1
|
Redden DJ, Stanhope T, Anderson LE, Campbell J, Krkošek WH, Gagnon GA. An innovative passive sampling approach for the detection of cyanobacterial gene targets in freshwater sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 892:164593. [PMID: 37268123 DOI: 10.1016/j.scitotenv.2023.164593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/04/2023]
Abstract
Cyanotoxins pose significant human health risks, but traditional monitoring approaches can be expensive, time consuming, and require analytical equipment or expertise that may not be readily available. Quantitative polymerase chain reaction (qPCR) is becoming an increasingly common monitoring strategy as detection of the genes responsible for cyanotoxin synthesis can be used as an early warning signal. Here we tested passive sampling of cyanobacterial DNA as an alternative to grab sampling in a freshwater drinking supply lake with a known history of microcystin-LR. DNA extracted from grab and passive samples was analyzed via a multiplex qPCR assay that included gene targets for four common cyanotoxins. Passive samples captured similar trends in total cyanobacteria and the mcyE/ndaF gene responsible for microcystin production when compared to traditional grab samples. Passive samples also detected genes associated with the production of cylindrospermopsin and saxitoxin that were not detected in grab samples. This sampling approach proved a viable alternative to grab sampling when used as an early warning monitoring tool. In addition to the logistical benefits of passive sampling, the detection of gene targets not detected by grab samples indicates that passive sampling may allow for a more complete profile of potential cyanotoxin risk.
Collapse
Affiliation(s)
- David J Redden
- Centre for Water Resources Studies, Faculty of Engineering, Dalhousie University, Halifax, NS, Canada.
| | - Toni Stanhope
- Centre for Water Resources Studies, Faculty of Engineering, Dalhousie University, Halifax, NS, Canada
| | - Lindsay E Anderson
- Centre for Water Resources Studies, Faculty of Engineering, Dalhousie University, Halifax, NS, Canada
| | - Jessica Campbell
- Halifax Water, 450 Cowie Hill Road, Halifax, Nova Scotia, Canada B3P 2V3
| | - Wendy H Krkošek
- Halifax Water, 450 Cowie Hill Road, Halifax, Nova Scotia, Canada B3P 2V3
| | - Graham A Gagnon
- Centre for Water Resources Studies, Faculty of Engineering, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
2
|
Kamali N, Abbas F, Lehane M, Griew M, Furey A. A Review of In Situ Methods-Solid Phase Adsorption Toxin Tracking (SPATT) and Polar Organic Chemical Integrative Sampler (POCIS) for the Collection and Concentration of Marine Biotoxins and Pharmaceuticals in Environmental Waters. Molecules 2022; 27:7898. [PMID: 36431996 PMCID: PMC9698218 DOI: 10.3390/molecules27227898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Solid Phase Adsorption Toxin Tracking (SPATT) and Polar Organic Chemical Integrative Sampler (POCIS) are in situ methods that have been applied to pre-concentrate a range of marine toxins, pesticides and pharmaceutical compounds that occur at low levels in marine and environmental waters. Recent research has identified the widespread distribution of biotoxins and pharmaceuticals in environmental waters (marine, brackish and freshwater) highlighting the need for the development of effective techniques to generate accurate quantitative water system profiles. In this manuscript, we reviewed in situ methods known as Solid Phase Adsorption Toxin Tracking (SPATT) and Polar Organic Chemical Integrative Sampler (POCIS) for the collection and concentration of marine biotoxins, freshwater cyanotoxins and pharmaceuticals in environmental waters since the 1980s to present. Twelve different adsorption substrates in SPATT and 18 different sorbents in POCIS were reviewed for their ability to absorb a range of lipophilic and hydrophilic marine biotoxins, pharmaceuticals, pesticides, antibiotics and microcystins in marine water, freshwater and wastewater. This review suggests the gaps in reported studies, outlines future research possibilities and guides researchers who wish to work on water contaminates using Solid Phase Adsorption Toxin Tracking (SPATT) and Polar Organic Chemical Integrative Sampler (POCIS) technologies.
Collapse
Affiliation(s)
- Naghmeh Kamali
- Mass Spectrometry Group, Department Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
- HALPIN Centre for Research & Innovation, National Maritime College of Ireland (NMCI), Munster Technological University (MTU), P43 XV65 Ringaskiddy, Ireland
| | - Feras Abbas
- Mass Spectrometry Group, Department Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
- CREATE (Centre for Research in Advanced Therapeutic Engineering) and BioExplore, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
| | - Mary Lehane
- Mass Spectrometry Group, Department Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
- CREATE (Centre for Research in Advanced Therapeutic Engineering) and BioExplore, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
| | - Michael Griew
- HALPIN Centre for Research & Innovation, National Maritime College of Ireland (NMCI), Munster Technological University (MTU), P43 XV65 Ringaskiddy, Ireland
| | - Ambrose Furey
- Mass Spectrometry Group, Department Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
- CREATE (Centre for Research in Advanced Therapeutic Engineering) and BioExplore, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
| |
Collapse
|
3
|
MacKeown H, Benedetti B, Scapuzzi C, Di Carro M, Magi E. A Review on Polyethersulfone Membranes in Polar Organic Chemical Integrative Samplers: Preparation, Characterization and Innovation. Crit Rev Anal Chem 2022; 54:1758-1774. [PMID: 36263980 DOI: 10.1080/10408347.2022.2131374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The membranes in polar organic chemical integrative samplers (POCIS) enclose the receiving sorbent and protect it from coming into direct contact with the environmental matrix. They have a crucial role in extending the kinetic regime of contaminant uptake, by slowing down their diffusion between the water phase and the receiving phase. The drive to improve passive sampling requires membranes with better design and enhanced performances. In this review, the preparation of standard polyethersulfone (PES) membranes for POCIS is presented, as well as methods to evaluate their composition, morphology, structure, and performance. Generally, only supplier-related morphological and structural data are provided, such as membrane type, thickness, surface area, and pore diameter. The issues related to the use of PES membranes in POCIS applications are exposed. Finally, alternative membranes to PES in POCIS are also discussed, although no better membrane has yet been developed. This review highlights the urge for more membrane characterization details and a better comprehension of the mechanisms which underlay their behavior and performance, to improve membrane selection and optimize passive sampler development.
Collapse
Affiliation(s)
- Henry MacKeown
- Department of Chemistry and Industrial Chemistry, University of Genoa, Genoa, Italy
| | - Barbara Benedetti
- Department of Chemistry and Industrial Chemistry, University of Genoa, Genoa, Italy
| | - Chiara Scapuzzi
- Department of Chemistry and Industrial Chemistry, University of Genoa, Genoa, Italy
| | - Marina Di Carro
- Department of Chemistry and Industrial Chemistry, University of Genoa, Genoa, Italy
| | - Emanuele Magi
- Department of Chemistry and Industrial Chemistry, University of Genoa, Genoa, Italy
| |
Collapse
|
4
|
Kim M, Hong S, Cha J, Kim Y, Lee CE, An Y, Shin KH. Multimedia distributions and the fate of microcystins from freshwater discharge in the Geum River Estuary, South Korea: Applicability of POCIS for monitoring of microalgal biotoxins. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118222. [PMID: 34571464 DOI: 10.1016/j.envpol.2021.118222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Here, we investigated the characteristics of the environmental multimedia distribution of microcystins (MCs) introduced from freshwater discharge through the estuary dam of the Geum River. In addition, the applicability of a passive sampling device (polar organic chemical integrative sampler, POCIS) for monitoring MCs was evaluated. Surface water, suspended solids (SS), sediments, and oysters were collected from the inner and outer estuary dam. Seven MC variants were analyzed using HPLC-MS/MS. POCIS was deployed at three sites over one week, and MCs were monitored for four weeks from August to September 2019. Before POCIS was deployed in the field, compounds-specific sampling rates of MCs were determined as functions of water temperature (10, 20, and 30 °C), flow rate (0, 0.38, and 0.76 m s-1), and salinity (0, 15, and 30 psu) in the laboratory. The sampling rates of MCs in POCIS increased significantly with increasing water temperature and flow rate, whereas salinity did not significantly affect the sampling rates between freshwater and saltwater. The MCs in the Geum River Estuary mainly existed as particulate forms (mean: 78%), with relatively low proportions of dissolved forms (mean: 22%), indicating that MCs were mainly contained in cyanobacterial cells. There was no significant correlation among the concentrations of MCs in water, SS, sediments, and oysters. Time-weighted average concentrations of MCs from POCIS were not significantly correlated with the concentrations of MCs in water and oysters. The metabolites of MCs, including MC-LR-GSH, MC-LR-Cys, MC-RR-GSH, and MC-RR-Cys, were detected in oysters (no metabolites were detected in POCIS). Overall, POCIS can be useful for monitoring dissolved MCs in the aquatic ecosystem, particularly in calculating time-weighted average concentrations, but it seems to have limitations in evaluating the contamination status of total MCs, mainly in particulate form.
Collapse
Affiliation(s)
- Mungi Kim
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seongjin Hong
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Jihyun Cha
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Youngnam Kim
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Chang-Eon Lee
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yoonyoung An
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kyung-Hoon Shin
- Department of Marine Sciences and Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
5
|
Fernandes SPS, Kovář P, Pšenička M, Silva AMS, Salonen LM, Espiña B. Selection of Covalent Organic Framework Pore Functionalities for Differential Adsorption of Microcystin Toxin Analogues. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15053-15063. [PMID: 33760592 DOI: 10.1021/acsami.0c18808] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microcystins (MCs), produced by Microcystis sp, are the most commonly detected cyanotoxins in freshwater, and due to their toxicity, worldwide distribution, and persistence in water, an improvement in the monitoring programs for their early detection and removal from water is necessary. To this end, we investigate the performance of three covalent organic frameworks (COFs), TpBD-(CF3)2, TpBD-(NO2)2, and TpBD-(NH2)2, for the adsorption of the most common and/or toxic MC derivatives, MC-LR, MC-RR, MC-LA, and MC-YR, from water. While MC-LR and MC-YR can be efficiently adsorbed using all three COF derivatives, high adsorption efficiencies were found for the most lipophilic toxin, MC-LA, with TpBD-(NH2)2, and the most hydrophilic one, MC-RR, with TpBD-(NO2). Theoretical calculations revealed that MC-LA and MC-RR have a tendency to be located mainly on the COF surface, interacting through hydrogen bonds with the amino and nitro functional groups of TpBD-(NH2)2 and TpBD-(NO2)2, respectively. TpBD-(NO2)2 outperforms the adsorbent materials reported for the capture of MC-RR, resulting in an increase in the maximum adsorption capacity by one order of magnitude. TpBD-(NH2)2 is reported as the first efficient adsorbent material for the capture of MC-LA. Large differences in desorption efficiencies were observed for the MCs with different COFs, highlighting the importance of COF-adsorbate interactions in the material recovery. Herein we show that efficient capture of these toxins from water can be achieved through the proper selection of the COF material. More importantly, this study demonstrates that by careful choice of COF functionalities, specific compounds can be targeted or excluded from a group of analogues, providing insight into the design of more efficient and selective adsorbent materials.
Collapse
Affiliation(s)
- Soraia P S Fernandes
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, 4715-330 Braga, Portugal
- Associate Laboratory for Green Chemistry-Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Petr Kovář
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague, Czech Republic
| | - Milan Pšenička
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague, Czech Republic
| | - Artur M S Silva
- Associate Laboratory for Green Chemistry-Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Laura M Salonen
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, 4715-330 Braga, Portugal
| | - Begoña Espiña
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, 4715-330 Braga, Portugal
| |
Collapse
|
6
|
Yao L, Steinman AD, Wan X, Shu X, Xie L. A new method based on diffusive gradients in thin films for in situ monitoring microcystin-LR in waters. Sci Rep 2019; 9:17528. [PMID: 31772202 PMCID: PMC6879504 DOI: 10.1038/s41598-019-53835-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 10/31/2019] [Indexed: 01/22/2023] Open
Abstract
The passive sampling method of diffusive gradients in thin-films (DGT) was developed to provide a quantitative and time-integrated measurement of microcystin-LR (MC-LR) in waters. The DGT method in this study used HLB (hydrophilic-lipophilic-balanced) material as a binding agent, and methanol as an eluent. The diffusion coefficient of MC-LR was 5.01 × 10−6 cm2 s−1 at 25 °C in 0.45 mm thick diffusion layer. This DGT method had a binding capacity of 4.24 μg per binding gel disk (3.14 cm2), ensuring sufficient capacity to measure MC-LR in most water matrices. The detection limit of HLB DGT was 0.48 ng L−1. DGT coupled to analysis by HPLC appears to be an accurate method for MC-LR monitoring. Comparison of DGT measurements for MC-LR in water and a conventional active sampling method showed little difference. This study demonstrates that HLB-based DGT is a useful tool for in situ monitoring of MC-LR in fresh waters.
Collapse
Affiliation(s)
- Lei Yao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Alan D Steinman
- Annis Water Resources Institute, Grand Valley State University, 740 West Shoreline Drive, Muskegon, MI, 49441, USA
| | - Xiang Wan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiubo Shu
- College of Resources and Environment Engineering, Guizhou University, Guiyang, 550025, China
| | - Liqiang Xie
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
7
|
Brophy MJ, Mackie AL, Park Y, Gagnon GA. Exploring the detection of microcystin-LR using polar organic chemical integrative samplers (POCIS). ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:659-666. [PMID: 30899924 DOI: 10.1039/c8em00569a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Polar organic chemical integrative samplers (POCIS) were used in this study to explore passive sampling for the detection of microcystin-LR (MC-LR). POCIS were deployed in triplicate for a minimum of 28 days at the inlet and outlet of a 1 km2, 4.2 km long lake in Atlantic Canada. POCIS results were compared to lake water grab sampling and followed a similar trend. Laboratory POCIS studies using lake water spiked with known MC-LR concentrations were used to estimate lake water concentrations over the deployment period by calculating POCIS sampling rate (Rs). The Rs for MC-LR in this lake water was found to be 0.045 (±0.001) and 0.041 (±0.001) L per day for initial concentrations of 0.5 and 1.0 μg L-1. Estimated MC-LR concentrations from POCIS were generally higher than grab sampling results, especially at the outlet to the lake from late September to late October. This could possibly give a better picture of MC-LR concentrations in the lake; MC-LR concentrations can fluctuate substantially over short time periods. POCIS were able to detect MC-LR in the water stream when grab sampling resulted in non-detects (i.e., below detection limit of LC-MS/MS). The use of passive sampling for MC-LR could have beneficial implications for public health and toxicity testing by lowering detection limits for this chronically and acutely toxic chemical. The correlation of aqueous MC-LR concentrations to POCIS MC-LR concentrations needs further study.
Collapse
Affiliation(s)
- Michael J Brophy
- Centre for Water Resources Studies, Faculty of Civil and Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, NS B3H 4R2, Canada.
| | | | | | | |
Collapse
|
8
|
Jaša L, Sadílek J, Kohoutek J, Straková L, Maršálek B, Babica P. Application of passive sampling for sensitive time-integrative monitoring of cyanobacterial toxins microcystins in drinking water treatment plants. WATER RESEARCH 2019; 153:108-120. [PMID: 30703675 DOI: 10.1016/j.watres.2018.12.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/18/2018] [Accepted: 12/22/2018] [Indexed: 06/09/2023]
Abstract
Calibrated adsorption-based passive samplers were used for time-integrative monitoring of microcystins (MCs) in three full-scale drinking water treatment plants (DWTPs) in the Czech Republic during two vegetation seasons (Jun-Nov), in parallel with traditional discrete sampling. MCs were detected in epilimnetic water samples at concentrations up to 14 μg/L, but their levels in raw water in DWTPs were below 1 μg/L WHO guideline value for drinking water. Conventional treatment technologies (coagulation/filtration) eliminated cyanobacteria and intracellular toxins but had a limited removal efficiency for extracellular toxins. MCs were regularly detected in final treated water, especially in DWTPs equipped only with the conventional treatment, but their concentrations were below the quantitation limit of discrete sampling (<25 ng/L). Passive samplers in combination with LC-MS/MS analysis provided excellent sensitivity allowing to detect time-weighted average (TWA) concentrations of MCs as low as 20-200 pg/L after 14-d deployment. Median MC TWA concentrations in the treated water from the individual DWTPs were 1-12 ng/L, and most likely did not present significant health risks. Passive samplers well reflected spatiotemporal variations of MCs, actual concentrations of extracellular toxins, MC removal efficiency in DWTPs, and toxin concentrations in the treated water. Passive sampling can be effectively used for assessment and management of MC health risks during DWTP operation.
Collapse
Affiliation(s)
- Libor Jaša
- Department of Experimental Phycology and Ecotoxicology, Institute of Botany of the CAS, Lidická 25/27, 602 00, Brno, Czech Republic; RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Jan Sadílek
- Department of Experimental Phycology and Ecotoxicology, Institute of Botany of the CAS, Lidická 25/27, 602 00, Brno, Czech Republic; RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Jiří Kohoutek
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Lucie Straková
- Department of Experimental Phycology and Ecotoxicology, Institute of Botany of the CAS, Lidická 25/27, 602 00, Brno, Czech Republic
| | - Blahoslav Maršálek
- Department of Experimental Phycology and Ecotoxicology, Institute of Botany of the CAS, Lidická 25/27, 602 00, Brno, Czech Republic; RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Pavel Babica
- Department of Experimental Phycology and Ecotoxicology, Institute of Botany of the CAS, Lidická 25/27, 602 00, Brno, Czech Republic; RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
| |
Collapse
|
9
|
Zouari M, Bois L, Dugas V, Hbaieb S, Chevalier Y, Kalfat R, Demesmay C. Monolith Passive Adsorbers Prepared with Hydrophobic Porous Silica Rods Coated with Hydrogel. ANAL LETT 2017. [DOI: 10.1080/00032719.2017.1365368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Meriem Zouari
- Institut des Sciences Analytiques, Université de Lyon 1, Villeurbanne, France
- Institut National de Recherche et d’Analyse Physico-chimique, LR15INRAP03 Laboratoire Matériaux, Traitement et Analyse, BiotechPole Sidi-Thabet, Ariana, Tunisia
- Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Laurence Bois
- Laboratoire des Multimatériaux et Interfaces, Université de Lyon 1, Villeurbanne, France
| | - Vincent Dugas
- Institut des Sciences Analytiques, Université de Lyon 1, Villeurbanne, France
| | - Souhaira Hbaieb
- Institut National de Recherche et d’Analyse Physico-chimique, LR15INRAP03 Laboratoire Matériaux, Traitement et Analyse, BiotechPole Sidi-Thabet, Ariana, Tunisia
- Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Yves Chevalier
- Laboratoire d’Automatique et de Génie des Procédés, Université Lyon 1, Villeurbanne, France
| | - Rafik Kalfat
- Institut National de Recherche et d’Analyse Physico-chimique, LR15INRAP03 Laboratoire Matériaux, Traitement et Analyse, BiotechPole Sidi-Thabet, Ariana, Tunisia
| | - Claire Demesmay
- Institut des Sciences Analytiques, Université de Lyon 1, Villeurbanne, France
| |
Collapse
|
10
|
Hu Y, Da L. Insights into the selective binding and toxic mechanism of microcystin to catalase. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 121:230-237. [PMID: 24247095 DOI: 10.1016/j.saa.2013.09.078] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/22/2013] [Accepted: 09/25/2013] [Indexed: 06/02/2023]
Abstract
Microcystin is a sort of cyclic nonribosomal peptides produced by cyanobacteria. It is cyanotoxin, which can be very toxic for plants and animals including humans. The present study evaluated the interaction of microcystin and catalase, under physiological conditions by means of fluorescence, three-dimensional (3D) fluorescence, circular dichroism (CD), Fourier Transform infrared (FT-IR) spectroscopy, and enzymatic reactionkinetic techniques. The fluorescence data showed that microcystin could bind to catalase to form a complex. The binding process was a spontaneous molecular interaction procedure, in which electrostatic interactions played a major role. Energy transfer and fluorescence studies proved the existence of a static binding process. Additionally, as shown by the three-dimensional fluorescence, CD and FT-IR results, microcystin could lead to conformational and microenvironmental changes of the protein, which may affect the physiological functions of catalase. The work provides important insights into the toxicity mechanism of microcystin in vivo.
Collapse
Affiliation(s)
- Yuandong Hu
- Department of Environmental Science, East China Normal University, Shanghai 200062, China; Department of Landscape, Northeast Forestry University, Harbin 150040, China
| | - Liangjun Da
- Department of Environmental Science, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
11
|
Srivastava A, Singh S, Ahn CY, Oh HM, Asthana RK. Monitoring approaches for a toxic cyanobacterial bloom. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:8999-9013. [PMID: 23865979 DOI: 10.1021/es401245k] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cyanobacterial blooms, dominated by Microcystis sp. and associated microcystin variants, have been implicated in illnesses of humans and animals. Little is known regarding the formation of blooms and the presence of cyanotoxin variants in water bodies. Furthermore, the role played by ecological parameters, in regulating Microcystis blooms is complicate and diverse. Local authorities responsible for water management are often faced with the challenging task of dealing with cyanobacterial blooms. Therefore, the development of suitable monitoring approaches to characterize cyanobacterial blooms is an important goal. Currently, various biological, biochemical and physicochemical methods/approaches are being used to monitor cyanobacterial blooms and detect microcystins in freshwater bodies. Because these methods can vary as to the information they provide, no single approach seemed to be sufficient to accurately monitor blooms. For example, immunosensors are more suited for monitoring the presence of toxins in clear water bodies while molecular methods are more suited to detect potentially toxic strains. Thus, monitoring approaches should be tailored for specific water bodies using methods based on economic feasibility, speed, sensitivity and field applicability. This review critically evaluates monitoring approaches that are applicable to cyanobacterial blooms, especially those that focus on the presence of Microcystis, in freshwater bodies. Further, they were characterized and ranked according to their cost, speed, sensitivity and selectivity. Suggested improvements were offered as well as future research endeavors to accommodate anticipated environmental changes.
Collapse
Affiliation(s)
- Ankita Srivastava
- Centre of Advanced Study in Botany, Banaras Hindu University , Varanasi-221 005, India
| | | | | | | | | |
Collapse
|
12
|
Zhao H, Qiu J, Fan H, Li A. Mechanism and application of solid phase adsorption toxin tracking for monitoring microcystins. J Chromatogr A 2013; 1300:159-64. [PMID: 23489492 DOI: 10.1016/j.chroma.2013.02.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 02/14/2013] [Accepted: 02/15/2013] [Indexed: 11/29/2022]
Abstract
The production of toxic microcystins by cyanobacteria is an important safety issue in terms of ecological food chains and drinking water supplies. Studies were carried out to demonstrate the applicability of solid phase adsorption toxin tracking (SPATT) to the monitoring of microcystins in fresh water. Work focused on the distribution of the intra- and extra-cellular toxins MC-LR and [Dha(7)] MC-LR produced by Microcystis aeruginosa (FACHB 905). The dynamic adsorption and desorption behavior of both toxins on aromatic resins HP20 and SP700 was examined, and the use of SPATT bags for monitoring microcystins in cyanobacterial cultures is discussed. It was shown that intracellular MC-LR and [Dha(7)] MC-LR are released continuously during batch incubation. The adsorption capacity of the SP700 resin was higher than that of the HP20 resin, while the opposite was true for desorption efficiency. The highest desorption efficiency of HP20 was 91.5±4.6% and 89.0±7.1% for MC-LR and [Dha(7)] MC-LR, respectively; accordingly, that of SP700 was 78.1±4.1% and 72.3±2.1%, respectively. Taking both adsorption and desorption behavior into consideration, HP20 is recommended as an adsorbent for SPATT monitoring of microcystins in freshwater bodies.
Collapse
Affiliation(s)
- Hui Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | | | | | | |
Collapse
|
13
|
Harman C, Allan IJ, Vermeirssen ELM. Calibration and use of the polar organic chemical integrative sampler--a critical review. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2012; 31:2724-38. [PMID: 23012256 DOI: 10.1002/etc.2011] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/15/2012] [Accepted: 08/08/2012] [Indexed: 05/20/2023]
Abstract
The implementation of strict environmental quality standards for polar organic priority pollutants poses a challenge for monitoring programs. The polar organic chemical integrative sampler (POCIS) may help to address the challenge of measuring low and fluctuating trace concentrations of such organic contaminants, offering significant advantages over traditional sampling. In the present review, the authors evaluate POCIS calibration methods and factors affecting sampling rates together with reported environmental applications. Over 300 compounds have been shown to accumulate in POCIS, including pesticides, pharmaceuticals, hormones, and industrial chemicals. Polar organic chemical integrative sampler extracts have been used for both chemical and biological analyses. Several different calibration methods have been described, which makes it difficult to directly compare sampling rates. In addition, despite the fact that some attempts to correlate sampling rates with the properties of target compounds such as log K(OW) have been met with varying success, an overall model that can predict uptake is lacking. Furthermore, temperature, water flow rates, salinity, pH, and fouling have all been shown to affect uptake; however, there is currently no robust method available for adjusting for these differences. Overall, POCIS has been applied to a wide range of sampling environments and scenarios and has been proven to be a useful screening tool. However, based on the existing literature, a more mechanistic approach is required to increase understanding and thus improve the quantitative nature of the measurements.
Collapse
|
14
|
Morin N, Miège C, Coquery M, Randon J. Chemical calibration, performance, validation and applications of the polar organic chemical integrative sampler (POCIS) in aquatic environments. Trends Analyt Chem 2012. [DOI: 10.1016/j.trac.2012.01.007] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Černoch I, Fránek M, Diblíková I, Hilscherová K, Randák T, Ocelka T, Bláha L. POCIS sampling in combination with ELISA: Screening of sulfonamide residues in surface and waste waters. ACTA ACUST UNITED AC 2012; 14:250-7. [DOI: 10.1039/c1em10652j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Wood SA, Kuhajek JM, de Winton M, Phillips NR. Species composition and cyanotoxin production in periphyton mats from three lakes of varying trophic status. FEMS Microbiol Ecol 2011; 79:312-26. [PMID: 22092304 DOI: 10.1111/j.1574-6941.2011.01217.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 08/29/2011] [Accepted: 09/26/2011] [Indexed: 11/28/2022] Open
Abstract
In lakes, benthic micro-algae and cyanobacteria (periphyton) can contribute significantly to total primary productivity and provide important food sources for benthic invertebrates. Despite recognition of their importance, few studies have explored the diversity of the algal and cyanobacterial composition of periphyton mats in temperate lakes. In this study, we sampled periphyton from three New Zealand lakes: Tikitapu (oligotrophic), Ōkāreka (mesotrophic) and Rotoiti (eutrophic). Statistical analysis of morphological data showed a clear delineation in community structure among lakes and highlighted the importance of cyanobacteria. Automated rRNA intergenic spacer analysis (ARISA) and 16S rRNA gene clone libraries were used to investigate cyanobacterial diversity. Despite the close geographic proximity of the lakes, cyanobacterial species differed markedly. The 16S rRNA gene sequence analysis identified eight cyanobacterial OTUs. A comparison with other known cyanobacterial sequences in GenBank showed relatively low similarities (91-97%). Cyanotoxin analysis identified nodularin in all mats from Lake Tikitapu. ndaF gene sequences from these samples had very low (≤ 89%) homology to sequences in other known nodularin producers. To our knowledge, this is the first detection of nodularin in a freshwater environment in the absence of Nodularia. Six cyanobacteria species were isolated from Lake Tikitapu mats. None were found to produce nodularin. Five of the species shared low (< 97%) 16S rRNA gene sequence similarities with other cultured cyanobacteria.
Collapse
|
17
|
Wood SA, Holland PT, MacKenzie L. Development of solid phase adsorption toxin tracking (SPATT) for monitoring anatoxin-a and homoanatoxin-a in river water. CHEMOSPHERE 2011; 82:888-94. [PMID: 21074244 DOI: 10.1016/j.chemosphere.2010.10.055] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Revised: 10/19/2010] [Accepted: 10/20/2010] [Indexed: 05/12/2023]
Abstract
Sampling and monitoring for cyanotoxins can be problematic as concentrations change with environmental and hydrological conditions. Current sampling practices (e.g. grab samples) provide data on cyanotoxins present only at one point in time and may miss areas or times of highest risk. Recent research has identified the widespread distribution of anatoxin-producing benthic cyanobacteria in rivers highlighting the need for development of effective sampling techniques. In this study we evaluated the potential of an in situ method known as solid phase adsorption toxin tracking (SPATT) for collecting and concentrating anatoxin-a (ATX) and homoanatoxin-a (HTX) in river water. Fifteen different adsorption substrates were screened for efficiency of ATX uptake, nine of which retained high proportions (>70%) of ATX. Four substrates were then selected for a 24-h trial in a SPATT bag format in the laboratory. The greatest decrease in ATX in the water was observed with powdered activated carbon (PAC) and Strata-X (a polymeric resin) SPATT bags. A 3-d field study in a river containing toxic benthic cyanobacterial mats was undertaken using PAC and Strata-X SPATT bags. ATX and HTX were detected in all SPATT bags. Surface grab samples were taken throughout the field study and ATX and HTX were only detected in one of the water samples, highlighting the limitations of this currently used method. Both Strata-X and PAC were found to be effective absorbent substrates. PAC has the advantage that it is cheap and readily available and appears to continue to sorb toxins over longer periods than Strata-X. SPATT has the potential to be integrated into current cyanobacterial monitoring programmes and would be a very useful and economical tool for early warning of ATX and HTX contamination in water.
Collapse
Affiliation(s)
- Susanna A Wood
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand.
| | | | | |
Collapse
|
18
|
Černoch I, Fránek M, Diblíková I, Hilscherová K, Randák T, Ocelka T, Bláha L. Determination of atrazine in surface waters by combination of POCIS passive sampling and ELISA detection. ACTA ACUST UNITED AC 2011; 13:2582-7. [DOI: 10.1039/c1em10112a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Miller MA, Kudela RM, Mekebri A, Crane D, Oates SC, Tinker MT, Staedler M, Miller WA, Toy-Choutka S, Dominik C, Hardin D, Langlois G, Murray M, Ward K, Jessup DA. Evidence for a novel marine harmful algal bloom: cyanotoxin (microcystin) transfer from land to sea otters. PLoS One 2010; 5:e12576. [PMID: 20844747 PMCID: PMC2936937 DOI: 10.1371/journal.pone.0012576] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 08/02/2010] [Indexed: 12/05/2022] Open
Abstract
"Super-blooms" of cyanobacteria that produce potent and environmentally persistent biotoxins (microcystins) are an emerging global health issue in freshwater habitats. Monitoring of the marine environment for secondary impacts has been minimal, although microcystin-contaminated freshwater is known to be entering marine ecosystems. Here we confirm deaths of marine mammals from microcystin intoxication and provide evidence implicating land-sea flow with trophic transfer through marine invertebrates as the most likely route of exposure. This hypothesis was evaluated through environmental detection of potential freshwater and marine microcystin sources, sea otter necropsy with biochemical analysis of tissues and evaluation of bioaccumulation of freshwater microcystins by marine invertebrates. Ocean discharge of freshwater microcystins was confirmed for three nutrient-impaired rivers flowing into the Monterey Bay National Marine Sanctuary, and microcystin concentrations up to 2,900 ppm (2.9 million ppb) were detected in a freshwater lake and downstream tributaries to within 1 km of the ocean. Deaths of 21 southern sea otters, a federally listed threatened species, were linked to microcystin intoxication. Finally, farmed and free-living marine clams, mussels and oysters of species that are often consumed by sea otters and humans exhibited significant biomagnification (to 107 times ambient water levels) and slow depuration of freshwater cyanotoxins, suggesting a potentially serious environmental and public health threat that extends from the lowest trophic levels of nutrient-impaired freshwater habitat to apex marine predators. Microcystin-poisoned sea otters were commonly recovered near river mouths and harbors and contaminated marine bivalves were implicated as the most likely source of this potent hepatotoxin for wild otters. This is the first report of deaths of marine mammals due to cyanotoxins and confirms the existence of a novel class of marine "harmful algal bloom" in the Pacific coastal environment; that of hepatotoxic shellfish poisoning (HSP), suggesting that animals and humans are at risk from microcystin poisoning when consuming shellfish harvested at the land-sea interface.
Collapse
Affiliation(s)
- Melissa A Miller
- Marine Wildlife Veterinary Care and Research Center, California Department of Fish and Game, Office of Spill Prevention and Response, Santa Cruz, California, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Evaluation of the novel passive sampler for cyanobacterial toxins microcystins under various conditions including field sampling. Anal Bioanal Chem 2010; 397:823-8. [DOI: 10.1007/s00216-010-3578-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 02/05/2010] [Accepted: 02/12/2010] [Indexed: 10/19/2022]
|
21
|
Trojanowicz M. Chromatographic and capillary electrophoretic determination of microcystins. J Sep Sci 2010; 33:359-71. [DOI: 10.1002/jssc.200900708] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
MacKenzie LA. In situ passive solid-phase adsorption of micro-algal biotoxins as a monitoring tool. Curr Opin Biotechnol 2010; 21:326-31. [PMID: 20153627 DOI: 10.1016/j.copbio.2010.01.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 01/18/2010] [Accepted: 01/20/2010] [Indexed: 10/19/2022]
Abstract
Laboratory and field studies of the passive solid-phase adsorption toxin tracking (SPATT) method have been carried out around the world. A wide range of marine micro-algal toxins have been detected and the potential of the method to provide reliable, sensitive, time-integrated sampling to monitor the occurrence of toxic algal bloom events has been demonstrated. The method has several important advantages over current phytoplankton and shellfish monitoring methods. Trials of various adsorption substrates have been carried out and the best candidates have been selected for the lipophilic marine biotoxin groups; however, research continues to locate suitable substrates for the more polar water-soluble compounds such as domoic acid and the saxitoxins. The technique has also been successfully applied to the detection of a range of freshwater cyanobacterial toxins.
Collapse
Affiliation(s)
- Lincoln A MacKenzie
- Cawthron Institute, 98 Halifax Street, Private Bag 2, Nelson 7010, New Zealand.
| |
Collapse
|
23
|
Zabiegała B, Kot-Wasik A, Urbanowicz M, Namieśnik J. Passive sampling as a tool for obtaining reliable analytical information in environmental quality monitoring. Anal Bioanal Chem 2009; 396:273-96. [PMID: 19924407 DOI: 10.1007/s00216-009-3244-4] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 09/24/2009] [Accepted: 10/15/2009] [Indexed: 11/28/2022]
Abstract
Passive sampling technology has been developing very quickly for the past 20 years, and is widely used for monitoring pollutants in different environments, for example air, water, and soil. It has many significant advantages, including simplicity, low cost, no need for expensive and complicated equipment, no power requirements, unattended operation, and the ability to produce accurate results. The present generation of passive samplers enables detection and analysis of bioavailable pollutants at low and very low concentrations and investigation of the environmental concentration of organic and inorganic pollutants not only on the local scale but also on continental and global scales. This review describes the current application of passive sampling techniques in environmental analysis and monitoring, under both equilibrium and non-equilibrium conditions.
Collapse
Affiliation(s)
- Bozena Zabiegała
- Department of Analytical Chemistry Chemical Faculty, Gdansk University of Technology, 11/12 G. Narutowicza Str., 80-233, Gdańsk, Poland.
| | | | | | | |
Collapse
|