1
|
Peer F, Kuehnelt D. High levels of the health-relevant antioxidant selenoneine identified in the edible mushroom Boletus edulis. J Trace Elem Med Biol 2024; 86:127536. [PMID: 39321647 DOI: 10.1016/j.jtemb.2024.127536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Selenoneine, the selenium analogue of the sulfur antioxidant ergothioneine, has been ascribed a multitude of beneficial health effects. Natural nutritional sources for this selenium species are, hence, of high interest. So far marine fish is the only significant selenoneine source consumed by larger parts of the population worldwide. METHODS As selenoneine and ergothioneine share their biosynthetic pathways and transport mechanisms and the popular edible porcini mushroom Boletus edulis is rich in ergothioneine and selenium, we conducted a preliminary study investigating a composite sample of two specimens of B. edulis for their selenoneine content by HPLC coupled to elemental and molecular mass spectrometry after aqueous extraction. RESULTS Selenium speciation analysis by HPLC-ICPMS revealed that ca. 860 µg Se kg-1 wet mass (81 % of the total Se) co-eluted with a selenoneine standard and a minor selenium species with Se-methylselenoneine. The presence of selenoneine was rigorously proven by HPLC-ESI-Orbitrap MS. The selenoneine content of the investigated specimens of B. edulis was higher than that of commonly consumed muscle of marine fish species, like tuna or mackerel. CONCLUSION This is the first report of a terrestrial food source containing significant selenoneine levels. Our results suggest that B. edulis might represent a complementary natural supply with this health-relevant selenium species for humans.
Collapse
Affiliation(s)
- Franziska Peer
- Institute of Chemistry, Analytical Chemistry, NAWI Graz, University of Graz, Universitaetsplatz 1, Graz 8010, Austria.
| | - Doris Kuehnelt
- Institute of Chemistry, Analytical Chemistry, NAWI Graz, University of Graz, Universitaetsplatz 1, Graz 8010, Austria.
| |
Collapse
|
2
|
Makhal PN, Sood A, Shaikh AS, Dayare LN, Khatri DK, Rao Kaki V. Development of trisubstituted thiophene-3-arboxamide selenide derivatives as novel EGFR kinase inhibitors with cytotoxic activity. RSC Med Chem 2023; 14:2677-2698. [PMID: 38107169 PMCID: PMC10718591 DOI: 10.1039/d3md00403a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/06/2023] [Indexed: 12/19/2023] Open
Abstract
Overexpression of EGFR is one of the eminent oncogenic drivers detected in the development of several human cancers. The increasing incidences of mutation-based resistance in the tyrosine kinase domain call upon the need for the development of a newer class of small-molecule TK inhibitors. Accordingly, a new series of symmetrical trisubstituted thiophene-3-carboxamide selenide derivatives was developed via the hybridization of complementary pharmacophores. Most of the compounds showed a modest to excellent antiproliferative action at 20 μM concentration. The utmost antiproliferative activity was portrayed by compound 16e on the selected cancer cell lines with IC50 < 9 μM, the lowest being 3.20 ± 0.12 μM in the HCT116 cell line. Further, it also displayed an impressive EGFR kinase inhibition with an IC50 value of 94.44 ± 2.22 nM concentration. As a corollary of the reported EGFR inhibition, the nature, energy, and stability of the binding interactions were contemplated via in silico studies.
Collapse
Affiliation(s)
- Priyanka N Makhal
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad-500037 India
| | - Anika Sood
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad-500037 India
| | - Arbaz Sujat Shaikh
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad-500037 India
| | - Lahu N Dayare
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad-500037 India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad-500037 India
| | - Venkata Rao Kaki
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad-500037 India
| |
Collapse
|
3
|
Coverdale JPC, Harrington CF, Solovyev N. Review: Advances in the Accuracy and Traceability of Metalloprotein Measurements Using Isotope Dilution Inductively Coupled Plasma Mass Spectrometry. Crit Rev Anal Chem 2023; 54:2259-2276. [PMID: 36637361 DOI: 10.1080/10408347.2022.2162811] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Advances in inductively coupled plasma mass spectrometry and the methods used to prepare isotopically enriched standards, allow for the high accuracy measurement of metalloproteins by isotope dilution mass spectrometry. This technique has now reached a level of maturity whereby a step change in the accuracy, precision, and traceability of, in particular, clinical, and biomedical measurements is achievable. Current clinical measurements, which require low limits of detection in the presence of complex sample matrices, use indirect methods based on immunochemistry for the study of human disease. However, this approach suffers from poor traceability, requiring comparisons based on provision of matrix-based reference materials, used as analytical standards. This leads to difficulty when changes in the reference material are required, often resulting in a lack of interlaboratory and temporal comparability in clinical results and reference ranges. In this review, we focus on the most important metalloproteins for clinical studies, to illustrate how the attributes of chromatography coupled to inorganic mass spectrometry can be used for the direct measurement of metalloproteins such as hemoglobin, transferrin, and ceruloplasmin. By using this approach, we hope to demonstrate how isotope dilution analysis can be used as a reference method to improve traceability and underpin clinical, biomedical, and other biological measurements.
Collapse
Affiliation(s)
- James P C Coverdale
- Supra-Regional Assay Service, Trace Element Laboratory, Surrey Research Park, Guildford, United Kingdom
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Chris F Harrington
- Supra-Regional Assay Service, Trace Element Laboratory, Surrey Research Park, Guildford, United Kingdom
- Royal Surrey NHS Foundation Trust, Guildford, United Kingdom
| | | |
Collapse
|
4
|
Forceville X, Van Antwerpen P, Annane D, Vincent JL. Selenocompounds and Sepsis-Redox Bypass Hypothesis: Part B-Selenocompounds in the Management of Early Sepsis. Antioxid Redox Signal 2022; 37:998-1029. [PMID: 35287478 DOI: 10.1089/ars.2020.8062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: Endothelial barrier damage, which is in part caused by excess production of reactive oxygen, halogen and nitrogen species (ROHNS), especially peroxynitrite (ONOO-), is a major event in early sepsis and, with leukocyte hyperactivation, part of the generalized dysregulated immune response to infection, which may even become a complex maladaptive state. Selenoenzymes have major antioxidant functions. Their synthesis is related to the need to limit deleterious oxidant redox cycling by small selenocompounds, which may be of therapeutic cytotoxic interest. Plasma selenoprotein-P is crucial for selenium transport from the liver to the tissues and for antioxidant endothelial protection, especially against ONOO-. Above micromolar concentrations, sodium selenite (Na2SeO3) becomes cytotoxic, with a lower cytotoxicity threshold in activated cells, which has led to cancer research. Recent Advances: Plasma selenium (<2% of total body selenium) is mainly contained in selenoprotein-P, and concentrations decrease rapidly in the early phase of sepsis, because of increased selenoprotein-P binding and downregulation of hepatic synthesis and excretion. At low concentrations, Na2SeO3 acts as a selenium donor, favoring selenoprotein-P synthesis in physiology, but probably not in the acute phase of sepsis. Critical Issues: The cytotoxic effects of Na2SeO3 against hyperactivated leukocytes, especially the most immature forms that liberate ROHNS, may be beneficial, but they may also be harmful for activated endothelial cells. Endothelial protection against ROHNS by selenoprotein-P may reduce Na2SeO3 toxicity, which is increased in sepsis. Future Direction: The combination of selenoprotein-P for endothelial protection and the cytotoxic effects of Na2SeO3 against hyperactivated leukocytes may be a promising intervention for early sepsis. Antioxid. Redox Signal. 37, 998-1029.
Collapse
Affiliation(s)
- Xavier Forceville
- Medico-surgical Intensive Care Unit, Great Hospital of East Francilien - Meaux site, Meaux, France.,Clinical Investigation Centre (CIC Inserm1414) CHU de Rennes - Université de Rennes 1, Rennes, France
| | - Pierre Van Antwerpen
- Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy, Univesité libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Djillali Annane
- Service de Réanimation Médicale, Hôpital Raymond Poincaré (APHP), Garches, France.,U1173 Lab. of Inflammation & Infection, (Fédération Hospitalo-Universitaire) FHU SEPSIS, Université Paris Saclay-campus (Université de Versailles Saint-Quentin-en-Yvelines) UVSQ, Versailles, France
| | - Jean Louis Vincent
- Department of Intensive Care, Erasme University Hospital, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
5
|
Solovyev N, Drobyshev E, Blume B, Michalke B. Selenium at the Neural Barriers: A Review. Front Neurosci 2021; 15:630016. [PMID: 33613188 PMCID: PMC7892976 DOI: 10.3389/fnins.2021.630016] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Selenium (Se) is known to contribute to several vital physiological functions in mammals: antioxidant defense, fertility, thyroid hormone metabolism, and immune response. Growing evidence indicates the crucial role of Se and Se-containing selenoproteins in the brain and brain function. As for the other essential trace elements, dietary Se needs to reach effective concentrations in the central nervous system (CNS) to exert its functions. To do so, Se-species have to cross the blood-brain barrier (BBB) and/or blood-cerebrospinal fluid barrier (BCB) of the choroid plexus. The main interface between the general circulation of the body and the CNS is the BBB. Endothelial cells of brain capillaries forming the so-called tight junctions are the primary anatomic units of the BBB, mainly responsible for barrier function. The current review focuses on Se transport to the brain, primarily including selenoprotein P/low-density lipoprotein receptor-related protein 8 (LRP8, also known as apolipoprotein E receptor-2) dependent pathway, and supplementary transport routes of Se into the brain via low molecular weight Se-species. Additionally, the potential role of Se and selenoproteins in the BBB, BCB, and neurovascular unit (NVU) is discussed. Finally, the perspectives regarding investigating the role of Se and selenoproteins in the gut-brain axis are outlined.
Collapse
Affiliation(s)
| | - Evgenii Drobyshev
- Institut für Ernährungswissenschaft, Universität Potsdam, Potsdam, Germany
| | - Bastian Blume
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich – German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich – German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| |
Collapse
|
6
|
Ouerdane L, Both EB, Xiang J, Yin H, Kang Y, Shao S, Kiszelák K, Jókai Z, Dernovics M. Water soluble selenometabolome of Cardamine violifolia. Metallomics 2020; 12:2032-2048. [PMID: 33165451 DOI: 10.1039/d0mt00216j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Low molecular weight selenium containing metabolites in the leaves of the selenium hyperaccumulator Cardamine violifolia (261 mg total Se per kg d.w.) were targeted in this study. One dimensional cation exchange chromatography coupled to ICP-MS was used for purification and fractionation purposes prior to LC-Unispray-QTOF-MS analysis. The search for selenium species in full scan spectra was assisted with an automated mass defect based filtering approach. Besides selenocystathionine, selenohomocystine and its polyselenide derivative, a total number of 35 water soluble selenium metabolites other than selenolanthionine were encountered, including 30 previously unreported compounds. High occurrence of selenium containing hexoses was observed, together with the first assignment of N-glycoside derivatives of selenolanthionine. Quantification of the most abundant selenium species, selenolanthionine, was carried out with an ion pairing LC - post column isotope dilution ICP-MS setup, which revealed that this selenoamino acid accounted for 30% of the total selenium content of the leaf (78 mg (as Se) per kg d.w.).
Collapse
Affiliation(s)
- Laurent Ouerdane
- Université de Pau et des Pays de l'Adour, e2s UPPA, CNRS, IPREM-UMR5254, Hélioparc, 2, Av. Pr. Angot, 64053 Pau, France
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Cardoso BR, Ganio K, Roberts BR. Expanding beyond ICP-MS to better understand selenium biochemistry. Metallomics 2020; 11:1974-1983. [PMID: 31660552 DOI: 10.1039/c9mt00201d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Selenium is an essential trace element in human health and therefore its concentration in biological samples (biofluids and tissues) is used as an indicator of health and nutritional status. In humans, selenium's biological activity occurs through the 25 identified selenoproteins. As total selenium concentration encompasses both functional selenoproteins, small selenocompounds and other selenium-binding proteins, selenium speciation, rather than total concentration, is critical in order to assess functional selenium. Previously, quantitative analysis of selenoproteins required laborious techniques that were often slow and costly. However, more recent advancements in tandem mass spectrometry have facilitated the qualitative and quantitative identification of these proteins. In light of the current alternatives for understanding selenium biochemistry, we aim to provide a review of the modern applications of electrospray ionisation mass spectrometry (ESI-MS) as an alternative to inductively coupled plasma mass spectrometry (ICP-MS) for qualitative and quantitative selenium speciation.
Collapse
Affiliation(s)
- Barbara R Cardoso
- Deakin University, Institute for Physical Activity and Nutrition Research (IPAN), School of Exercise and Nutrition Sciences, Geelong, Australia
| | | | | |
Collapse
|
8
|
Methylation of selenocysteine catalysed by thiopurine S-methyltransferase. Biochim Biophys Acta Gen Subj 2018; 1863:182-190. [PMID: 30308221 DOI: 10.1016/j.bbagen.2018.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/25/2018] [Accepted: 10/02/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Methylation driven by thiopurine S-methylatransferase (TPMT) is crucial for deactivation of cytostatic and immunosuppressant thiopurines. Despite its remarkable integration into clinical practice, the endogenous function of TPMT is unknown. METHODS To address the role of TPMT in methylation of selenium compounds, we established the research on saturation transfer difference (STD) and 77Se NMR spectroscopy, fluorescence measurements, as well as computational molecular docking simulations. RESULTS Using STD NMR spectroscopy and fluorescence measurements of tryptophan residues in TPMT, we determined the binding of selenocysteine (Sec) to human recombinant TPMT. By comparing binding characteristics of Sec in the absence and in the presence of methyl donor, we confirmed S-adenosylmethionine (SAM)-induced conformational changes in TPMT. Molecular docking analysis positioned Sec into the active site of TPMT with orientation relevant for methylation reaction. Se-methylselenocysteine (MeSec), produced in the enzymatic reaction, was detected by 77Se NMR spectroscopy. A direct interaction between Sec and SAM in the active site of rTPMT and the formation of both products, MeSec and S-adenosylhomocysteine, was demonstrated using NMR spectroscopy. CONCLUSIONS The present study provides evidence on in vitro methylation of Sec by rTPMT in a SAM-dependant manner. GENERAL SIGNIFICANCE Our results suggest novel role of TPMT and demonstrate new insights into enzymatic modifications of the 21st amino acid.
Collapse
|
9
|
Klencsár B, Li S, Balcaen L, Vanhaecke F. High-performance liquid chromatography coupled to inductively coupled plasma – Mass spectrometry (HPLC-ICP-MS) for quantitative metabolite profiling of non-metal drugs. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.09.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Abstract
Tellurium (Te) is widely used in industry because it has unique physicochemical properties. Although Te is a non-essential element in animals and plants, it is expected to be metabolized to organometallic compounds having a carbon-Te bond in living organisms exposed to inorganic Te compounds. Thus, the speciation and identification of tellurometabolites are expected to contribute to the depiction of the metabolic chart of Te. Speciation by elemental mass spectrometry and identification by molecular mass spectrometry coupled with separation techniques have significantly contributed to the discovery of tellurometabolites in animals and plants. The aim of this mini review is to present recent advances in the biology and toxicology of tellurium as revealed by speciation and identification by molecular mass spectrometry.
Collapse
Affiliation(s)
- Yasumitsu Ogra
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba 260-8675, Japan.
| |
Collapse
|
11
|
Montes-Bayón M, Bettmer J. The Use of Stable Isotopic Tracers in Metallomics Studies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1055:111-137. [DOI: 10.1007/978-3-319-90143-5_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Berthier S, Arnaud J, Champelovier P, Col E, Garrel C, Cottet C, Boutonnat J, Laporte F, Faure P, Hazane-Puch F. Anticancer properties of sodium selenite in human glioblastoma cell cluster spheroids. J Trace Elem Med Biol 2017; 44:161-176. [PMID: 28965572 DOI: 10.1016/j.jtemb.2017.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 04/24/2017] [Indexed: 01/08/2023]
Abstract
Glioblastoma (GBM) is the most common type of primary tumor of the central nervous system with a poor prognosis, needing the development of new therapeutic drugs. Few studies focused on sodium selenite (SS) effects in cancer cells cultured as multicellular tumor spheroids (MCTS or 3D) closer to in vivo tumor. We investigated SS anticancer effects in three human GBM cell lines cultured in 3D: LN229, U87 (O(6)-methyguanine-DNA-methyltransferase (MGMT) negative) and T98G (MGMT positive). SS absorption was evaluated and the cytotoxicity of SS and temozolomide (TMZ), the standard drug used against GBM, were compared. SS impacts on proliferation, cell death, and invasiveness were evaluated as well as epigenetic modifications by focusing on histone deacetylase (HDAC) activity and dimethyl-histone-3-lysine-9 methylation (H3K9m2), after 24h to 72h SS exposition. SS was absorbed by spheroids and was more cytotoxic than TMZ (i.e., for LN229, the IC50 was 38 fold-more elevated for TMZ than SS, at 72h). SS induced a cell cycle arrest in the S phase and apoptosis via caspase-3. SS decreased carbonic anhydrase-9 (CA9) expression, invasion on a Matrigel matrix and modulated E- and N-Cadherin transcript expressions. SS decreased HDAC activity and modulated H3K9m2 levels. 3D model provides a relevant strategy to screen new drugs and SS is a promising drug against GBM that should now be tested in GBM animal models.
Collapse
Affiliation(s)
- Sylvie Berthier
- Cytology Unit, Department of Anatomy and Pathologic Cytology (DACP), Institute of Biology and Pathology, Grenoble Alpes Hospital, CS10217, France
| | - Josiane Arnaud
- Hormonal and Nutritional Biochemistry Unit, Department of Biochemistry, Toxicology and Pharmacology (DBTP), Institute of Biology and Pathology, Grenoble Alpes Hospital, CS10217, France; University Grenoble Alpes, LBFA and BEeSy, Grenoble, France; Inserm, U1055, Grenoble, France
| | - Pierre Champelovier
- Cytology Unit, Department of Anatomy and Pathologic Cytology (DACP), Institute of Biology and Pathology, Grenoble Alpes Hospital, CS10217, France
| | - Edwige Col
- Cytology Unit, Department of Anatomy and Pathologic Cytology (DACP), Institute of Biology and Pathology, Grenoble Alpes Hospital, CS10217, France
| | - Catherine Garrel
- Hormonal and Nutritional Biochemistry Unit, Department of Biochemistry, Toxicology and Pharmacology (DBTP), Institute of Biology and Pathology, Grenoble Alpes Hospital, CS10217, France
| | - Cécile Cottet
- University Grenoble Alpes, LBFA and BEeSy, Grenoble, France; Inserm, U1055, Grenoble, France
| | - Jean Boutonnat
- Cytology Unit, Department of Anatomy and Pathologic Cytology (DACP), Institute of Biology and Pathology, Grenoble Alpes Hospital, CS10217, France
| | - François Laporte
- Hormonal and Nutritional Biochemistry Unit, Department of Biochemistry, Toxicology and Pharmacology (DBTP), Institute of Biology and Pathology, Grenoble Alpes Hospital, CS10217, France
| | - Patrice Faure
- Hormonal and Nutritional Biochemistry Unit, Department of Biochemistry, Toxicology and Pharmacology (DBTP), Institute of Biology and Pathology, Grenoble Alpes Hospital, CS10217, France; Laboratory Hypoxia and Pathology (HP2), Inserm U1042, Faculty of Medicine and Pharmacy, Domaine de la Merci, 38700 La Tronche, France
| | - Florence Hazane-Puch
- Hormonal and Nutritional Biochemistry Unit, Department of Biochemistry, Toxicology and Pharmacology (DBTP), Institute of Biology and Pathology, Grenoble Alpes Hospital, CS10217, France.
| |
Collapse
|
13
|
Di Dato C, Gianfrilli D, Greco E, Astolfi M, Canepari S, Lenzi A, Isidori AM, Giannetta E. Profiling of selenium absorption and accumulation in healthy subjects after prolonged L-selenomethionine supplementation. J Endocrinol Invest 2017; 40:1183-1190. [PMID: 28393316 DOI: 10.1007/s40618-017-0663-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/22/2017] [Indexed: 02/05/2023]
Abstract
PURPOSE Autoimmune thyroiditis and its complications for the reproductive system are a growing problem. Selenium is a common ingredient in numerous food supplements recommended for thyroiditis and pregnancy. A fast, simple method to measure serum selenium concentration will improve knowledge of its pharmacokinetics and toxicity. AIM To validate a useful method to measure serum selenium concentration and to study selenium absorption and accumulation in a prospective interventional study of prolonged treatment. METHODS Thirty healthy volunteers received a single dose of L-selenomethionine one tablet (83 mcg) (Phase 1), a single dose of two tablets (Phase 2), and two tablets daily for 14 days (Phase 3). Total selenium and selenium time profiles were generated by serial sampling (T0, T3, T6, T12, and T24 hours after ingestion-Phases 1 and 2; and T0 and T24 hours-Phase 3). Selenium concentration was investigated by open-vessel acid digestion of small serum volumes followed by hydride generation atomic fluorescence spectroscopy analysis. RESULTS There was a significant increase in serum selenium concentration (mcg/L) in all treatment phases. Significantly increased levels were reached at T3 in Phase 1 (baseline: 76.5 ± 2.47; T3: 82.8 ± 3.28) and at T6 in Phase 2 (83.8 ± 3.46). They remained significantly increased at T12 in Phase 1 and T24 in Phase 2 (79.03 ± 2.69). There was significant selenium accumulation after prolonged intake (14 days) (102.13 ± 5.61). CONCLUSIONS Prolonged selenomethionine administration increases circulating blood selenium concentration and hydride generation atomic fluorescence spectroscopy enables its accurate quantification.
Collapse
Affiliation(s)
- C Di Dato
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - D Gianfrilli
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - E Greco
- Center for Reproductive Medicine, European Hospital, Rome, Italy
| | - M Astolfi
- Chemistry Department, "Sapienza" University of Rome, Rome, Italy
| | - S Canepari
- Chemistry Department, "Sapienza" University of Rome, Rome, Italy
| | - A Lenzi
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - A M Isidori
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - E Giannetta
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy.
| |
Collapse
|
14
|
Deproteinization assessment using isotopically enriched compounds to trace the coprecipitation of low-molecular-weight selenium species with proteins. Anal Biochem 2017; 530:9-16. [PMID: 28476531 DOI: 10.1016/j.ab.2017.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/10/2017] [Accepted: 05/01/2017] [Indexed: 11/21/2022]
Abstract
Studies have shown that information related to the presence of low-molecular-weight metabolites is frequently lost after deproteinization of complex matrices, such as blood and plasma, during sample preparation. Therefore, the effect of several deproteinization reagents on low-molecular-weight selenium species has been compared by species-specific isotope labeling. Two isotopically enriched selenium tracers were used to mimic models of small inorganic anionic (77Se-selenite) and organic zwitterionic (76Se-selenomethionine) species. The results presented here show that the use of a methanol-acetonitrile-acetone (1:1:1 v/v/v) mixture provided approximately two times less tracer loss from plasma samples in comparison with the classic procedure using acetonitrile, which may not be optimal as it leads to important losses of low-molecular-weight selenium species. In addition, the possible interactions between selenium tracers and proteins were investigated, revealing that both coprecipitation phenomena and association with proteins were potentially responsible for selenite tracer losses during protein precipitation in blood samples. However, coprecipitation phenomena were found to be fully responsible for losses of both tracers observed in plasma samples and of the selenomethionine tracer in blood samples. This successfully applied strategy is anticipated to be useful for more extensive future studies in selenometabolomics.
Collapse
|
15
|
Quantification of low molecular weight selenium metabolites in human plasma after treatment with selenite in pharmacological doses by LC-ICP-MS. Anal Bioanal Chem 2016; 408:2293-301. [PMID: 26832729 DOI: 10.1007/s00216-016-9325-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/05/2016] [Accepted: 01/11/2016] [Indexed: 10/22/2022]
Abstract
The paper presents an analytical method for quantification of low molecular weight (LMW) selenium compounds in human plasma based on liquid chromatography inductively coupled plasma mass spectrometry (LC-ICP-MS) and post column isotope dilution-based quantification. Prior to analysis, samples were ultrafiltrated using a cut-off value of 3000 Da. The method was validated in aqueous solution as well as plasma using standards of selenomethionine (SeMet), Se-methylselenocysteine (MeSeCys), selenite, and the selenosugar Se-methylseleno-N-acetylgalactosamine (SeGal) for linearity, precision, recoveries, and limits of detection and quantitation with satisfactory results. The method was applied for analysis of a set of plasma samples from cancer patients receiving selenite treatment in a clinical trial. Three LMW selenium compounds were observed. The main compounds, SeGal and selenite were tentatively identified by retention time matching with standards in different chromatographic systems, while the third minor compound was not identified. The identity of the selenosugar was verified by ESI-MS-MS product ion scanning, while selenite was identified indirectly as the glutathione (GSH) reaction product, GS-Se-SG.
Collapse
|
16
|
Solovyev ND. Importance of selenium and selenoprotein for brain function: From antioxidant protection to neuronal signalling. J Inorg Biochem 2015; 153:1-12. [PMID: 26398431 DOI: 10.1016/j.jinorgbio.2015.09.003] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 09/03/2015] [Accepted: 09/09/2015] [Indexed: 12/21/2022]
Abstract
Multiple biological functions of selenium manifest themselves mainly via 25 selenoproteins that have selenocysteine at their active centre. Selenium is vital for the brain and seems to participate in the pathology of disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and epilepsy. Since selenium was shown to be involved in diverse functions of the central nervous system, such as motor performance, coordination, memory and cognition, a possible role of selenium and selenoproteins in brain signalling pathways may be assumed. The aim of the present review is to analyse possible relations between selenium and neurotransmission. Selenoproteins seem to be of special importance in the development and functioning of GABAergic (GABA, γ-aminobutyric acid) parvalbumin positive interneurons of the cerebral cortex and hippocampus. Dopamine pathway might be also selenium dependent as selenium shows neuroprotection in the nigrostriatal pathway and also exerts toxicity towards dopaminergic neurons under higher concentrations. Recent findings also point to acetylcholine neurotransmission involvement. The role of selenium and selenoproteins in neurotransmission might not only be limited to their antioxidant properties but also to inflammation, influencing protein phosphorylation and ion channels, alteration of calcium homeostasis and brain cholesterol metabolism. Moreover, a direct signalling function was proposed for selenoprotein P through interaction with post-synaptic apoliprotein E receptors 2 (ApoER2).
Collapse
Affiliation(s)
- Nikolay D Solovyev
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 198504, Russian Federation.
| |
Collapse
|
17
|
Human excretory products of selenium are natural constituents of marine fish muscle. Anal Bioanal Chem 2015; 407:7713-9. [DOI: 10.1007/s00216-015-8936-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 10/23/2022]
|
18
|
Godin S, Fontagné-Dicharry S, Bueno M, Tacon P, Prabhu PAJ, Kaushik S, Médale F, Bouyssiere B. Influence of Dietary Selenium Species on Selenoamino Acid Levels in Rainbow Trout. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:6484-6492. [PMID: 26161943 DOI: 10.1021/acs.jafc.5b00768] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Two forms of selenium (Se) supplementation of fish feeds were compared in two different basal diets. A 12-week feeding trial was performed with rainbow trout fry using either a plant-based or a fish meal-based diet. Se yeast and selenite were used for Se supplementation. Total Se and Se speciation were determined in both diets and whole body of trout fry using inductively coupled plasma mass spectrometry (ICP MS) and high-performance liquid chromatography (HPLC). The two selenoamino acids, selenomethionine (SeMet) and selenocysteine (SeCys), were determined in whole body of fry after enzymatic digestion using protease type XIV with a prior derivatization step in the case of SeCys. The plant-based basal diet was found to have a much lower total Se than the fish meal-based basal diet with concentrations of 496 and 1222 μg(Se) kg(-1), respectively. Dietary Se yeast had a higher ability to raise whole body Se compared to selenite. SeMet concentration in the fry was increased only in the case of Se yeast supplementation, whereas SeCys levels were similar at the end of the feeding trial for both Se supplemented forms. The results show that the fate of dietary Se in fry is highly dependent on the form brought through supplementation and that a plant-based diet clearly benefits from Se supplementation.
Collapse
Affiliation(s)
- Simon Godin
- †LCABIE, UMR 5254 CNRS, 2 Avenue Pierre Angot, F-64053 Pau Cedex 09, France
| | | | - Maïté Bueno
- †LCABIE, UMR 5254 CNRS, 2 Avenue Pierre Angot, F-64053 Pau Cedex 09, France
| | - Philippe Tacon
- #Lesaffre Feed Additives, 137 Rue Gabriel Péri, F-59700 Marcq-en-Barœul, France
| | | | - Sachi Kaushik
- §INRA, UR1067 NuMéA, Route Départementale 918, F-64310 Saint-Pée-sur-Nivelle, France
| | - Françoise Médale
- §INRA, UR1067 NuMéA, Route Départementale 918, F-64310 Saint-Pée-sur-Nivelle, France
| | - Brice Bouyssiere
- †LCABIE, UMR 5254 CNRS, 2 Avenue Pierre Angot, F-64053 Pau Cedex 09, France
| |
Collapse
|
19
|
Kokarnig S, Tsirigotaki A, Wiesenhofer T, Lackner V, Francesconi KA, Pergantis SA, Kuehnelt D. Concurrent quantitative HPLC-mass spectrometry profiling of small selenium species in human serum and urine after ingestion of selenium supplements. J Trace Elem Med Biol 2015; 29:83-90. [PMID: 25063689 DOI: 10.1016/j.jtemb.2014.06.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 02/07/2023]
Abstract
Selenium metabolic patterns in the human body originating from five distinct selenium dietary sources, selenate, selenite, selenomethionine (SeMet), methylselenocysteine (MeSeCys) and selenized yeast, were investigated by performing concurrent HPLC-mass spectrometric analysis of human serum and urine. Total selenium and selenium species time profiles were generated by sampling and analyzing serum and urine from volunteers treated with selenium supplements, up to 5 and 24h following ingestion, respectively. We found that an increase in total serum selenium levels, accompanied by elevated selenium urinary excretion, was the common pattern for all treatments, except for that of selenite supplementation. Selenosugar 1 was a universal serum metabolite in all treatments, indicating that ingested selenium is favorably metabolized to the sugar. Except for selenite and selenized yeast ingestion, these patterns were reflected in the urine time series of the different treatments. Selenosugar 1 was the major selenium species present in urine in all treatments except for the selenate treatment, accounting for about 80% of the identified excreted species within 24h of ingestion. Furthermore, the urinary metabolite trimethylselenonium ion (TMSe) was detected for the first time in human background serum by using HPLC coupled to elemental and molecular mass spectrometry. The concurrent monitoring of non-protein selenium species in both body fluids provides the relation between bioavailability and excretion of the individual ingested species and of their metabolic products, while the combined use of elemental and molecular mass spectrometry enables the accurate quantitation of structurally confirmed species. This successfully applied approach is anticipated to be a useful tool for more extensive future studies into human selenium metabolism.
Collapse
Affiliation(s)
- Sabine Kokarnig
- University of Graz, Institute of Chemistry, Analytical Chemistry, NAWI Graz, Universitaetsplatz 1, A-8010 Graz, Austria
| | - Alexandra Tsirigotaki
- University of Crete, Department of Chemistry, Voutes Campus, GR-71003 Heraklion, Crete, Greece
| | - Tanja Wiesenhofer
- University of Graz, Institute of Chemistry, Analytical Chemistry, NAWI Graz, Universitaetsplatz 1, A-8010 Graz, Austria
| | - Verena Lackner
- University of Graz, Buero für ArbeitnehmerInnenschutz und Sicherheit, Halbaerthgasse 6, A-8010 Graz, Austria
| | - Kevin A Francesconi
- University of Graz, Institute of Chemistry, Analytical Chemistry, NAWI Graz, Universitaetsplatz 1, A-8010 Graz, Austria
| | - Spiros A Pergantis
- University of Crete, Department of Chemistry, Voutes Campus, GR-71003 Heraklion, Crete, Greece
| | - Doris Kuehnelt
- University of Graz, Institute of Chemistry, Analytical Chemistry, NAWI Graz, Universitaetsplatz 1, A-8010 Graz, Austria.
| |
Collapse
|
20
|
Guo CH, Hsia S, Shih MY, Hsieh FC, Chen PC. Effects of Selenium Yeast on Oxidative Stress, Growth Inhibition, and Apoptosis in Human Breast Cancer Cells. Int J Med Sci 2015; 12:748-58. [PMID: 26392813 PMCID: PMC4571553 DOI: 10.7150/ijms.12177] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 08/17/2015] [Indexed: 11/12/2022] Open
Abstract
Recent evidence suggests that selenium (Se) yeast may exhibit potential anti-cancer properties; whereas the precise mechanisms remain unknown. The present study was aimed at evaluating the effects of Se yeast on oxidative stress, growth inhibition, and apoptosis in human breast cancer cells. Treatments of ER-positive MCF-7 and triple-negative MDA-MB-231 cells with Se yeast (100, 750, and 1500 ng Se/mL), methylseleninic acid (MSA, 1500 ng Se/mL), or methylselenocysteine (MSC, 1500 ng Se/mL) at a time course experiment (at 24, 48, 72, and 96 h) were analyzed. Se yeast inhibited the growth of these cancer cells in a dose- and time-dependent manner. Compared with the same level of MSA, cancer cells exposure to Se yeast exhibited a lower growth-inhibitory response. The latter has also lower superoxide production and reduced antioxidant enzyme activities. Furthermore, MSA (1500 ng Se/mL)-exposed non-tumorigenic human mammary epithelial cells (HMEC) have a significant growth inhibitory effect, but not Se yeast and MSC. Compared with MSA, Se yeast resulted in a greater increase in the early apoptosis in MCF-7 cells as well as a lower proportion of early and late apoptosis in MDA-MB-231 cells. In addition, nuclear morphological changes and loss of mitochondrial membrane potential were observed. In conclusion, a dose of 100 to 1500 ng Se/mL of Se yeast can increase oxidative stress, and stimulate growth inhibitory effects and apoptosis induction in breast cancer cell lines, but does not affect non-tumorigenic cells.
Collapse
Affiliation(s)
- Chih-Hung Guo
- 1. Institute of Biomedical Nutrition, Hung-Kuang University, Taichung 433, Taiwan ; 2. Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan ; 3. Department of Health and Nutrition Biotechnology, Asia University, Taichung 413, Taiwan ; 4. Taiwan Nutraceutical Association, Taipei 115, Taiwan
| | - Simon Hsia
- 1. Institute of Biomedical Nutrition, Hung-Kuang University, Taichung 433, Taiwan ; 4. Taiwan Nutraceutical Association, Taipei 115, Taiwan
| | - Min-Yi Shih
- 1. Institute of Biomedical Nutrition, Hung-Kuang University, Taichung 433, Taiwan
| | - Fang-Chin Hsieh
- 1. Institute of Biomedical Nutrition, Hung-Kuang University, Taichung 433, Taiwan
| | - Pei-Chung Chen
- 4. Taiwan Nutraceutical Association, Taipei 115, Taiwan ; 5. College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan ; 6. College of Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
21
|
Weekley CM, Aitken JB, Witting PK, Harris HH. XAS studies of Se speciation in selenite-fed rats. Metallomics 2014; 6:2193-203. [PMID: 25363824 PMCID: PMC4244600 DOI: 10.1039/c4mt00227j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The biological activity of selenium is dependent on its chemical form. Therefore, knowledge of Se chemistry in vivo is required for efficacious use of selenium compounds in disease prevention and treatment. Using X-ray absorption spectroscopy, Se speciation in the kidney, liver, heart, spleen, testis and red blood cells of rats fed control (∼0.3 ppm Se) or selenite-supplemented (1 ppm or 5 ppm Se) diets for 3 or 6 weeks, was investigated. X-ray absorption spectroscopy revealed the presence of Se-Se and Se-C species in the kidney and liver, and Se-S species in the kidney, but not the liver. X-ray absorption near edge structure (XANES) spectra showed that there was variation in speciation in the liver and kidneys, but Se speciation was much more uniform in the remaining organs. Using principal component analysis (PCA) to interpret the Se K-edge X-ray absorption spectra, we were able to directly compare the speciation of Se in two different models of selenite metabolism--human lung cancer cells and rat tissues. The effects of Se dose, tissue type and duration of diet on selenium speciation in rat tissues were investigated, and a relationship between the duration of the diet (3 weeks versus 6 weeks) and selenium speciation was observed.
Collapse
Affiliation(s)
- Claire M Weekley
- School of Chemistry and Physics, The University of Adelaide, SA 5005, Australia.
| | | | | | | |
Collapse
|
22
|
Duclos RI, Cleary DC, Catcott KC, Zhou ZS. Synthesis and characterization of Se-adenosyl-L-selenohomocysteine selenoxide. J Sulphur Chem 2014; 36:135-144. [PMID: 26005494 DOI: 10.1080/17415993.2014.979173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Selenium is an essential micronutrient in humans due to the important roles of the selenocysteine-containing selenoproteins. Organoselenium metabolites are generally found to be substrates for the biochemical pathways of their sulfur analogs, and the redox chemistry of selenomethionine and some other metabolites have been previously reported. We now report the first synthesis and characterization of Se-adenosylselenohomocysteine selenoxide (SeAHO) prepared via hydrogen peroxide oxidation of Se-adenosylselenohomocysteine (SeAH). The selenoxide SeAHO, in contrast to its corresponding sulfoxide S-adenosylhomocysteine (SAHO), can form hydrate, has an electrostatic interaction between the α-amino acid moiety and the highly polar selenoxide functional group, and readily oxidizes glutathione (GSH) and cysteine thiols.
Collapse
Affiliation(s)
- Richard I Duclos
- Department of Pharmaceutical Sciences, 140 The Fenway Bldg., Room 206, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115-5000, Tel: +1 617 373 3163
| | - Dillon C Cleary
- Department of Chemistry and Chemical Biology, Hurtig Hall, Room 102, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115-5000, Tel: +1 617 373 2800
| | - Kalli C Catcott
- Department of Chemistry and Chemical Biology, Hurtig Hall, Room 102, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115-5000, Tel: +1 617 373 2800
| | - Zhaohui Sunny Zhou
- Department of Chemistry and Chemical Biology, Hurtig Hall, Room 102, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115-5000, Tel: +1 617 373 2800
| |
Collapse
|
23
|
Pinto JT, Krasnikov BF, Alcutt S, Jones ME, Dorai T, Villar MT, Artigues A, Li J, Cooper AJL. Kynurenine aminotransferase III and glutamine transaminase L are identical enzymes that have cysteine S-conjugate β-lyase activity and can transaminate L-selenomethionine. J Biol Chem 2014; 289:30950-61. [PMID: 25231977 DOI: 10.1074/jbc.m114.591461] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Three of the four kynurenine aminotransferases (KAT I, II, and IV) that synthesize kynurenic acid, a neuromodulator, are identical to glutamine transaminase K (GTK), α-aminoadipate aminotransferase, and mitochondrial aspartate aminotransferase, respectively. GTK/KAT I and aspartate aminotransferase/KAT IV possess cysteine S-conjugate β-lyase activity. The gene for the former enzyme, GTK/KAT I, is listed in mammalian genome data banks as CCBL1 (cysteine conjugate beta-lyase 1). Also listed, despite the fact that no β-lyase activity has been assigned to the encoded protein in the genome data bank, is a CCBL2 (synonym KAT III). We show that human KAT III/CCBL2 possesses cysteine S-conjugate β-lyase activity, as does mouse KAT II. Thus, depending on the nature of the substrate, all four KATs possess cysteine S-conjugate β-lyase activity. These present studies show that KAT III and glutamine transaminase L are identical enzymes. This report also shows that KAT I, II, and III differ in their ability to transaminate methyl-L-selenocysteine (MSC) and L-selenomethionine (SM) to β-methylselenopyruvate (MSP) and α-ketomethylselenobutyrate, respectively. Previous studies have identified these seleno-α-keto acids as potent histone deacetylase inhibitors. Methylselenol (CH3SeH), also purported to have chemopreventive properties, is the γ-elimination product of SM and the β-elimination product of MSC catalyzed by cystathionine γ-lyase (γ-cystathionase). KAT I, II, and III, in part, can catalyze β-elimination reactions with MSC generating CH3SeH. Thus, the anticancer efficacy of MSC and SM will depend, in part, on the endogenous expression of various KAT enzymes and cystathionine γ-lyase present in target tissue coupled with the ability of cells to synthesize in situ either CH3SeH and/or seleno-keto acid metabolites.
Collapse
Affiliation(s)
- John T Pinto
- From the Departments of Biochemistry and Molecular Biology and
| | | | - Steven Alcutt
- From the Departments of Biochemistry and Molecular Biology and
| | - Melanie E Jones
- From the Departments of Biochemistry and Molecular Biology and
| | - Thambi Dorai
- Urology, New York Medical College, Valhalla, New York 10595
| | - Maria T Villar
- the Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, and
| | - Antonio Artigues
- the Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, and
| | - Jianyong Li
- the Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
| | | |
Collapse
|
24
|
Rigby MC, Lemly AD, Gerads R. Fish toxicity testing with selenomethionine spiked feed--what's the real question being asked? ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2014; 16:511-517. [PMID: 24473081 DOI: 10.1039/c3em00612c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The US Environmental Protection Agency and several U.S. states and Canadian provinces are currently developing national water quality criteria for selenium that are based in part on toxicity tests performed by feeding freshwater fish a selenomethionine-spiked diet. Using only selenomethionine to examine the toxicity of selenium is based in part on the limitations of the analytical chemistry methods commonly used in the 1990s and 2000s to speciate selenium in freshwater biota. While these methods provided a good starting point, recent improvements in analytical chemistry methodology have demonstrated that selenium speciation in biota is far more complex than originally thought. Here, we review the recent literature that suggests that there are numerous additional selenium species present in freshwater food chains and that the toxicities of these other selenium species, both individually and in combination, have not been evaluated in freshwater fishes. Evidence from studies on birds and mammals suggests that the other selenium forms differ in their metabolic pathways and toxicity from selenomethionine. Therefore, we conclude that toxicity testing using selenomethionine-spiked feed is only partly addressing the question "what is the toxicity of selenium to freshwater fishes?" and that using the results of these experiments to derive freshwater quality criteria may lead to biased water quality criteria. We also discuss additional studies that are needed in order to derive a more ecologically relevant freshwater quality criterion for selenium.
Collapse
Affiliation(s)
- Mark C Rigby
- Parsons, 10235 South Jordan Gateway, Suite 300, South Jordan, Utah 84095, USA.
| | | | | |
Collapse
|
25
|
Determination of selenium compounds in food supplements using reversed-phase liquid chromatography–inductively coupled plasma mass spectrometry. Microchem J 2013. [DOI: 10.1016/j.microc.2013.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Tsopelas F, Kakoulidou AT, Ochsenkühn-Petropoulou M. Lipophilicity, biomimetic retention profile and antioxidant activity of selenium species. Microchem J 2013. [DOI: 10.1016/j.microc.2013.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Weekley CM, Aitken JB, Finney L, Vogt S, Witting PK, Harris HH. Selenium metabolism in cancer cells: the combined application of XAS and XFM techniques to the problem of selenium speciation in biological systems. Nutrients 2013; 5:1734-56. [PMID: 23698165 PMCID: PMC3708347 DOI: 10.3390/nu5051734] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/02/2013] [Accepted: 05/06/2013] [Indexed: 01/23/2023] Open
Abstract
Determining the speciation of selenium in vivo is crucial to understanding the biological activity of this essential element, which is a popular dietary supplement due to its anti-cancer properties. Hyphenated techniques that combine separation and detection methods are traditionally and effectively used in selenium speciation analysis, but require extensive sample preparation that may affect speciation. Synchrotron-based X-ray absorption and fluorescence techniques offer an alternative approach to selenium speciation analysis that requires minimal sample preparation. We present a brief summary of some key HPLC-ICP-MS and ESI-MS/MS studies of the speciation of selenium in cells and rat tissues. We review the results of a top-down approach to selenium speciation in human lung cancer cells that aims to link the speciation and distribution of selenium to its biological activity using a combination of X-ray absorption spectroscopy (XAS) and X-ray fluorescence microscopy (XFM). The results of this approach highlight the distinct fates of selenomethionine, methylselenocysteine and selenite in terms of their speciation and distribution within cells: organic selenium metabolites were widely distributed throughout the cells, whereas inorganic selenium metabolites were compartmentalized and associated with copper. New data from the XFM mapping of electrophoretically-separated cell lysates show the distribution of selenium in the proteins of selenomethionine-treated cells. Future applications of this top-down approach are discussed.
Collapse
Affiliation(s)
- Claire M. Weekley
- School of Chemistry and Physics, The University of Adelaide, Adelaide, SA 5005, Australia; E-Mail:
| | - Jade B. Aitken
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia; E-Mail:
| | - Lydia Finney
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA; E-Mails: (L.F.); (S.V.)
- Biosciences Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Stefan Vogt
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA; E-Mails: (L.F.); (S.V.)
| | - Paul K. Witting
- The Discipline of Pathology, Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia; E-Mail:
| | - Hugh H. Harris
- School of Chemistry and Physics, The University of Adelaide, Adelaide, SA 5005, Australia; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +61-08-8313-5060; Fax: +61-08-8313-4358
| |
Collapse
|
28
|
Inductively coupled plasma-MS in drug development: bioanalytical aspects and applications. Bioanalysis 2013; 4:1933-65. [PMID: 22943623 DOI: 10.4155/bio.12.141] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The vast majority of today's modern bioanalytical methods for pharmacokinetic, pharmacodynamic and immunogenicity purposes are based on LC-MS/MS and immunoanalytical approaches. Indeed, these methodologies are suitable for a wide range of molecules from small to large. For a smaller but not insignificant group of compounds, LC-MS/MS is not suitable - or in some cases much less suitable - as a reliable bioanalytical methodology, and inductively coupled plasma (ICP)-MS is a more appropriate methodology. ICP-MS is one of these less widely used techniques in drug development. This methodology is predominantly used for elemental bioanalysis for pharmacokinetics, for imaging purposes, for mass-balance, food-effect and biomarker studies. In addition, in the last couple of years an increasing number of applications has been published, where ICP-MS and its various hyphenations (LC-ICP-MS, CE-ICP-MS) have been used for speciation/metabolism and proteomics studies. Here, the analytical potential, the quantitative bioanalytical aspects, the various modes of operation and the challenges of the application of ICP-MS in life sciences applications are given. This includes an overview of recent applications in this area in scientific literature, the various hyphenation possibilities and their application areas and the analysis of the various sample matrices applicable to these fields. It also provides a brief outlook of where the potential of this technique lies in the future of regulated bioanalysis and drug development.
Collapse
|
29
|
Anan Y, Ogra Y. Toxicological and pharmacological analysis of selenohomolanthionine in mice. Toxicol Res (Camb) 2013. [DOI: 10.1039/c2tx20050c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
30
|
Weekley CM, Harris HH. Which form is that? The importance of selenium speciation and metabolism in the prevention and treatment of disease. Chem Soc Rev 2013; 42:8870-94. [DOI: 10.1039/c3cs60272a] [Citation(s) in RCA: 371] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
31
|
Németh A, García Reyes JF, Kosáry J, Dernovics M. The relationship of selenium tolerance and speciation in Lecythidaceae species. Metallomics 2013; 5:1663-73. [DOI: 10.1039/c3mt00140g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Affiliation(s)
- Yasumitsu Ogra
- Laboratory of Chemical Toxicology and Environmental Health, Showa Pharmaceutical University
- High Technology Research Center, Showa Pharmaceutical University
| | - Yasumi Anan
- Laboratory of Chemical Toxicology and Environmental Health, Showa Pharmaceutical University
| |
Collapse
|
33
|
SUZUKI T, STURGEON RE, ZHENG C, HIOKI A, NAKAZATO T, TAO H. Influence of Speciation on the Response from Selenium to UV-Photochemical Vapor Generation. ANAL SCI 2012; 28:807-11. [DOI: 10.2116/analsci.28.807] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Toshihiro SUZUKI
- National Research Council Canada, Measurement Science and Standards Portfolio
- National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology
| | - Ralph E. STURGEON
- National Research Council Canada, Measurement Science and Standards Portfolio
| | | | - Akiharu HIOKI
- National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology
| | - Tetsuya NAKAZATO
- Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology
| | - Hiroaki TAO
- Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology
| |
Collapse
|
34
|
Effect of bis(maltolato)oxovanadium (IV) (BMOV) on selenium nutritional status in diabetic streptozotocin rats. Br J Nutr 2011; 108:893-9. [DOI: 10.1017/s0007114511006131] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The role of V as a micronutrient, and its hypoglycaemic and toxicological activity, have yet to be completely established. The present study focuses on changes in the bioavailability and tissue distribution of Se in diabetic streptozotocin rats following treatment with V. The following four study groups were examined: control; diabetic (DM); diabetic treated with 1 mg V/d (DMV); diabetic treated with 3 mg V/d (DMVH). V was supplied in the drinking water as bis(maltolato)oxovanadium (IV). The experiment had a duration of 5 weeks. Se was measured in food, faeces, urine, serum, muscle, kidney, liver and spleen. Glucose and insulin serum were studied, together with glutathione peroxidase (GSH-Px), glutathione reductase (GR), glutathione transferase (GST) activity and malondialdehyde (MDA) levels in the liver. In the DM group, we recorded higher levels of food intake, Se absorbed, Se retained, Se content in the kidney, liver and spleen, GSH-Px and GST activity, in comparison with the control rats. In the DMV group, there was a significant decrease in food intake, Se absorbed, Se retained and Se content in the liver and spleen, and in GSH-Px and GST activity, while fasting glycaemia and MDA remained unchanged, in comparison with the DM group. In the DMVH group, there was a significant decrease in food intake, glycaemia, Se absorbed, Se retained, Se content in the kidney, liver and spleen, and in GSH-Px and GST activity, and increased MDA, in comparison with the DM and DMV groups. We conclude that under the experimental conditions described, the treatment with 3 mg V/d caused a tissue depletion of Se that compromised Se nutritional status and antioxidant defences in the tissues.
Collapse
|
35
|
Montgomery JB, Wichtel JJ, Wichtel MG, McNiven MA, McClure JT. The efficacy of selenium treatment of forage for the correction of selenium deficiency in horses. Anim Feed Sci Technol 2011. [DOI: 10.1016/j.anifeedsci.2011.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
36
|
Weekley CM, Aitken JB, Vogt S, Finney LA, Paterson DJ, de Jonge MD, Howard DL, Musgrave IF, Harris HH. Uptake, Distribution, and Speciation of Selenoamino Acids by Human Cancer Cells: X-ray Absorption and Fluorescence Methods. Biochemistry 2011; 50:1641-50. [DOI: 10.1021/bi101678a] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Claire M. Weekley
- School of Chemistry and Physics, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Jade B. Aitken
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Stefan Vogt
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Lydia A. Finney
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | | | | | | | - Ian F. Musgrave
- School of Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Hugh H. Harris
- School of Chemistry and Physics, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
37
|
|
38
|
Lunøe K, Gabel-Jensen C, Stürup S, Andresen L, Skov S, Gammelgaard B. Investigation of the selenium metabolism in cancer cell lines. Metallomics 2011; 3:162-8. [DOI: 10.1039/c0mt00091d] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Gammelgaard B, Jackson MI, Gabel-Jensen C. Surveying selenium speciation from soil to cell--forms and transformations. Anal Bioanal Chem 2010; 399:1743-63. [PMID: 20953781 DOI: 10.1007/s00216-010-4212-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 09/08/2010] [Indexed: 12/21/2022]
Abstract
The aim of this review is to present and evaluate the present knowledge of which selenium species are available to the general population in the form of food and common supplements and how these species are metabolized in mammals. The overview of the selenium sources takes a horizontal approach, which encompasses identification of new metabolites in yeast and food of plant and animal origin, whereas the survey of the mammalian metabolism takes a horizontal as well as a vertical approach. The vertical approach encompasses studies on dynamic conversions of selenium compounds within cells, tissues or whole organisms. New and improved sample preparation, separation and detection methods are evaluated from an analytical chemical perspective to cover the progress in horizontal speciation, whereas the analytical methods for the vertical speciation and the interpretations of the results are evaluated from a biological angle as well.
Collapse
Affiliation(s)
- Bente Gammelgaard
- Department of Pharmaceutics and Analytical Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | | | | |
Collapse
|
40
|
Wallschläger D, Feldmann J. Formation, Occurrence, Significance, and Analysis of Organoselenium and Organotellurium Compounds in the Environment. ORGANOMETALLICS IN ENVIRONMENT AND TOXICOLOGY 2010. [DOI: 10.1039/9781849730822-00319] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Among all environmentally-relevant trace elements, selenium has one of the most diverse organic chemistries. It is also one of the few trace elements that may biomagnify in food chains under certain conditions. Yet, the exact chemical forms of selenium involved in the uptake into organisms and transfer to higher trophic levels, as well as the biochemical mechanisms that lead to their subsequent metabolism in organisms, are still not well understood. This is in part due to the analytical challenges associated with measuring the myriad of discrete Se species occurring in organisms. While there are generalized concepts of selenium metabolism, there is a lack of conclusive analytical evidence supporting the existence of many postulated intermediates. Likewise, there is a disconnect between the major selenium species encountered in abiotic compartments (waters, soils, and sediment), and those found in organisms, which renders the qualitative and quantitative description of the bioaccumulation process uncertain. Here, we summarize the knowledge on important selenium and tellurium species in all environmental compartments, and identify gaps and uncertainties in the existing body of knowledge, with emphasis on problems associated with past and current analytical methodology.
Collapse
Affiliation(s)
- Dirk Wallschläger
- Environmental & Resource Sciences Program and Department of Chemistry, Trent University 1600 West Bank Dr. Peterborough ON K9J 7B8 Canada
| | - Jörg Feldmann
- Trace Element Speciation Laboratory (TESLA), College of Physical Science, University of Aberdeen Meston Walk Aberdeen Scotland AB24 3UE UK
| |
Collapse
|
41
|
Gabel-Jensen C, Lunøe K, Gammelgaard B. Formation of methylselenol, dimethylselenide and dimethyldiselenide in in vitro metabolism models determined by headspace GC-MS. Metallomics 2010; 2:167-73. [DOI: 10.1039/b914255j] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Kapsimali D, Zachariadis G. Headspace and direct immersion solid phase microextraction procedures for selenite determination in urine, saliva and milk by gas chromatography mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:3210-4. [DOI: 10.1016/j.jchromb.2009.08.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 08/17/2009] [Accepted: 08/19/2009] [Indexed: 10/20/2022]
|
43
|
Hotta H, Mori T, Takahashi A, Kogure Y, Johno K, Umemura T, Tsunoda KI. Quantification of Trace Elements in Natural Samples by Electrospray Ionization Mass Spectrometry with a Size-Exclusion Column Based on the Formation of Metal−Aminopolycarboxylate Complexes. Anal Chem 2009; 81:6357-63. [DOI: 10.1021/ac9006842] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hiroki Hotta
- Department of Chemistry and Chemical Biology, Gunma University, Tenjin-cho, Kiryu 376-8515, Japan, and Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Takayuki Mori
- Department of Chemistry and Chemical Biology, Gunma University, Tenjin-cho, Kiryu 376-8515, Japan, and Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Akira Takahashi
- Department of Chemistry and Chemical Biology, Gunma University, Tenjin-cho, Kiryu 376-8515, Japan, and Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Yuta Kogure
- Department of Chemistry and Chemical Biology, Gunma University, Tenjin-cho, Kiryu 376-8515, Japan, and Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Keita Johno
- Department of Chemistry and Chemical Biology, Gunma University, Tenjin-cho, Kiryu 376-8515, Japan, and Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Tomonari Umemura
- Department of Chemistry and Chemical Biology, Gunma University, Tenjin-cho, Kiryu 376-8515, Japan, and Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Kin-ichi Tsunoda
- Department of Chemistry and Chemical Biology, Gunma University, Tenjin-cho, Kiryu 376-8515, Japan, and Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| |
Collapse
|
44
|
Nian H, Bisson WH, Dashwood WM, Pinto JT, Dashwood RH. Alpha-keto acid metabolites of organoselenium compounds inhibit histone deacetylase activity in human colon cancer cells. Carcinogenesis 2009; 30:1416-23. [PMID: 19528666 DOI: 10.1093/carcin/bgp147] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Methylselenocysteine (MSC) and selenomethionine (SM) are two organoselenium compounds receiving interest for their potential anticancer properties. These compounds can be converted to beta-methylselenopyruvate (MSP) and alpha-keto-gamma-methylselenobutyrate (KMSB), alpha-keto acid metabolites that share structural features with the histone deacetylase (HDAC) inhibitor butyrate. We tested the organoselenium compounds in an in vitro assay with human HDAC1 and HDAC8; whereas SM and MSC had little or no activity up to 2 mM, MSP and KMSB caused dose-dependent inhibition of HDAC activity. Subsequent experiments identified MSP as a competitive inhibitor of HDAC8, and computational modeling supported a mechanism involving reversible interaction with the active site zinc atom. In human colon cancer cells, acetylated histone H3 levels were increased during the period 0.5-48 h after treatment with MSP and KMSB, and there was dose-dependent inhibition of HDAC activity. The proportion of cells occupying G(2)/M of the cell cycle was increased at 10-50 microM MSP and KMSB, and apoptosis was induced, as evidenced by morphological changes, Annexin V staining and increased cleaved caspase-3, -6, -7, -9 and poly(adenosine diphosphate-ribose)polymerase. P21WAF1, a well-established target gene of clinically used HDAC inhibitors, was increased in MSP- and KMSB-treated colon cancer cells at both the messenger RNA and protein level, and there was enhanced P21WAF1 promoter activity. These studies confirm that in addition to targeting redox-sensitive signaling molecules, alpha-keto acid metabolites of organoselenium compounds alter HDAC activity and histone acetylation status in colon cancer cells, as recently observed in human prostate cancer cells.
Collapse
Affiliation(s)
- Hui Nian
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | |
Collapse
|
45
|
Shigeta K, Matsumura K, Suzuki Y, Shinohara A, Furuta N. Distribution and dynamic pathway of selenium species in selenium-deficient mice injected with (82)Se-enriched selenite. ANAL SCI 2009; 24:1117-22. [PMID: 18781022 DOI: 10.2116/analsci.24.1117] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In order to elucidate Se metabolism in a living body, (82)Se-enriched selenite was injected intravenously into mice fed Se-adequate and -deficient diets. We studied the time-dependent changes in the distribution of the labeled Se in organs, red blood cells, and plasma. The total Se was determined by flow-injection ICPMS, and Se speciation analysis was conducted by micro-affinity chromatography coupled with low-flow ICPMS. Total Se in almost all organs, including liver, showed the maximum at 1 h after injection. From speciation analysis, exogenous (82)Se as Se-containing proteins other than selenoprotein P (Sel-P) (selenium containing albumin (SeAlb) and extra cellular glutathione peroxidase (eGPx)), peaked at 1 h and quickly decreased from 1 to 6 h after injection, whereas that as Sel-P, peaked at 6 h, and gradually decreased from 6 to 72 h after injection. We found that there were two pathways for the transfer of Se in mice; one was as SeAlb until 1 h after injection, and the other was as Sel-P from 6 to 72 h after injection.
Collapse
Affiliation(s)
- Kaori Shigeta
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Bunkyo, Tokyo 112-8551, Japan
| | | | | | | | | |
Collapse
|
46
|
Infante HG, Borrego AA, Peachey E, Hearn R, O'Connor G, Barrera TG, Ariza JLG. Study of the effect of sample preparation and cooking on the selenium speciation of selenized potatoes by HPLC with ICP-MS and electrospray ionization MS/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:38-45. [PMID: 19093878 DOI: 10.1021/jf802650q] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The efficiency of enzymatic hydrolysis and leaching with water using accelerated solvent extraction (ASE) or boiling was investigated for quantitative Se speciation in selenized potatoes using reversed phase HPLC coupled to ICP-MS. Preliminary identification of selenomethionine (SeMet), Se-methylselenocysteine (SeMeCys), and selenate in extracts of potato skin and flesh was achieved using complementary reversed phase and anion-exchange HPLC-ICP-MS and retention time matching with standards. The quantitative speciation data revealed a higher percentage of selenomethionine (73% of the total Se) found in the flesh in comparison with skin (containing 21% of the total Se as SeMet). ASE and boiling in water were found to be similar in terms of Se extraction efficiency and profiles. However, ASE was found to be more efficient than boiling with respect to sample cleanup and reduced sample handling. The presence of SeMet at parts per billion levels in selenized potatoes was confirmed by reversed phase HPLC with online ESI MS/MS.
Collapse
|
47
|
Becker JS, Jakubowski N. The synergy of elemental and biomolecular mass spectrometry: new analytical strategies in life sciences. Chem Soc Rev 2009; 38:1969-83. [DOI: 10.1039/b618635c] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Dernovics M, Far J, Lobinski R. Identification of anionic selenium species in Se-rich yeast by electrospray QTOF MS/MS and hybrid linear ion trap/orbitrap MSn. Metallomics 2009; 1:317-29. [DOI: 10.1039/b901184f] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
OGRA Y. Toxicometallomics for Research on the Toxicology of Exotic Metalloids Based on Speciation Studies. ANAL SCI 2009; 25:1189-95. [DOI: 10.2116/analsci.25.1189] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yasumitsu OGRA
- Laboratory of Chemical Toxicology and Environmental Health, Showa Pharmaceutical University
| |
Collapse
|
50
|
Navarro-Alarcon M, Cabrera-Vique C. Selenium in food and the human body: a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2008; 400:115-41. [PMID: 18657851 DOI: 10.1016/j.scitotenv.2008.06.024] [Citation(s) in RCA: 484] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 06/16/2008] [Accepted: 06/16/2008] [Indexed: 05/08/2023]
Abstract
Selenium levels in soil generally reflect its presence in food and the Se levels in human populations. Se food content is influenced by geographical location, seasonal changes, protein content and food processing. Periodic monitoring of Se levels in soil and food is necessary. Diet is the major Se source and approximately 80% of dietary Se is absorbed depending on the type of food consumed. Se bioavailability varies according to the Se source and nutritional status of the subject, being significantly higher for organic forms of Se. Se supplements can be beneficial for subjects living in regions with very low environmental levels of Se. Several strategies have been followed: (1) employment of Se-enriched fertilizers; (2) supplementation of farm animals with Se; (3) consumption of multimicronutrient supplements with Se. Nevertheless, detailed investigations of possible interactions between Se supplements and other food components and their influence on Se bioavailability are needed. Suppliers also need to provide more information on the specific type of Se used in supplements. In addition, research is lacking on the mechanisms through which Se is involved in hepatocyte damage during hepatopathies. Although Se potential as an antioxidant for the prevention of cardiovascular diseases (CVD) is promising, additional long-term intervention trials are necessary. As a result, indiscriminate Se supplements cannot be reliably recommended for the prevention of CVD in human beings. Some interesting findings reported an association of Se intake with a reduced prevalence and risk for prostate and colon cancer. However, random trials for other cancer types are inconclusive. As a final conclusion, the general population should be warned against the employment of Se supplements for prevention of hepatopathies, cardiovascular or cancer diseases, because benefits of Se supplementation are still uncertain, and their indiscriminate use could generate an increased risk of Se toxicity.
Collapse
|