1
|
Liu J, Xu X, Wu A, Song S, Kuang H, Liu L, Wang Z, Xu L, Sun M, Xu C. An immunochromatographic assay for the rapid detection of oxadixyl in cucumber, tomato and wine samples. Food Chem 2022; 379:132131. [DOI: 10.1016/j.foodchem.2022.132131] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/21/2021] [Accepted: 01/08/2022] [Indexed: 12/22/2022]
|
2
|
Hamed SM, Hozzein WN, Selim S, Mohamed HS, AbdElgawad H. Dissipation of pyridaphenthion by cyanobacteria: Insights into cellular degradation, detoxification and metabolic regulation. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123787. [PMID: 33254796 DOI: 10.1016/j.jhazmat.2020.123787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 06/12/2023]
Abstract
Excessive use of organophosphorus pesticides such as pyridaphenthion (PY) to constrain insects induced crop loss, results in soil and water sources contamination. Cyanobacteria are sensitive biological indicators and promising tools for bioremediation of soil and water pollutants. To understand PY toxicity, detoxification and degradation in cyanobacteria, we performed a comparative study in the two diazotrophic cyanobacteria; Anabaena laxa and Nostoc muscorum. They were exposed to mild (5 mg/L) and high (10 mg/L) concentrations of PY for 7 days. Compared to A. laxa, N. muscorum efficiently showed high PY accumulation and degradation to a safe environmentally product; 6-hydroxy-2-phenylpyridazin-3(2 H)-one. PY inhibited cell growth and reduced Chl a content and photosynthesis related enzymes (PEPC and RuBisCo) activities in both species, but to less extend in N. muscorum. It also induced oxidative damage, particularly in A. laxa, as indicated by high H2O2, lipid peroxidation and protein oxidation levels and increased NADPH oxidase enzyme activity. N. muscorum invested more in antioxidants induction, i.e., induced ascorbate and glutathione cycle, however, these antioxidants increments in A. laxa were less pronounced. Overall, this study provides more in-deep insights into the PY toxicity and the role of N. muscorum as a promising PY remediator.
Collapse
Affiliation(s)
- Seham M Hamed
- Soil Microbiology Department, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, P.O. 175, El‒Orman, Egypt.
| | - Wael N Hozzein
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Samy Selim
- Microbiology and Botany Department, Faculty of Science, Suez Canal University, Ismailia, P.O. Box 41522, Egypt
| | - Hussein S Mohamed
- Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni, Suef City, Egypt
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
3
|
Hamed SM, Hassan SH, Selim S, Wadaan MAM, Mohany M, Hozzein WN, AbdElgawad H. Differential responses of two cyanobacterial species to R-metalaxyl toxicity: Growth, photosynthesis and antioxidant analyses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113681. [PMID: 31843238 DOI: 10.1016/j.envpol.2019.113681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/24/2019] [Accepted: 11/26/2019] [Indexed: 05/12/2023]
Abstract
Metalaxyl is a broad-spectrum chiral fungicide that used for the protection of plants, however extensive use of metalaxyl resulted in serious environmental problems. Thus, a study on the detoxification mechanism in algae/cyanobacteria and their ability for phycoremediation is highly recommended. Here, we investigated the physiological and biochemical responses of two cyanobacterial species; Anabaena laxa and Nostoc muscorum to R-metalaxyl toxicity as well as their ability as phycoremediators. Two different levels of R-metalaxyl, at mild (10 mg/L) and high dose (25 mg/L), were applied for one-week. We found that A. laxa absorbed and accumulated more intracellular R-metalaxyl compared to N. muscorum. R-metalaxyl, which triggered a dose-based reduction in cell growth, photosynthetic pigment content, and photosynthetic key enzymes' activities i.e., phosphoenolpyruvate carboxylase (PEPC) and ribulose‒1,5‒bisphosphate carboxylase/oxygenase (RuBisCo). These decreases were significantly less pronounced in A. laxa. On the other hand, R-metalaxyl significantly induced oxidative damage markers, e.g., H2O2 levels, lipid peroxidation (MDA), protein oxidation and NADPH oxidase activity. However, these increases were also lower in A. laxa compared to N. muscorum. To alleviate R-metalaxyl toxicity, A. laxa induced the polyphenols, flavonoids, tocopherols and glutathione (GSH) levels as well as peroxidase (POX), glutathione peroxidase (GPX), glutathione reductase (GR) and glutathione-s-transferase (GST) enzyme activities. On the contrary, the significant induction of antioxidants in N. muscorum was restricted to ascorbate, catalase (CAT) and ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR) enzyme activities. Although A. laxa accumulated more R-metalaxyl, it experienced less stress due to subsequent induction of antioxidants. Therefore, A. laxa may be a promising R-metalaxyl phycoremediator. Our results provided basic data for understanding the ecotoxicology of R-metalaxyl contamination in aquatic habitats and the toxicity indices among cyanobacteria.
Collapse
Affiliation(s)
- Seham M Hamed
- Soil Microbiology Department, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, P.O. 175, El‒Orman, Egypt.
| | - Sherif H Hassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, P.O. 2014, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, P.O. 2014, Saudi Arabia; Microbiology and Botany Department, Faculty of Science, Suez Canal University, Ismailia, P.O. Box 41522, Egypt
| | - Mohammed A M Wadaan
- Bioproducts Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Wael N Hozzein
- Bioproducts Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt; Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
5
|
Jiang Z, Li H, Cao X, Du P, Shao H, Jin F, Jin M, Wang J. Determination of hymexazol in 26 foods of plant origin by modified QuEChERS method and liquid chromatography tandem-mass spectrometry. Food Chem 2017; 228:411-419. [DOI: 10.1016/j.foodchem.2017.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 01/28/2017] [Accepted: 02/05/2017] [Indexed: 10/20/2022]
|
6
|
Teixeira J, Sousa AD, Azenha M, Moreira JT, Fidalgo F, Fernando Silva A, Faria JL, Silva AMT. Solanum nigrum L. weed plants as a remediation tool for metalaxyl-polluted effluents and soils. CHEMOSPHERE 2011; 85:744-750. [PMID: 21741070 DOI: 10.1016/j.chemosphere.2011.06.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Revised: 06/08/2011] [Accepted: 06/10/2011] [Indexed: 05/31/2023]
Abstract
In this work, the phytoremediation potential of metalaxyl, a commonly used persistent, mobile and leachy fungicide, by Solanum nigrum L. plants was studied. The study revealed that this plant species can be used as an excellent metalaxyl phytoremediation tool, thus providing a cost effective and environmentally friendly clean technology for the decontamination of sites and effluents. As it can be sowed directly in the remediation site, is able to complete its life cycle without suffering major stress. Because it accumulates high amounts of the fungicide in the aboveground tissues, enables its concentration and proper disposal by cutting off the corresponding plant part. The study also suggests that the tolerance to metalaxyl is due to a suitable antioxidant response comprising proline accumulation and guaiacol peroxidase and glutathione-S-transferase enhanced activities, that reduce oxidative damage to the plant organs.
Collapse
Affiliation(s)
- Jorge Teixeira
- Center for Biodiversity, Functional & Integrative Genomics (BioFIG), Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Viñas P, Martínez-Castillo N, Campillo N, Hernández-Córdoba M. Liquid–liquid microextraction methods based on ultrasound-assisted emulsification and single-drop coupled to gas chromatography–mass spectrometry for determining strobilurin and oxazole fungicides in juices and fruits. J Chromatogr A 2010; 1217:6569-77. [DOI: 10.1016/j.chroma.2010.08.046] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 08/15/2010] [Accepted: 08/18/2010] [Indexed: 11/30/2022]
|
8
|
Oros G, Cserháti T. Reversed Phase Thin Layer Chromatographic Behavior of Some Acylanilide Fungicides. J LIQ CHROMATOGR R T 2009. [DOI: 10.1080/10826070902854896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Gy. Oros
- a Plant Protection Institute , Hungarian Academy of Sciences , Budapest, Hungary
| | - T. Cserháti
- b Research Institute of Materials and Environmental Chemistry , Chemical Research Center, Hungarian Academy of Sciences , Budapest, Hungary
| |
Collapse
|
9
|
Biazon CL, Brambilla R, Rigacci A, Pizzolato TM, dos Santos JHZ. Combining silica-based adsorbents and SPME fibers in the extraction of the volatiles of beer: an exploratory study. Anal Bioanal Chem 2009; 394:549-56. [DOI: 10.1007/s00216-009-2695-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 02/01/2009] [Accepted: 02/09/2009] [Indexed: 11/28/2022]
|
10
|
Viñas P, Aguinaga N, Campillo N, Hernández-Córdoba M. Comparison of stir bar sorptive extraction and membrane-assisted solvent extraction for the ultra-performance liquid chromatographic determination of oxazole fungicide residues in wines and juices. J Chromatogr A 2008; 1194:178-83. [DOI: 10.1016/j.chroma.2008.04.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 04/14/2008] [Accepted: 04/17/2008] [Indexed: 10/22/2022]
|