.2.1.33] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A clinically useful tool to assay phosphorylation-dependent signaling in circulating cells has the potential to provide a wealth of information about a patient's health, including information unavailable by any other method. Patterns of kinase activation, such as the abnormal signaling characteristic of myeloproliferative disorders, may offer highly specific biomarkers for diagnosis or monitoring the efficacy of therapeutics. For assays of kinase activity in circulating leukocytes to be standardized, let alone made practical for the clinic, numerous technical hurdles must be overcome. In this review the current status of analysis of kinase signaling in circulating cells and recent progress in biomarker discovery and validation is discussed. Looking forward, the potential value of signaling patterns as complex biomarkers and the resulting need for future development of robust, multiplexed assays of kinase activation is addressed.
Collapse
Affiliation(s)
- Laurie L Parker
- University of Chicago, Ludwig Center for Metastasis Research, Knapp R322, 924 E. 57th Street, Chicago, IL 6063, USA
| | | |
Collapse
|
14
|
Cho K, Yoo JS, Kim EM, Kim JY, Kim YH, Oh HB, Yoo JS. A Multidimensional System for Phosphopeptide Analysis Using TiO2Enrichment and Ion-exchange Chromatography with Mass Spectrometry. B KOREAN CHEM SOC 2012. [DOI: 10.5012/bkcs.2012.33.10.3298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Siegel D. Applications of reversible covalent chemistry in analytical sample preparation. Analyst 2012; 137:5457-82. [PMID: 23013801 DOI: 10.1039/c2an35697j] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Reversible covalent chemistry (RCC) adds another dimension to commonly used sample preparation techniques like solid-phase extraction (SPE), solid-phase microextraction (SPME), molecular imprinted polymers (MIPs) or immuno-affinity cleanup (IAC): chemical selectivity. By selecting analytes according to their covalent reactivity, sample complexity can be reduced significantly, resulting in enhanced analytical performance for low-abundance target analytes. This review gives a comprehensive overview of the applications of RCC in analytical sample preparation. The major reactions covered include reversible boronic ester formation, thiol-disulfide exchange and reversible hydrazone formation, targeting analyte groups like diols (sugars, glycoproteins and glycopeptides, catechols), thiols (cysteinyl-proteins and cysteinyl-peptides) and carbonyls (carbonylated proteins, mycotoxins). Their applications range from low abundance proteomics to reversible protein/peptide labelling to antibody chromatography to quantitative and qualitative food analysis. In discussing the potential of RCC, a special focus is on the conditions and restrictions of the utilized reaction chemistry.
Collapse
Affiliation(s)
- David Siegel
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str 11, 12489 Berlin, Germany.
| |
Collapse
|
16
|
Sachdeva A, Chandra M, Chandrasekar J, Silverman SK. Covalent tagging of phosphorylated peptides by phosphate-specific deoxyribozymes. Chembiochem 2012; 13:654-7. [PMID: 22315198 DOI: 10.1002/cbic.201200048] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Indexed: 12/24/2022]
Affiliation(s)
- Amit Sachdeva
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
17
|
Fíla J, Honys D. Enrichment techniques employed in phosphoproteomics. Amino Acids 2011; 43:1025-47. [PMID: 22002794 PMCID: PMC3418503 DOI: 10.1007/s00726-011-1111-z] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 09/26/2011] [Indexed: 11/28/2022]
Abstract
Rapid changes of protein phosphorylation play a crucial role in the regulation of many cellular processes. Being post-translationally modified, phosphoproteins are often present in quite low abundance and tend to co-exist with their unphosphorylated isoform within the cell. To make their identification more practicable, the use of enrichment protocols is often required. The enrichment strategies can be performed either at the level of phosphoproteins or at the level of phosphopeptides. Both approaches have their advantages and disadvantages. Most enriching strategies are based on chemical modifications, affinity chromatography to capture peptides and proteins containing negatively charged phosphate groups onto a positively charged matrix, or immunoprecipitation by phospho-specific antibodies. In this article, the most up-to-date enrichment techniques are discussed, taking into account their optimization, and highlighting their advantages and disadvantages. Moreover, these methods are compared to each other, revealing their complementary nature in providing comprehensive coverage of the phosphoproteome.
Collapse
Affiliation(s)
- Jan Fíla
- Laboratory of Pollen Biology, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, Prague 6, Czech Republic
| | | |
Collapse
|
18
|
Wang X, Stewart PA, Cao Q, Sang QXA, Chung LWK, Emmett MR, Marshall AG. Characterization of the phosphoproteome in androgen-repressed human prostate cancer cells by Fourier transform ion cyclotron resonance mass spectrometry. J Proteome Res 2011; 10:3920-8. [PMID: 21786837 DOI: 10.1021/pr2000144] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Androgen-repressed human prostate cancer, ARCaP, grows and is highly metastatic to bone and soft tissues in castrated mice. The molecular mechanisms underlying the aberrant responses to androgen are not fully understood. Here, we apply state-of-the-art mass spectrometry methods to investigate the phosphoproteome profiles in ARCaP cells. Because protein biological phosphorylation is always substoichiometric and the ionization efficiency of phosphopeptides is low, selective enrichment of phosphorylated proteins/peptides is required for mass spectrometric analysis of phosphorylation from complex biological samples. Therefore, we compare the sensitivity, efficiency, and specificity for three established enrichment strategies: calcium phosphate precipitation (CPP), immobilized metal ion affinity chromatography (IMAC), and TiO(2)-modified metal oxide chromatography. Calcium phosphate precipitation coupled with the TiO(2) approach offers the best strategy to characterize phosphorylation in ARCaP cells. We analyzed phosphopeptides from ARCaP cells by LC-MS/MS with a hybrid LTQ/FT-ICR mass spectrometer. After database search and stringent filtering, we identified 385 phosphoproteins with an average peptide mass error of 0.32 ± 0.6 ppm. Key identified oncogenic pathways include the mammalian target of rapamycin (mTOR) pathway and the E2F signaling pathway. Androgen-induced proliferation inhibitor (APRIN) was detected in its phosphorylated form, implicating a molecular mechanism underlying the ARCaP phenotype.
Collapse
Affiliation(s)
- Xu Wang
- Department of Chemistry and Biochemistry, 95 Chieftain Way, Florida State University, Tallahassee, Florida 32306, United States
| | | | | | | | | | | | | |
Collapse
|
19
|
Palumbo AM, Smith SA, Kalcic CL, Dantus M, Stemmer PM, Reid GE. Tandem mass spectrometry strategies for phosphoproteome analysis. MASS SPECTROMETRY REVIEWS 2011; 30:600-25. [PMID: 21294150 DOI: 10.1002/mas.20310] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Protein phosphorylation is involved in nearly all essential biochemical pathways and the deregulation of phosphorylation events has been associated with the onset of numerous diseases. A multitude of tandem mass spectrometry (MS/MS) and multistage MS/MS (i.e., MS(n) ) strategies have been developed in recent years and have been applied toward comprehensive phosphoproteomic analysis, based on the interrogation of proteolytically derived phosphopeptides. However, the utility of each of these MS/MS and MS(n) approaches for phosphopeptide identification and characterization, including phosphorylation site localization, is critically dependant on the properties of the precursor ion (e.g., polarity and charge state), the specific ion activation method that is employed, and the underlying gas-phase ion chemistries, mechanisms and other factors that influence the gas-phase fragmentation behavior of phosphopeptide ions. This review therefore provides an overview of recent studies aimed at developing an improved understanding of these issues, and highlights the advantages and limitations of both established (e.g., CID) and newly maturing (e.g., ECD, ETD, photodissociation, etc.) yet complementary, ion activation techniques. This understanding is expected to facilitate the continued refinement of existing MS/MS strategies, and the development of novel MS/MS techniques for phosphopeptide analysis, with great promise in providing new insights into the role of protein phosphorylation on normal biological function, and in the onset and progression of disease. © 2011 Wiley Periodicals, Inc., Mass Spec Rev 30:600-625, 2011.
Collapse
Affiliation(s)
- Amanda M Palumbo
- Department of Chemistry, Michigan State University, East Lansing, USA
| | | | | | | | | | | |
Collapse
|
20
|
Kim M, Park YS, Shin DS, Kim J, Kim BG, Lee YS. Antibody-free peptide substrate screening of serine/threonine kinase (protein kinase A) with a biotinylated detection probe. Anal Biochem 2011; 413:30-5. [PMID: 21310143 DOI: 10.1016/j.ab.2011.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 01/07/2011] [Accepted: 02/02/2011] [Indexed: 01/27/2023]
Abstract
Being different from anti-phosphotyrosine antibodies, anti-phosphoserine- or anti-phosphothreonine-specific antibodies with high affinity for the detection of serine/threonine kinase substrates are not readily available. Therefore, chemical modification methods were developed for the detection of phosphoserine or threonine in the screening of protein kinase substrates based on β-elimination and Michael addition. We have developed a biotin-based detection probe for identification of the phosphorylated serine or threonine residue. A biotin derivative induced a color reaction using alkaline phosphate-conjugated streptavidin that amplified the signal. It was effective for the detection and separation of the target peptide on the resin. The detection probe was successfully used in identifying PKA substrates from peptide libraries on resin beads. The peptide library was prepared as a ladder-type, such that the active peptides on the colored resin beads were readily sequenced with the truncated peptide fragments by MALDI-TOF/MS analysis after releasing the peptides from the resin bead through photolysis.
Collapse
Affiliation(s)
- Mira Kim
- School of Chemical and Biological Engineering, Seoul National University, San 56-1, Shilim-dong, Kwnak-gu, Seoul 151-744, South Korea.
| | | | | | | | | | | |
Collapse
|
21
|
García-Murria MJ, Valero ML, Sánchez del Pino MM. Simple chemical tools to expand the range of proteomics applications. J Proteomics 2010; 74:137-50. [PMID: 21074642 DOI: 10.1016/j.jprot.2010.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 10/08/2010] [Accepted: 11/03/2010] [Indexed: 12/26/2022]
Abstract
Proteomics is an expanding technology with potential applications in many research fields. Even though many research groups do not have direct access to its main analytical technique, mass spectrometry, they can interact with proteomics core facilities to incorporate this technology into their projects. Protein identification is the analysis most frequently performed in core facilities and is, probably, the most robust procedure. Here we discuss a few chemical reactions that are easily implemented within the conventional protein identification workflow. Chemical modification of proteins with N-hydroxysuccinimide esters, 4-sulfophenyl isothiocyanate, O-methylisourea or through β-elimination/Michael addition can be easily performed in any laboratory. The reactions are quite specific with almost no side reactions. These chemical tools increase considerably the number of applications and have been applied to characterize protein-protein interactions, to determine the N-terminal residues of proteins, to identify proteins with non-sequenced genomes or to locate phosphorylated and O-glycosylated.
Collapse
Affiliation(s)
- María Jesús García-Murria
- Laboratorio de Proteómica, Centro de Investigación Príncipe Felipe, Avda, Autopista del Saler 16, 46012 Valencia, Spain
| | | | | |
Collapse
|
22
|
Thompson CM, Prins JM, George KM. Mass spectrometric analyses of organophosphate insecticide oxon protein adducts. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:11-9. [PMID: 20056576 PMCID: PMC2831953 DOI: 10.1289/ehp.0900824] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Accepted: 07/29/2009] [Indexed: 05/03/2023]
Abstract
OBJECTIVE Organophosphate (OP) insecticides continue to be used to control insect pests. Acute and chronic exposures to OP insecticides have been documented to cause adverse health effects, but few OP-adducted proteins have been correlated with these illnesses at the molecular level. Our aim was to review the literature covering the current state of the art in mass spectrometry (MS) used to identify OP protein biomarkers. DATA SOURCES AND EXTRACTION We identified general and specific research reports related to OP insecticides, OP toxicity, OP structure, and protein MS by searching PubMed and Chemical Abstracts for articles published before December 2008. DATA SYNTHESIS A number of OP-based insecticides share common structural elements that result in predictable OP-protein adducts. The resultant OP-protein adducts show an increase in molecular mass that can be identified by MS and correlated with the OP agent. Customized OP-containing probes have also been used to tag and identify protein targets that can be identified by MS. CONCLUSIONS MS is a useful and emerging tool for the identification of proteins that are modified by activated organophosphate insecticides. MS can characterize the structure of the OP adduct and also the specific amino acid residue that forms the key bond with the OP. Each protein that is modified in a unique way by an OP represents a unique molecular biomarker that with further research can lead to new correlations with exposure.
Collapse
Affiliation(s)
- Charles M Thompson
- Center for Structural and Functional Neuroscience, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana 59812, USA.
| | | | | |
Collapse
|
23
|
Dunn JD, Reid GE, Bruening ML. Techniques for phosphopeptide enrichment prior to analysis by mass spectrometry. MASS SPECTROMETRY REVIEWS 2010; 29:29-54. [PMID: 19263479 DOI: 10.1002/mas.20219] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Mass spectrometry is the tool of choice to investigate protein phosphorylation, which plays a vital role in cell regulation and diseases such as cancer. However, low abundances of phosphopeptides and low degrees of phosphorylation typically necessitate isolation and concentration of phosphopeptides prior to MS analysis. This review discusses the enrichment of phosphopeptides with immobilized metal affinity chromatography, reversible covalent binding, and metal oxide affinity chromatography. Capture of phosphopeptides on TiO(2) seems especially promising in terms of selectivity and recovery, but the success of all methods depends on careful selection of binding, washing, and elution solutions. Enrichment techniques are complementary, such that a combination of methods greatly enhances the number of phosphopeptides isolated from complex samples. Development of a standard series of phosphopeptides in a highly complex mixture of digested proteins would greatly aid the comparison of different enrichment methods. Phosphopeptide binding to magnetic beads and on-plate isolation prior to MALDI-MS are emerging as convenient methods for purification of small (microL) samples. On-plate enrichment can yield >70% recoveries of phosphopeptides in mixtures of a few digested proteins and can avoid sample-handling steps, but this technique is likely limited to relatively simple samples such as immunoprecipitates. With recent advances in enrichment techniques in hand, MS analysis should provide important insights into phosphorylation pathways.
Collapse
Affiliation(s)
- Jamie D Dunn
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
24
|
Smith GK, Ke Z, Hengge AC, Xu D, Xie D, Guo H. Active-site dynamics of SpvC virulence factor from Salmonella typhimurium and density functional theory study of phosphothreonine lyase catalysis. J Phys Chem B 2009; 113:15327-33. [PMID: 19715325 PMCID: PMC2783390 DOI: 10.1021/jp9052677] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The newly discovered SpvC effector protein from Salmonella typhimurium interferes with the host immune response by dephosphorylating mitogen-activated protein kinases (MAPKs) with a beta-elimination mechanism. To understand this unique phosphothreonine lyase catalysis, the dynamics of the enzyme-substrate complex of the SpvC effector is investigated with a 3.2 ns molecular dynamics simulation, which reveals that the phosphorylated peptide substrate is tightly held in the active site by a hydrogen bond network and the lysine general base is positioned for the abstraction of the alpha hydrogen. The catalysis is further modeled with density functional theory (DFT) in a truncated active-site model at the B3LYP/6-31+G(d,p) level of theory. The DFT calculations indicate the reaction proceeds via a single transition state, featuring a concerted proton abstraction from the alpha-carbon by Lys136 and beta-elimination of the phosphate leaving group. Key kinetic isotopic effects are predicted based on the truncated active-site model.
Collapse
Affiliation(s)
- Gregory K Smith
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | | | | | | | | | | |
Collapse
|
25
|
Rubino FM, Pitton M, Di Fabio D, Colombi A. Toward an "omic" physiopathology of reactive chemicals: thirty years of mass spectrometric study of the protein adducts with endogenous and xenobiotic compounds. MASS SPECTROMETRY REVIEWS 2009; 28:725-84. [PMID: 19127566 DOI: 10.1002/mas.20207] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cancer and degenerative diseases are major causes of morbidity and death, derived from the permanent modification of key biopolymers such as DNA and regulatory proteins by usually smaller, reactive molecules, present in the environment or generated from endogenous and xenobiotic components by the body's own biochemical mechanisms (molecular adducts). In particular, protein adducts with organic electrophiles have been studied for more than 30 [see, e.g., Calleman et al., 1978] years essentially for three purposes: (a) as passive monitors of the mean level of individual exposure to specific chemicals, either endogenously present in the human body or to which the subject is exposed through food or environmental contamination; (b) as quantitative indicators of the mean extent of the individual metabolic processing which converts a non-reactive chemical substance into its toxic products able to damage DNA (en route to cancer induction through genotoxic mechanisms) or key proteins (as in the case of several drugs, pesticides or otherwise biologically active substances); (c) to relate the extent of protein modification to that of biological function impairment (such as enzyme inhibition) finally causing the specific health damage. This review describes the role that contemporary mass spectrometry-based approaches employed in the qualitative and quantitative study of protein-electrophile adducts play in the discovery of the (bio)chemical mechanisms of toxic substances and highlights the future directions of research in this field. A particular emphasis is given to the measurement of often high levels of the protein adducts of several industrial and environmental pollutants in unexposed human populations, a phenomenon which highlights the possibility that a number of small organic molecules are generated in the human organism through minor metabolic processes, the imbalance of which may be the cause of "spontaneous" cases of cancer and of other degenerative diseases of still uncharacterized etiology. With all this in mind, it is foreseen that a holistic description of cellular functions will take advantage of new analytical methods based on time-integrated metabolomic measurements of a new biological compartment, the "adductome," aimed at better understanding integrated organism response to environmental and endogenous stressors.
Collapse
Affiliation(s)
- Federico Maria Rubino
- Laboratory for Analytical Toxicology and Metabonomics, Department of Medicine, Surgery and Odontology, Università degli Studi di Milano at Ospedale San Paolo, v. Antonio di Rudinì 8, Milano I-20142, Italy.
| | | | | | | |
Collapse
|
26
|
On the intracellular trafficking of mouse S5 ribosomal protein from cytoplasm to nucleoli. J Mol Biol 2009; 392:1192-204. [PMID: 19631221 DOI: 10.1016/j.jmb.2009.07.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 07/07/2009] [Accepted: 07/16/2009] [Indexed: 11/21/2022]
Abstract
The non-ribosomal functions of mammalian ribosomal proteins have recently attracted worldwide attention. The mouse ribosomal protein S5 (rpS5) derived from ribosomal material is an assembled non-phosphorylated protein. The free form of rpS5 protein, however, undergoes phosphorylation. In this study, we have (a) investigated the potential role of phosphorylation in rpS5 protein transport into the nucleus and then into nucleoli and (b) determined which of the domains of rpS5 are involved in this intracellular trafficking. In vitro PCR mutagenesis of mouse rpS5 cDNA, complemented by subsequent cloning and expression of rpS5 truncated recombinant forms, produced in fusion with green fluorescent protein, permitted the investigation of rpS5 intracellular trafficking in HeLa cells using confocal microscopy complemented by Western blot analysis. Our results indicate the following: (a) rpS5 protein enters the nucleus via the region 38-50 aa that forms a random coil as revealed by molecular dynamic simulation. (b) Immunoprecipitation of rpS5 with casein kinase II and immobilized metal affinity chromatography analysis complemented by in vitro kinase assay revealed that phosphorylation of rpS5 seems to be indispensable for its transport from nucleus to nucleoli; upon entering the nucleus, Thr-133 phosphorylation triggers Ser-24 phosphorylation by casein kinase II, thus promoting entrance of rpS5 into the nucleoli. Another important role of rpS5 N-terminal region is proposed to be the regulation of protein's cellular level. The repetitively co-appearance of a satellite C-terminal band below the entire rpS5 at the late stationary phase, and not at the early logarithmic phase, of cell growth suggests a specific degradation balancing probably the unassembled ribosomal protein molecules with those that are efficiently assembled to ribosomal subunits. Overall, these data provide new insights on the structural and functional domains within the rpS5 molecule that contribute to its cellular functions.
Collapse
|
27
|
Leitner A, Lindner W. Chemical tagging strategies for mass spectrometry-based phospho-proteomics. Methods Mol Biol 2009; 527:229-x. [PMID: 19241017 DOI: 10.1007/978-1-60327-834-8_17] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The study of protein phosphorylation in combination with chemical methods may serve several purposes. The removal of the phosphate group from phosphoserine and -threonine residues by beta-elimination has been employed to improve sensitivity for mass spectrometric detection and to attach affinity tags for phosphopeptide enrichment. More recently, phosphoramidate chemistry has been shown to be another promising tool for enriching phosphorylated peptides, and other phosphate-directed reactions may also be applicable to the study of the phosphoproteome in the future. In recent years, the combination of large-scale phospho-proteomics studies with stable isotope labeling for quantification purposes has become of growing importance, frequently involving the introduction of chemical tags such as iTRAQ. In this chapter, we will highlight several key strategies that involve chemical tagging reactions.
Collapse
Affiliation(s)
- Alexander Leitner
- Department of Analytical Chemistry and Food Chemistry, University of Vienna, Vienna, Austria
| | | |
Collapse
|
28
|
Cecconi D, Zamò A, Bianchi E, Parisi A, Barbi S, Milli A, Rinalducci S, Rosenwald A, Hartmann E, Zolla L, Chilosi M. Signal transduction pathways of mantle cell lymphoma: A phosphoproteome-based study. Proteomics 2008; 8:4495-506. [DOI: 10.1002/pmic.200800080] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Du D, Chen W, Cai J, Zhang J, Qu F, Li H. Development of acetylcholinesterase biosensor based on CdTe quantum dots modified cysteamine self-assembled monolayers. J Electroanal Chem (Lausanne) 2008. [DOI: 10.1016/j.jelechem.2008.06.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Liang X, Fonnum G, Hajivandi M, Stene T, Kjus NH, Ragnhildstveit E, Amshey JW, Predki P, Pope RM. Quantitative comparison of IMAC and TiO2 surfaces used in the study of regulated, dynamic protein phosphorylation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:1932-44. [PMID: 17870612 DOI: 10.1016/j.jasms.2007.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2007] [Revised: 07/31/2007] [Accepted: 08/03/2007] [Indexed: 05/17/2023]
Abstract
Protein phosphorylation regulates many aspects of cellular function, including cell proliferation, migration, and signal transduction. An efficient strategy to isolate phosphopeptides from a pool of unphosphorylated peptides is essential to global characterization using mass spectrometry. We describe an approach employing isotope tagging reagents for relative and absolute quantification (iTRAQ) labeling to compare quantitatively commercial and prototypal immobilized metal affinity chelate (IMAC) and metal oxide resins. Results indicate a prototype iron chelate resin coupled to magnetic beads outperforms either the Ga(3+)-coupled analog, Fe(3+), or Ga(3+)-loaded, iminodiacetic acid (IDA)-coated magnetic particles, Ga(3+)-loaded Captivate beads, Fe(3+)-loaded Poros 20MC, or zirconium-coated ProteoExtract magnetic beads. For example, compared with Poros 20MC, the magnetic metal chelate (MMC) studied here improved phosphopeptide recovery by 20% and exhibited 60% less contamination from unphosphorylated peptides. With respect to efficiency and contamination, MMC performed as well as prototypal magnetic metal oxide-coated (TiO(2)) beads (MMO) or TiO(2) chromatographic spheres, even if the latter were used with 2,5-dihydroxybenzoic acid (DHB) procedures. Thus far, the sensitivity of the new prototypes reaches 50 fmol, which is comparable to TiO(2) spheres. In an exploration of natural proteomes, tryptic (phospho)peptides captured from stable isotopic labeling with amino acids in cell culture (SILAC)-labeled immunocomplexes following EGF-treatment of 5 x 10(7) HeLa cells were sufficient to quantify stimulated response of over 60 proteins and identify 20 specific phosphorylation sites.
Collapse
Affiliation(s)
- Xiquan Liang
- Invitrogen Corporation, Carlsbad, California, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Black TM, Andrews CL, Kilili G, Ivan M, Tsichlis PN, Vouros P. Characterization of phosphorylation sites on Tpl2 using IMAC enrichment and a linear ion trap mass spectrometer. J Proteome Res 2007; 6:2269-76. [PMID: 17472361 DOI: 10.1021/pr0700293] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Advances in analytical techniques, specifically in mass spectrometry, have allowed for both facile protein identification and routine sequencing of proteins at increased sensitivity levels. Protein modifications present additional challenges because they occur at low stoichiometries and often change the analytical behavior of the molecule. For example, characterization of protein phosphorylation provides crucial information to signaling processes that are often associated with disease. Research into protein phosphorylation requires inter-disciplinary co-operation involving multiple investigators with expertise in diverse scientific fields. As such, techniques must be simple, effective, and incorporate multiple checkpoints that confirm the sample contains a phosphorylated protein in order to ensure resources are conserved. In this study, tumor progression locus 2 (Tpl2), which has been implicated in cell cycle regulation and has been shown to play a significant role in critical signal transduction pathways, was transfected into 293T cells, overexpressed and isolated from the cell lysate. Isolated proteins were separated via 1D gel electrophoresis, and their phosphorylation was confirmed using phosphospecific staining. The bands were excised and subjected to tryptic digestion and immobilized metal affinity chromatography (IMAC) prior to analysis by capillary-LC-MS/MS. Three phosphorylation sites were detected on Tpl2. One site had previously been reported in the literature but had not been characterized by mass spectrometric methods until this time; two additional novel sites of phosphorylation were detected.
Collapse
Affiliation(s)
- Terrence M Black
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, Boston Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
32
|
Jiang Q, Freiser H, Wood KV, Yin X. Identification and quantitation of novel vitamin E metabolites, sulfated long-chain carboxychromanols, in human A549 cells and in rats. J Lipid Res 2007; 48:1221-30. [PMID: 17299205 PMCID: PMC2185712 DOI: 10.1194/jlr.d700001-jlr200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The metabolism of vitamin E involves oxidation of the phytyl chain to generate the terminal metabolite 7,8-dimethyl-2-(beta-carboxyethyl)-6-hydroxychroman (CEHC) via intermediate formation of 13'-hydroxychromanol and long-chain carboxychromanols. Conjugated (including sulfated) metabolites were reported previously but were limited to CEHCs. Here, using electrospray and inductively coupled plasma mass spectrometry, we discovered that gamma-tocopherol (gamma-T) and delta-T were metabolized to sulfated 9'-, 11'-, and 13'-carboxychromanol (9'S, 11'S, and 13'S) in human A549 cells. To further study the metabolites, we developed a HPLC assay with fluorescence detection that simultaneously analyzes sulfated and nonconjugated intermediate metabolites. Using this assay, we found that sulfated metabolites were converted to nonconjugated carboxychromanols by sulfatase digestion. In cultured cells, approximately 45% long-chain carboxychromanols from gamma-T but only 10% from delta-T were sulfated. Upon supplementation with gamma-T, rats had increased tissue levels of 9'S, 11'S, and 13'S, 13'-hydroxychromanol, 13'-carboxychromanol, and gamma-CEHC. The plasma concentrations of combined sulfated long-chain metabolites were comparable to or exceeded those of CEHCs and increased proportionally with the supplement dosages of gamma-T. Our study identifies sulfated long-chain carboxychromanols as novel vitamin E metabolites and provides evidence that sulfation may occur parallel with beta-oxidation. In addition, the HPLC fluorescence assay is a useful tool for the investigation of vitamin E metabolism.
Collapse
Affiliation(s)
- Qing Jiang
- Interdepartmental Nutrition Program, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | |
Collapse
|
33
|
Roberts KD, Reid GE. Leaving group effects on the selectivity of the gas-phase fragmentation reactions of side chain fixed-charge-containing peptide ions. JOURNAL OF MASS SPECTROMETRY : JMS 2007; 42:187-98. [PMID: 17154347 DOI: 10.1002/jms.1150] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The effect of trialkylsulfonium versus quaternaryalkylammonium ions on the multistage gas-phase fragmentation reactions of side chain, fixed-charge, cysteine-containing peptides has been examined in a quadrupole linear ion trap. These tandem mass spectrometry experiments reveal that selective loss of dialkylsulfide from fixed-charge sulfonium ion derivatives is the dominant fragmentation pathway regardless of the degree of proton mobility, indicating that it is the most energetically favored fragmentation pathway. In contrast, the loss of trimethylamine from the side chain of fixed-charge ammonium-ion-containing cysteine derivatives appears to be less energetically favored, and as a result extensive charge-remote fragmentation is observed under low proton mobility conditions, while under conditions of high proton mobility, amide bond fragmentation reactions dominate. These findings are supported by molecular orbital calculations at the B3LYP/6-31 + G(d, p) level of theory, which showed that the neutral loss of dimethylsulfide is both thermodynamically and kinetically preferred over the loss of trimethylamine.
Collapse
Affiliation(s)
- Kade D Roberts
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
34
|
Klemm C, Otto S, Wolf C, Haseloff RF, Beyermann M, Krause E. Evaluation of the titanium dioxide approach for MS analysis of phosphopeptides. JOURNAL OF MASS SPECTROMETRY : JMS 2006; 41:1623-32. [PMID: 17089331 DOI: 10.1002/jms.1129] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The affinity of titanium dioxide for phosphate groups has been successfully used for enrichment of phosphopeptides from complex mixtures. This paper reports the relationship between the occurrence of some amino acids and the phospho-specific and nonspecific binding of peptides that occurs during titanium dioxide enrichment. In order to perform a systematic study, two well-characterized peptide mixtures consisting of either 33 or 8 synthetic phosphopeptides and their nonphosphorylated analogs, which differed in charge and hydrophobicity, were synthesized and analyzed by ESI-MS and MALDI-MS. The titanium dioxide procedure was also evaluated for comprehensive detection of phosphopeptides in phosphoproteomics. In summary, our results clearly confirm the high selectivity of titanium dioxide for phosphorylated sequences. Drastically reduced recovery was observed for phosphopeptides with multiple basic amino acids. Nonspecific binding of nonphosphorylated peptides and sample loss of phosphopeptides must also be taken into account.
Collapse
Affiliation(s)
- Clementine Klemm
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Locke D, Koreen IV, Harris AL. Isoelectric points and post-translational modifications of connexin26 and connexin32. FASEB J 2006; 20:1221-3. [PMID: 16645047 DOI: 10.1096/fj.05-5309fje] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The isoelectric points of the gap junction proteins connexin26 (Cx26) and connexin32 (Cx32) were determined by isoelectric focusing in free fluids. The isoelectric points were significantly more acidic than predicted from amino acid sequences and different from each other, allowing homomeric channels to be resolved separately. The isoelectric points of the homomeric channels bracketed the isoelectric points of heteromeric Cx26/Cx32 channels. For heteromeric channels, Cx26 and Cx32 were found in overlapping, pH-focused fractions, indicating quaternary structure was retained. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was used to identify post-translational modifications of Cx26 and Cx32 cytoplasmic domains, including the first reported post-translational modifications of Cx26. Suspected modifications were hydroxylation and/or phosphorylation near the amino terminus of both connexins, gamma-carboxyglutamate residues in the cytoplasmic loop of both connexins, phosphorylation in the carboxyl-terminal domain of Cx32, and palmitoylation at the carboxyl-terminus of Cx32. These modifications contribute to the measured acidic isoelectric points of Cx26 and Cx32, whereas their low molecular masses would not appreciably change connexin SDS-PAGE mobility. Most of these modifications have not previously been identified for connexins and may be instrumental in guiding and understanding novel aspects of channel trafficking and molecular mechanisms of channel regulation.
Collapse
Affiliation(s)
- Darren Locke
- Department of Pharmacology and Physiology, New Jersey Medical School, 185 South Orange Ave., University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103, USA.
| | | | | |
Collapse
|
36
|
Nousiainen M, Silljé HHW, Sauer G, Nigg EA, Körner R. Phosphoproteome analysis of the human mitotic spindle. Proc Natl Acad Sci U S A 2006; 103:5391-6. [PMID: 16565220 PMCID: PMC1459365 DOI: 10.1073/pnas.0507066103] [Citation(s) in RCA: 262] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
During cell division, the mitotic spindle segregates the sister chromatids into two nascent cells, such that each daughter cell inherits one complete set of chromosomes. Errors in spindle formation can result in both chromosome missegregation and cytokinesis defects and hence lead to genomic instability. To ensure the correct function of the spindle, the activity and localization of spindle associated proteins has to be tightly regulated in time and space. Reversible phosphorylation has been shown to be one of the key regulatory mechanisms for the organization of the mitotic spindle. The relatively low number of identified in vivo phosphorylation sites of spindle components, however, has hampered functional analysis of regulatory spindle networks. A more complete inventory of the phosphorylation sites of spindle-associated proteins would therefore constitute an important advance. Here, we describe the mass spectrometry-based identification of in vivo phosphorylation sites from purified human mitotic spindles. In total, 736 phosphorylation sites were identified, of which 312 could be attributed to known spindle proteins. Among these are phosphorylation sites that were previously shown to be important for the regulation of spindle-associated proteins. Importantly, this data set also comprises 279 novel phosphorylation sites of known spindle proteins for future functional studies. This inventory of spindle phosphorylation sites should thus make an important contribution to a better understanding of the molecular mechanisms that regulate the formation, function, and integrity of the mitotic spindle.
Collapse
Affiliation(s)
- Marjaana Nousiainen
- Department of Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Herman H. W. Silljé
- Department of Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Guido Sauer
- Department of Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Erich A. Nigg
- Department of Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Roman Körner
- Department of Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
37
|
van der Veken P, Dirksen EHC, Ruijter E, Elgersma RC, Heck AJR, Rijkers DTS, Slijper M, Liskamp RMJ. Development of a Novel Chemical Probe for the Selective Enrichment of Phosphorylated Serine- and Threonine-Containing Peptides. Chembiochem 2005; 6:2271-80. [PMID: 16254931 DOI: 10.1002/cbic.200500209] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Gaining insight into phosphoproteomes is of the utmost importance for understanding regulation processes such as signal transduction and cellular differentiation. While the identification of phosphotyrosine-containing amino acid sequences in peptides and proteins is now becoming possible, mainly because of the availability of high-affinity antibodies, no general and robust methodology allowing the selective enrichment and analysis of serine- and threonine-phosphorylated proteins and peptides is presently available. The method presented here involves chemical modification of phosphorylated serine or threonine residues and their subsequent derivatization with the aid of a multifunctional probe molecule. The designed probe contains four parts: a reactive group that is used to bind specifically to the modified phosphopeptide, an optional part in which heavy isotopes can be incorporated, an acid-labile linker, and an affinity tag for the selective enrichment of modified phosphopeptides from complex mixtures. The acid-cleavable linker allows full recovery from the affinity-purified material and removal of the affinity tag prior to MS analysis. The preparation of a representative probe molecule containing a biotin affinity tag and its applicability in phosphoproteome analysis is shown in a number of well-defined model systems of increasing degrees of complexity. Amounts of phosphopeptide as low as 1 nmol can be modified and enriched from a mixture of peptides. During the development of the beta-elimination/nucleophilic addition protocol, special attention was paid to the different experimental parameters that might affect the chemical-modification steps carried out on phosphorylated residues.
Collapse
Affiliation(s)
- Pieter van der Veken
- Department of Medicinal Chemistry, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Affiliation(s)
- Jianhe Peng
- Department of Cellular Biochemistry, Max-Planck-Institute of Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany.
| |
Collapse
|
39
|
|
40
|
Klemm C, Schröder S, Glückmann M, Beyermann M, Krause E. Derivatization of phosphorylated peptides with S- and N-nucleophiles for enhanced ionization efficiency in matrix-assisted laser desorption/ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2004; 18:2697-2705. [PMID: 15487013 DOI: 10.1002/rcm.1676] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The identification of phosphorylation sites is essential for a full understanding of the cellular functions of proteins. However, mass spectrometric analysis is often hampered by the low abundance of phosphoproteins, the difficulty of obtaining full sequence coverage by specific proteolysis reactions, and the low ionization efficiency of phosphopeptides compared with their non-phosphorylated analogs. In the present work a beta-elimination/Michael addition was used to replace the phosphate groups of pSer or pThr by a group which gives rise to an enhanced ionization efficiency. In order to find optimum reaction conditions, beta-elimination/Michael addition was examined using phosphorylated model peptides. Whereas complete elimination of phosphate could be achieved by treatment with barium hydroxide in organic solvents such as ethanol or acetonitrile, the yield of the Michael adduct strongly depended on the nucleophile and the peptide sequence. Reaction with 2-phenylethanethiol, p-bromophenethylamine and ethylenediamine clearly resulted in products showing higher matrix-assisted laser desorption/ionization (MALDI) signal intensities compared with those of the corresponding phosphorylated precursors. The method was successfully used to identify phosphorylated sequences of ovalbumin and human Stat1 by in-gel derivatization with 2-phenylethanethiol and subsequent peptide mass fingerprint analysis of the trypsin digests.
Collapse
Affiliation(s)
- Clementine Klemm
- Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | | | | | | | | |
Collapse
|