1
|
Tsuyama Y, Mawatari K. Nanofluidic Detection Platform for Simultaneous Light Absorption and Scattering Measurement of Individual Nanoparticles in Flow. Anal Chem 2024; 96:11430-11438. [PMID: 38959081 DOI: 10.1021/acs.analchem.4c01671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Characterization and quantification of plasmonic nanoparticles at the single particle level have become increasingly important with the advancements in nanotechnology and their application to various biological analyses including diagnostics, photothermal therapy, and immunoassays. While various nanoparticle detection methodologies have been developed and widely used, simultaneous measurement of light absorption and scattering from individual plasmonic nanoparticles in flow is still challenging. Herein, we describe a novel nanofluidic detection platform that enables simultaneous measurement of absorption and scattering signals from individual nanoparticles within a nanochannel. Our detection platform utilized optical diffraction phenomena by a single nanochannel as both a readout signal for photothermal detection and a reference light for interferometric scattering detection. Through the elucidation of the frequency effect on the detection performance and optimization of experimental conditions, we achieved the classification of gold and silver nanoparticles with a diameter of 20-60 nm at an average accuracy score of 82.6 ± 2.1% by measured data sets of absorption and scattering signals. Furthermore, we demonstrated the concentration determination of plasmonic nanoparticle mixtures using a trained Support vector machine (SVM) classifier. Our simple yet sensitive nanofluidic detection platform will be a valuable tool for the analysis of nanoparticles and their applications to chemical and biological assays.
Collapse
Affiliation(s)
- Yoshiyuki Tsuyama
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Kazuma Mawatari
- Graduate School of Information, Production and Systems, Waseda University, 2-7, Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan
| |
Collapse
|
2
|
Rathnayaka C, Amarasekara CA, Akabirov K, Murphy MC, Park S, Witek MA, Soper SA. Nanofluidic devices for the separation of biomolecules. J Chromatogr A 2022; 1683:463539. [PMID: 36223665 PMCID: PMC9795076 DOI: 10.1016/j.chroma.2022.463539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 12/30/2022]
Abstract
Over the last 30-years, microchip electrophoresis and its applications have expanded due to the benefits it offers. Nanochip electrophoresis, on the other hand, is viewed as an evolving area of electrophoresis because it offers some unique advantages not associated with microchip electrophoresis. These advantages arise from unique phenomena that occur in the nanometer domain not readily apparent in the microscale domain due to scale-dependent effects. Scale-dependent effects associated with nanochip electrophoresis includes high surface area-to-volume ratio, electrical double layer overlap generating parabolic flow even for electrokinetic pumping, concentration polarization, transverse electromigration, surface charge dominating flow, and surface roughness. Nanochip electrophoresis devices consist of channels with dimensions ranging from 1 to 1000 nm including classical (1-100 nm) and extended (100 nm - 1000 nm) nanoscale devices. In this review, we highlight scale-dependent phenomena associated with nanochip electrophoresis and the utilization of those phenomena to provide unique biomolecular separations that are not possible with microchip electrophoresis. We will also review the range of materials used for nanoscale separations and the implication of material choice for the top-down fabrication and operation of these devices. We will also provide application examples of nanochip electrophoresis for biomolecule separations with an emphasis on nano-electrophoresis (nEP) and nano-electrochromatography (nEC).
Collapse
Affiliation(s)
- Chathurika Rathnayaka
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA; Center of BioModular Multiscale Systems for Precision Medicine, USA
| | - Charuni A Amarasekara
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA; Center of BioModular Multiscale Systems for Precision Medicine, USA
| | - Khurshed Akabirov
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA; Center of BioModular Multiscale Systems for Precision Medicine, USA
| | - Michael C Murphy
- Center of BioModular Multiscale Systems for Precision Medicine, USA; Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70810, USA
| | - Sunggook Park
- Center of BioModular Multiscale Systems for Precision Medicine, USA; Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70810, USA
| | - Malgorzata A Witek
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA; Center of BioModular Multiscale Systems for Precision Medicine, USA
| | - Steven A Soper
- Department of Chemistry, The University of Kansas, Lawrence, KS 66045, USA; Center of BioModular Multiscale Systems for Precision Medicine, USA; Department of Mechanical Engineering, The University of Kansas, Lawrence, KS 66045, USA; Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA; KU Cancer Center and Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
3
|
Yamamoto K, Morikawa K, Imanaka H, Imamura K, Kitamori T. Kinetics of Enzymatic Reactions at the Solid/Liquid Interface in Nanofluidic Channels. Anal Chem 2022; 94:15686-15694. [DOI: 10.1021/acs.analchem.2c02878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Koki Yamamoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo113-8656, Japan
| | - Kyojiro Morikawa
- Institute of Nanoengineering and Microsystems, Department of Power Mechanical Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu300044, Taiwan, ROC
- Collaborative Research Organization for Micro and Nano Multifunctional Devices, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo113-8656, Japan
| | - Hiroyuki Imanaka
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kita-Ku, Okayama700-8530, Japan
| | - Koreyoshi Imamura
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kita-Ku, Okayama700-8530, Japan
| | - Takehiko Kitamori
- Institute of Nanoengineering and Microsystems, Department of Power Mechanical Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu300044, Taiwan, ROC
- Collaborative Research Organization for Micro and Nano Multifunctional Devices, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo113-8656, Japan
| |
Collapse
|
4
|
Saruko T, Morikawa K, Kitamori T, Mawatari K. Proton diffusion and hydrolysis enzymatic reaction in 100 nm scale biomimetic nanochannels. BIOMICROFLUIDICS 2022; 16:044109. [PMID: 35992637 PMCID: PMC9385217 DOI: 10.1063/5.0105297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Liquids in 10-100 nm spaces are expected to play an important role in biological systems. However, the liquid properties and their influence on biological activity have been obscured due to the difficulty in nanoscale measurements, either in vivo or in vitro. In this study, an in vitro analytical platform for biological systems is established. The nanochannels were modified with lipid bilayers, thereby serving as a model for biological confinement, e.g., the intercellular or intracellular space. As a representative property, the proton diffusion coefficient was measured by a nanofluidic circuit using fluorescein as a pH probe. It was verified that proton conduction was enhanced for channel widths less than 330 nm. A proton-related enzymatic reaction, the hydrolysis reaction, was also investigated, and a large confinement effect was observed.
Collapse
Affiliation(s)
- Takashi Saruko
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Kyojiro Morikawa
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | | | | |
Collapse
|
5
|
|
6
|
Park E, Lim S. Dynamic phase control with printing and fluidic materials' interaction by inkjet printing an RF sensor directly on a stereolithographic 3D printed microfluidic structure. LAB ON A CHIP 2021; 21:4364-4378. [PMID: 34585708 DOI: 10.1039/d1lc00419k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stereolithographic (SL) three-dimensional (3D) printing of microfluidic channels and inkjet printing of radio frequency (RF) electronics are promising lab-on-a-chip technologies. However, the effective integration of the two techniques has been challenging since the fabricated parts need to be combined via an additional bonding process, such as plasma bonding. This study proposes combining RF electronics with SL printed microfluidic structures by directly inkjet printing onto a 3D printed mould. This allows the inkjet printing of RF electronics with high conductivity (8 × 106 S m-1) and high resolution (50 μm) as a surface modification of the 3D printed mould. This process combines the three-dimensional printing of microfluidic parts and the inkjet printing of RF sensors into a single process. The proposed approach increases the interaction between a printed RF part and a fluid material by adjusting the distance between them, and it can be applied to various resins and 3D printing methods. Furthermore, the proposed fabrication process was applied to a dynamic phase advanced and delayed transmission line (TL) operating at 3.8 GHz as a fluidic sensor. Consequently, using the same pattern, a higher phase shift range per microliter of 10° was obtained than the 1° for conventional phase shift TLs.
Collapse
Affiliation(s)
- Eiyong Park
- School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Sungjoon Lim
- School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
7
|
Morrin GT, Kienle DF, Schwartz DK. Diffusion of Short Semiflexible DNA Polymer Chains in Strong and Moderate Confinement. ACS Macro Lett 2021; 10:1191-1195. [PMID: 35549041 DOI: 10.1021/acsmacrolett.1c00470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In many technological applications, DNA is confined within nanoenvironments that are smaller than the size of the unconfined polymer in solution. However, the dependence of the diffusion coefficient on molecular weight and characteristic confinement dimension remains poorly understood in this regime. Here, convex lens-induced confinement (CLiC) was leveraged to examine how the diffusion of short DNA fragments varied as a function of slit height by using single-molecule fluorescence tracking microscopy. The diffusion coefficient followed approximate power law behavior versus confinement height, with exponents of 0.27 ± 0.01, 0.32 ± 0.02, and 0.42 ± 0.06 for 692, 1343, and 2686 base pair chains, respectively. The weak dependence on slit height suggests that shorter semiflexible chains may adopt increasingly rodlike conformations and therefore experience weaker excluded-volume interactions as the confinement dimension is reduced. The diffusion coefficient versus molecular weight also exhibited apparent power law behavior, with exponents that varied slightly (from -0.89 to -0.85) with slit height, consistent with hydrodynamic interactions intermediate between Rouse and Zimm model predictions.
Collapse
Affiliation(s)
- Gregory T Morrin
- Department of Chemical and Biological Engineering University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Daniel F Kienle
- Department of Chemical and Biological Engineering University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
8
|
Fabrication of Ultranarrow Nanochannels with Ultrasmall Nanocomponents in Glass Substrates. MICROMACHINES 2021; 12:mi12070775. [PMID: 34209303 PMCID: PMC8305551 DOI: 10.3390/mi12070775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 11/24/2022]
Abstract
Nanofluidics is supposed to take advantage of a variety of new physical phenomena and unusual effects at nanoscales typically below 100 nm. However, the current chip-based nanofluidic applications are mostly based on the use of nanochannels with linewidths above 100 nm, due to the restricted ability of the efficient fabrication of nanochannels with narrow linewidths in glass substrates. In this study, we established the fabrication of nanofluidic structures in glass substrates with narrow linewidths of several tens of nanometers by optimizing a nanofabrication process composed of electron-beam lithography and plasma dry etching. Using the optimized process, we achieved the efficient fabrication of fine glass nanochannels with sub-40 nm linewidths, uniform lateral features, and smooth morphologies, in an accurate and precise way. Furthermore, the use of the process allowed the integration of similar or dissimilar material-based ultrasmall nanocomponents in the ultranarrow nanochannels, including arrays of pockets with volumes as less as 42 zeptoliters (zL, 10−21 L) and well-defined gold nanogaps as narrow as 19 nm. We believe that the established nanofabrication process will be very useful for expanding fundamental research and in further improving the applications of nanofluidic devices.
Collapse
|
9
|
Diffraction-based label-free photothermal detector for separation analyses in a nanocapillary. J Chromatogr A 2021; 1648:462214. [PMID: 34004365 DOI: 10.1016/j.chroma.2021.462214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/19/2021] [Accepted: 04/25/2021] [Indexed: 11/23/2022]
Abstract
Miniaturization of column diameter in liquid chromatography is one of the major trends in separation sciences toward single-cell proteomics and metabolomics. Micro/nanoscale open tubular (OT) capillaries are promising tools for efficient separation analyses of the ultra-small volume of samples. However, highly sensitive and label-free on-column detection is still challenging for such ultra-small capillaries. In this study, we developed a photothermal detector using optical diffraction phenomena by a single nanocapillary. Our detection method realized concentration determination of unlabeled sample solutions in a nanocapillary with 460 nm inner diameter. The calculated limit of detection was 0.12 µM, which corresponds to 16 molecules in a detection volume of 0.23 fL. Furthermore, normal-phase chromatography was performed on a 12 cm long nanocapillary, and femtoliter sample injection, efficient separation, and label-free detection of dye molecules were demonstrated. Our photothermal detector will be widely used as a universal tool for chemical/biological analyses using capillaries with micro/nanoscale diameters.
Collapse
|
10
|
Yamamoto K, Ota N, Tanaka Y. Nanofluidic Devices and Applications for Biological Analyses. Anal Chem 2021; 93:332-349. [PMID: 33125221 DOI: 10.1021/acs.analchem.0c03868] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Koki Yamamoto
- Laboratory for Integrated Biodevice, Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nobutoshi Ota
- Laboratory for Integrated Biodevice, Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yo Tanaka
- Laboratory for Integrated Biodevice, Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
11
|
Morrin GT, Kienle DF, Weltz JS, Traeger JC, Schwartz DK. Polyelectrolyte Surface Diffusion in a Nanoslit Geometry. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gregory T. Morrin
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Daniel F. Kienle
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - James S. Weltz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Jeremiah C. Traeger
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Daniel K. Schwartz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
12
|
Nakao T, Kazoe Y, Mori E, Morikawa K, Fukasawa T, Yoshizaki A, Kitamori T. Cytokine analysis on a countable number of molecules from living single cells on nanofluidic devices. Analyst 2020; 144:7200-7208. [PMID: 31691693 DOI: 10.1039/c9an01702j] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Analysis of proteins released from living single cells is strongly required in the fields of biology and medicine to elucidate the mechanism of gene expression, cell-cell communication and cytopathology. However, as living single-cell analysis involves fL sample volumes with ultra-small amounts of analyte, comprehensive integration of entire chemical processing for single cells and proteins into spaces smaller than single cells (pL) would be indispensable to prevent dispersion-associated analyte loss. In this study, we proposed and developed a living single-cell protein analysis device based on micro/nanofluidics and demonstrated analysis of cytokines released from living single B cells by enzyme-linked immunosorbent assay. Based on our integration method and technologies including top-down nanofabrication, surface modifications and pressure-driven flow control, we designed and prepared the device where pL-microfluidic- and fL-nanofluidic channels are hierarchically allocated for cellular and molecular processing, respectively, and succeeded in micro/nanofluidic control for manipulating single cells and molecules. 13-unit operations for pL-cellular processing including single-cell trapping and stimulation and fL-molecular processing including fL-volumetry, antigen-antibody reactions and detection were entirely integrated into a microchip. The results suggest analytical performances for countable interleukin (IL)-6 molecules at the limit of detection of 5.27 molecules and that stimulated single B cells secrete 3.41 IL-6 molecules per min. The device is a novel tool for single-cell targeted proteomics, and the methodology of device integration is applicable to other single-cell analyses such as single-cell shotgun proteomics. This study thus provides a general approach and technical breakthroughs that will facilitate further advances in micro/nanofluidics, single-cell life science research, and other fields.
Collapse
Affiliation(s)
- Tatsuro Nakao
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan.
| | | | | | | | | | | | | |
Collapse
|
13
|
Yamamoto K, Morikawa K, Imanaka H, Imamura K, Kitamori T. Picoliter enzyme reactor on a nanofluidic device exceeding the bulk reaction rate. Analyst 2020; 145:5801-5807. [DOI: 10.1039/d0an00998a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A picoliter enzyme reactor using a trypsin immobilized nanochannel realized 25 times faster reaction than the bulk reaction.
Collapse
Affiliation(s)
- Koki Yamamoto
- Department of Bioengineering
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Kyojiro Morikawa
- Department of Applied Chemistry
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Hiroyuki Imanaka
- Division of Chemistry and Biochemistry
- Graduate School of Natural Science and Technology
- Okayama University
- Okayama 700-8530
- Japan
| | - Koreyoshi Imamura
- Division of Chemistry and Biochemistry
- Graduate School of Natural Science and Technology
- Okayama University
- Okayama 700-8530
- Japan
| | - Takehiko Kitamori
- Department of Bioengineering
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| |
Collapse
|
14
|
Kazoe Y, Ugajin T, Ohta R, Mawatari K, Kitamori T. Parallel multiphase nanofluidics utilizing nanochannels with partial hydrophobic surface modification and application to femtoliter solvent extraction. LAB ON A CHIP 2019; 19:3844-3852. [PMID: 31596292 DOI: 10.1039/c9lc00793h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the field of microfluidics, utilizing parallel multiphase flows with immiscible liquid/liquid or gas/liquid interfaces along a microchannel has achieved the integration of various chemical processes for analyses and syntheses. Recently, our group has developed nanofluidics that exploits 100 nm nanochannels to realize ultra-small (aL to fL scale) and highly efficient chemical operations. Novel applications such as single-molecule analyses and single-cell omics are anticipated. However, the formation of parallel multiphase flows in a nanochannel remains challenging. To this end, here we developed a novel method for nanoscale partial hydrophobic surface modification of a nanochannel utilizing a focused ion beam. Hydrophobic and hydrophilic areas could be patterned beside one another even in a 60 nm glass nanochannel. Because this patterning maintained the liquid/liquid interface in the nanochannel based on the difference in wettability, stable aqueous/organic parallel two-phase flow in a 40 fL nanochannel was realized for the first time. Utilizing this flow, nanoscale unit operations involving phase confluence, extraction and phase separation were integrated to demonstrate solvent extraction of a lipid according to the Bligh-Dyer method, which is a broadly used pretreatment process in lipidomics. We accomplished the separation of a lipid and an amino acid in a sample volume of 4 fL (250 times smaller than the pL volume of a single cell) with a processing time of 1 ms (10 000 times faster than that in a microchannel). This study therefore provides a technological breakthrough that advances the field of nanofluidics to allow multiphase chemical processing at fL volumes.
Collapse
Affiliation(s)
- Yutaka Kazoe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan.
| | - Takuya Ugajin
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan.
| | - Ryoichi Ohta
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Kazuma Mawatari
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan.
| | - Takehiko Kitamori
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan.
| |
Collapse
|
15
|
Kazoe Y, Pihosh Y, Takahashi H, Ohyama T, Sano H, Morikawa K, Mawatari K, Kitamori T. Femtoliter nanofluidic valve utilizing glass deformation. LAB ON A CHIP 2019; 19:1686-1694. [PMID: 30942790 DOI: 10.1039/c8lc01340c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In the field of micro/nanofluidics, the channel open/close valves are among the most important technologies for switching and partitioning actions and integration of various operations into fluidic circuits. While several types of valves have been developed in microfluidics, few are capable in nanofluidics. In this study, we proposed a femtoliter (fL) volume nanochannel open/close valve fabricated in glass substrates. The valve consists of a shallow, circular and stepped-bottom valve chamber connected to nanochannels and an actuator. Even with tiny deformation occurring at the nanolevel in glass, an open/closed state of a nanochannel (10-1000 nm) can be achieved. We designed a fL-valve based on an analytical material deformation model, and developed a valve fabrication process. We then verified the open/closed state of the valve using a 308 fL-valve chamber with a four-stepped nanostructure fitting an arc-shape of deflected glass, confirmed its stability and durability over 50 open/close operations, and succeeded in stopping/flowing an aqueous solution at 209 fL s-1 under a 100 kPa pressure in a 900 nm nanochannel with a fast response of ∼0.65 s. A leak flow from the closed valve was sufficiently small even at a 490 kPa pressure-driven flow. Since the developed fL-valve can be applied to various nanofluidic devices made of glass and other rigid materials such as plastic, it is expected that this work will contribute significantly to the development of novel integrated micro/nanofluidics chemical systems for use in various applications, such as single cell/single molecule analysis.
Collapse
Affiliation(s)
- Yutaka Kazoe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Single-Molecule Detection of DNA in a Nanochannel by High-Field Strength-Assisted Electrical Impedance Spectroscopy. MICROMACHINES 2019; 10:mi10030189. [PMID: 30875869 PMCID: PMC6470947 DOI: 10.3390/mi10030189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 11/17/2022]
Abstract
Many researchers have fabricated micro and nanofluidic devices incorporating optical, chemical, and electrical detection systems with the aim of achieving on-chip analysis of macromolecules. The present study demonstrates a label-free detection of DNA using a nanofluidic device based on impedance measurements that is both sensitive and simple to operate. Using this device, the electrophoresis and dielectrophoresis effect on DNA conformation and the length dependence were examined. A low alternating voltage was applied to the nanogap electrodes to generate a high intensity field (>0.5 MV/m) under non-faradaic conditions. In addition, a 100 nm thick gold electrode was completely embedded in the substrate to allow direct measurements of a solution containing the sample passing through the gap, without any surface modification required. The high intensity field in this device produced a dielectrophoretic force that stretched the DNA molecule across the electrode gap at a specific frequency, based on back and forth movements between the electrodes with the DNA in a random coil conformation. The characteristics of 100 bp, 500 bp, 1 kbp, 5 kbp, 10 kbp, and 48 kbp λ DNA associated with various conformations were quantitatively analyzed with high resolution (on the femtomolar level). The sensitivity of this system was found to be more than about 10 orders of magnitude higher than that obtained from conventional linear alternating current (AC) impedance for the analysis of bio-polymers. This new high-sensitivity process is expected to be advantageous with regard to the study of complex macromolecules and nanoparticles.
Collapse
|
17
|
Ohta R, Mawatari K, Takeuchi T, Morikawa K, Kitamori T. Detachable glass micro/nanofluidic device. BIOMICROFLUIDICS 2019; 13:024104. [PMID: 30915180 PMCID: PMC6417905 DOI: 10.1063/1.5087003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
Glass is one of the most ideal materials for micro/nanofluidic devices due to its excellent optical transparency, resistance to a wide range of solvents and reagents, and easy to modify surfaces by silane-coupling reagents. From a practical point of view, glass is a hard material and is suitable for real applications. One of the advantages of glass is its reusability; however, this reusability is difficult to realize in certain conditions. Washing or re-modification of micro/nanofluidic channels is sometimes difficult due to the ultrasmall space in these channels. If the glass devices are detachable, it is easy to access the channel surface, and the channels can be cleaned and re-modified. When the substrates are bonded again, the devices are fabricated easily without repeating laborious and expensive micro/nano-fabrication processes. This technology gives researchers and users a choice of glass substrates in fundamental research studies and real-time applications. In this study, we propose a detachable glass micro/nanofluidic device by our low temperature bonding method. The surface bonding energy is controlled to realize both high pressure capacity for micro/nanofluidics and easy separation of glass substrates without fracturing. As a result, at least four times detaching and bonding is confirmed.
Collapse
Affiliation(s)
- Ryoichi Ohta
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Kazuma Mawatari
- Author to whom correspondence should be addressed: . Fax: +81-3-5841-6039
| | - Tomoaki Takeuchi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Kyojiro Morikawa
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | | |
Collapse
|
18
|
Shimizu H, Toyoda K, Mawatari K, Terabe S, Kitamori T. Femtoliter Gradient Elution System for Liquid Chromatography Utilizing Extended Nanofluidics. Anal Chem 2019; 91:3009-3014. [PMID: 30661360 DOI: 10.1021/acs.analchem.8b05302] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A gradient system was developed for the separation of proteins on a femtoliter scale utilizing nanofluidic channels. In the history of chromatography, miniaturization of the separation column has been important for efficient separation and downsizing of instruments. Previously, our group developed a small and highly efficient chromatography system utilizing nanofluidic channels, although a flexible design of the gradient was difficult and separation of proteins was not achieved. Here, we propose a flexible gradient system using standard HPLC pumps and an auxiliary mixer with a simple sample injection system. In contrast to our previous sample injection system using pressure balance, the system enables a femtoliter-scale sample injection which is compatible with gradient elution using HPLC pumps. The system was carefully designed, verified for sample injection and gradient elution, and finally applied to the separation of proteins from model and real samples. This femtoliter-scale, efficient separation system will contribute to omics studies at the single-cell level.
Collapse
Affiliation(s)
- Hisashi Shimizu
- International Research Center for Neurointelligence , The University of Tokyo , 7-3-1, Hongo , Bunkyo, Tokyo 113-0033 , Japan
| | - Kouto Toyoda
- Department of Applied Chemistry, School of Engineering , The University of Tokyo , 7-3-1, Hongo , Bunkyo, Tokyo 113-8656 , Japan
| | - Kazuma Mawatari
- Department of Applied Chemistry, School of Engineering , The University of Tokyo , 7-3-1, Hongo , Bunkyo, Tokyo 113-8656 , Japan
| | - Shigeru Terabe
- Graduate School of Material Science , University of Hyogo , 3-2-1, Kouto , Kamigori , Hyogo 678-1297 , Japan
| | - Takehiko Kitamori
- Department of Applied Chemistry, School of Engineering , The University of Tokyo , 7-3-1, Hongo , Bunkyo, Tokyo 113-8656 , Japan
| |
Collapse
|
19
|
Shirai K, Mawatari K, Ohta R, Shimizu H, Kitamori T. A single-molecule ELISA device utilizing nanofluidics. Analyst 2019; 143:943-948. [PMID: 29364290 DOI: 10.1039/c7an01144j] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Single molecule analysis is desired in many areas that require the analysis of ultra-small volume and/or extremely low concentration samples (e.g., single-cell biology, medicine diagnosis, virus detection, etc.). Due to the ultra-small volume or concentration, the sample contains only single or countable analyte molecules. Thus, specific single molecules should be precisely processed and detected for analysis. However, except nucleic acids, most molecules are difficult to amplify, and a new analytical methodology for specific single molecules is thus essential. For this, efficient chemical processing and detection, which are important analytical elements, should be developed. Here, we report a single-molecule ELISA (enzyme-linked immunosorbent assay) device utilizing micro/nanofluidic technology. Both chemical processing and detection were integrated into an ultra-small space (102 nm in size), and the integration allowed precise processing (∼100% capture) and detection of a specific single molecule (protein) for the first time. This new concept and enabling technology represent a significant innovation in analytical chemistry and will have a large impact on general biology and medicine.
Collapse
Affiliation(s)
- Kentaro Shirai
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan.
| | | | | | | | | |
Collapse
|
20
|
Nakao T, Mawatari K, Kazoe Y, Mori E, Shimizu H, Kitamori T. Enzyme-linked immunosorbent assay utilizing thin-layered microfluidics. Analyst 2019; 144:6625-6634. [DOI: 10.1039/c9an01491h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An antibody-immobilized thin-layered glass microfluidic channel with a high surface-to-volume ratio was developed for rapid and sensitive enzyme-linked immunosorbent assay.
Collapse
Affiliation(s)
- Tatsuro Nakao
- Department of Bioengineering
- School of Engineering
- The University of Tokyo
- Tokyo 113–8656
- Japan
| | - Kazuma Mawatari
- Department of Bioengineering
- School of Engineering
- The University of Tokyo
- Tokyo 113–8656
- Japan
| | - Yutaka Kazoe
- Department of Applied Chemistry
- School of Engineering
- The University of Tokyo
- Tokyo 113–8656
- Japan
| | - Emi Mori
- Department of Applied Chemistry
- School of Engineering
- The University of Tokyo
- Tokyo 113–8656
- Japan
| | - Hisashi Shimizu
- Department of Applied Chemistry
- School of Engineering
- The University of Tokyo
- Tokyo 113–8656
- Japan
| | - Takehiko Kitamori
- Department of Bioengineering
- School of Engineering
- The University of Tokyo
- Tokyo 113–8656
- Japan
| |
Collapse
|
21
|
Silva BFB. SAXS on a chip: from dynamics of phase transitions to alignment phenomena at interfaces studied with microfluidic devices. Phys Chem Chem Phys 2018; 19:23690-23703. [PMID: 28828415 DOI: 10.1039/c7cp02736b] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The field of microfluidics offers attractive possibilities to perform novel experiments that are difficult (or even impossible) to perform using conventional bulk and surface-based methods. Such attractiveness comes from several important aspects inherent to these miniaturized devices. First, the flow of fluids under submillimeter confinement typically leads to a drop of inertial forces, meaning that turbulence is practically suppressed. This leads to predictable and controllable flow profiles, along with well-defined chemical gradients and stress fields that can be used for controlled mixing and actuation on the micro and nanoscale. Secondly, intricate microfluidic device designs can be fabricated using cleanroom standard procedures. Such intricate geometries can take diverse forms, designed by researchers to perform complex tasks, that require exquisite control of flow of several components and gradients, or to mimic real world examples, facilitating the establishment of more realistic models. Thirdly, microfluidic devices are usually compatible with in situ or integrated characterization methods that allow constant real-time monitoring of the processes occurring inside the microchannels. This is very different from typical bulk-based methods, where usually one can only observe the final result, or otherwise, take quick snapshots of the evolving process or take aliquots to be analyzed separately. Altogether, these characteristics inherent to microfluidic devices provide researchers with a set of tools that allow not only exquisite control and manipulation of materials at the micro and nanoscale, but also observation of these effects. In this review, we will focus on the use and prospects of combining microfluidic devices with in situ small-angle X-ray scattering (and related techniques such as small-angle neutron scattering and X-ray photon correlation spectroscopy), and their enormous potential for physical-chemical research, mainly in self-assembly and phase-transitions, and surface characterization.
Collapse
Affiliation(s)
- Bruno F B Silva
- Department of Life Sciences, INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga 4715-330, Portugal.
| |
Collapse
|
22
|
|
23
|
Xu Y. Nanofluidics: A New Arena for Materials Science. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1702419. [PMID: 29094401 DOI: 10.1002/adma.201702419] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/04/2017] [Indexed: 06/07/2023]
Abstract
A significant growth of research in nanofluidics is achieved over the past decade, but the field is still facing considerable challenges toward the transition from the current physics-centered stage to the next application-oriented stage. Many of these challenges are associated with materials science, so the field of nanofluidics offers great opportunities for materials scientists to exploit. In addition, the use of unusual effects and ultrasmall confined spaces of well-defined nanofluidic environments would offer new mechanisms and technologies to manipulate nanoscale objects as well as to synthesize novel nanomaterials in the liquid phase. Therefore, nanofluidics will be a new arena for materials science. In the past few years, burgeoning progress has been made toward this trend, as overviewed in this article, including materials and methods for fabricating nanofluidic devices, nanofluidics with functionalized surfaces and functional material components, as well as nanofluidics for manipulating nanoscale materials and fabricating new nanomaterials. Many critical challenges as well as fantastic opportunities in this arena lie ahead. Some of those, which are of particular interest, are also discussed.
Collapse
Affiliation(s)
- Yan Xu
- Department of Chemical Engineering, Graduate School of Engineering, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570, Japan
| |
Collapse
|
24
|
Ouyang W, Han J, Wang W. Nanofluidic crystals: nanofluidics in a close-packed nanoparticle array. LAB ON A CHIP 2017; 17:3006-3025. [PMID: 28752878 PMCID: PMC5602602 DOI: 10.1039/c7lc00588a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
With various promising applications demonstrated, nanofluidics has been of broad research interest in the past decade. As nanofluidics matures from a proof of concept towards practical applications, it faces two major barriers: expensive nanofabrication and ultra-low throughput. To date, the only material that enables nanofabrication-free, high-throughput, yet precisely controllable nanofluidic systems is the close-packed nanoparticle array, i.e. nanofluidic crystals. Recently, significant progress in nanofluidics has been made using nanofluidic crystals, including high-current ionic diodes, high-power energy harvesters, efficient biomolecular separation, and facile biosensors. Nanofluidic crystals are seen as a key to applying nanofluidic concepts to real-world applications. In this review, we introduce the key concepts and models in nanofluidic crystals, summarize the fabrication methods, and discuss the various applications of nanofluidic crystals in depth, highlighting their advantages in terms of simple fabrication, low cost, flexibility, and high throughput. Finally, we provide our perspectives on the future of nanofluidic crystals and their potential impacts.
Collapse
Affiliation(s)
- Wei Ouyang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
- Institute of Microelectronics, Peking University, Beijing, 100871, P.R. China
| | - Jongyoon Han
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| | - Wei Wang
- Institute of Microelectronics, Peking University, Beijing, 100871, P.R. China
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Beijing, 100871, P.R. China
| |
Collapse
|
25
|
Shimizu H, Smirnova A, Mawatari K, Kitamori T. Extended-nano chromatography. J Chromatogr A 2017; 1490:11-20. [DOI: 10.1016/j.chroma.2016.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/05/2016] [Accepted: 09/05/2016] [Indexed: 12/31/2022]
|
26
|
Funano SI, Ota N, Sato A, Tanaka Y. A method of packaging molecule/cell-patterns in an open space into a glass microfluidic channel by combining pressure-based low/room temperature bonding and fluorosilane patterning. Chem Commun (Camb) 2017; 53:11193-11196. [DOI: 10.1039/c7cc04744d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A fabrication method of a “post-molecule/cell patterned” glass microchip was developed by pressure-based bonding and patterning with a fluorosilane coupling reagent.
Collapse
Affiliation(s)
| | | | - Asako Sato
- Quantitative Biology Center (QBiC)
- RIKEN
- Suita
- Japan
| | - Yo Tanaka
- Quantitative Biology Center (QBiC)
- RIKEN
- Suita
- Japan
| |
Collapse
|
27
|
Fritzsche J, Albinsson D, Fritzsche M, Antosiewicz TJ, Westerlund F, Langhammer C. Single Particle Nanoplasmonic Sensing in Individual Nanofluidic Channels. NANO LETTERS 2016; 16:7857-7864. [PMID: 27960495 PMCID: PMC5201310 DOI: 10.1021/acs.nanolett.6b04124] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/14/2016] [Indexed: 05/25/2023]
Abstract
Nanoplasmonics allows label-free optical sensing and spectroscopy at the single nanoparticle level by exploiting plasmonic excitations in metal nanoparticles. Nanofluidics offers exclusive possibilities for applying and controlling fluid flow and mass transport at the nanoscale and toward nanosized objects. Here, we combine these two concepts in a single device, by integrating single particle nanoplasmonic sensing with nanofluidics using advanced nanofabrication. The developed devices enable on-chip referenced parallel single particle nanoplasmonic sensing inside multiple individual nanofluidic channels with dimensions down to the 100 nm range. Beyond detailed discussion of the nanofabrication, general device characterization, and parallelized single particle plasmonic readout concepts, we demonstrate device function on two examples: (i) in situ measurements of local buffer concentrations inside a nanofluidic channel; (ii) real time binding kinetics of alkanethiol molecules to a single plasmonic nanonatenna sensor in a single nanochannel. Our concept thus provides a powerful solution for controlling mass transport to and from individual (plasmonic) nanoparticles, which in a long-term perspective offers unique opportunities for label-free detection of analyte molecules at low concentrations and for fundamental studies of fluids in extreme confinement.
Collapse
Affiliation(s)
- Joachim Fritzsche
- Department
of Physics and Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - David Albinsson
- Department
of Physics and Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | | | | | - Fredrik Westerlund
- Department
of Physics and Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Christoph Langhammer
- Department
of Physics and Department of Biology and Biological Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| |
Collapse
|
28
|
Lin L, Mawatari K, Morikawa K, Kitamori T. Living Single Cell Analysis Platform Utilizing Microchannel, Single Cell Chamber, and Extended-nano Channel. ANAL SCI 2016; 32:75-8. [PMID: 26753709 DOI: 10.2116/analsci.32.75] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Single cell analysis has been of great interest in recent years. In particular, to achieve living single cell analysis is the ultimate goal to study the dynamic process of the single cell. However, single cell volume is pL in scale, and it is difficult to realize living single cell analysis, even by microfluidic technology (nL-sub nL). Herein, a novel microfluidic platform was developed by integrating a single cell chamber and an extended-nano channel (aL-fL volume). A single cell was isolated and cultured for more than 12 h by pressure-driven flow control. In addition, an electric resistance measurement method was developed to monitor the cell viability without fluorescence labeling. This platform will provide a new method for living single cell analysis by utilizing the novel analytical functions of the extended-nano space.
Collapse
Affiliation(s)
- Ling Lin
- Department of Bioengineering, School of Engineering, The University of Tokyo
| | | | | | | |
Collapse
|
29
|
Ota N, Owa Y, Kawai T, Tanaka Y. Micro/nanoparticle separation via curved nano-gap device with enhanced size resolution. J Chromatogr A 2016; 1455:172-177. [DOI: 10.1016/j.chroma.2016.05.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/13/2016] [Accepted: 05/20/2016] [Indexed: 02/04/2023]
|
30
|
Hibara A, Fukuyama M, Chung M, Priest C, Proskurnin MA. Interfacial Phenomena and Fluid Control in Micro/Nanofluidics. ANAL SCI 2016; 32:11-21. [PMID: 26753700 DOI: 10.2116/analsci.32.11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fundamental aspects of rapidly advancing micro/nanofluidic devices are reviewed from the perspective of liquid interface chemistry and physics, including the influence of capillary pressure in microfluidic two-phase flows and phase transitions related to capillary condensation.
Collapse
Affiliation(s)
- Akihide Hibara
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology
| | | | | | | | | |
Collapse
|
31
|
Morikawa K, Tsukahara T. Fabrication of Hydrophobic Nanostructured Surfaces for Microfluidic Control. ANAL SCI 2016; 32:79-83. [PMID: 26753710 DOI: 10.2116/analsci.32.79] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the field of micro- and nanofluidics, various kinds of novel devices have been developed. For such devices, not only fluidic control but also surface control of micro/nano channels is essential. Recently, fluidic control by hydrophobic nanostructured surfaces have attracted much attention. However, conventional fabrication methods of nanostructures require complicated steps, and integration of the nanostructures into micro/nano channels makes fabrication procedures even more difficult and complicated. In the present study, a simple and easy fabrication method of nanostructures integrated into microchannels was developed. Various sizes of nanostructures were successfully fabricated by changing the plasma etching time and etching with a basic solution. Furthermore, it proved possible to construct highly hydrophobic nanostructured surfaces that could effectively control the fluid in microchannels at designed pressures. We believe that the fabrication method developed here and the results obtained are valuable contributions towards further applications in the field of micro- and nanofluidics.
Collapse
Affiliation(s)
- Kyojiro Morikawa
- Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology
| | | |
Collapse
|
32
|
Mathwig K, Chi Q, Lemay SG, Rassaei L. Handling and Sensing of Single Enzyme Molecules: From Fluorescence Detection towards Nanoscale Electrical Measurements. Chemphyschem 2015; 17:452-7. [DOI: 10.1002/cphc.201500686] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Klaus Mathwig
- Pharmaceutical Analysis; Groningen Research Institute of Pharmacy; University of Groningen; P.O. Box 196 9700 AD Groningen The Netherlands
| | - Qijin Chi
- Department of Chemistry; Technical University of Denmark; 2800 Kongens Lyngby Denmark
| | - Serge G. Lemay
- MESA+ Institute for Nanotechnology; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| | - Liza Rassaei
- Laboratory of Organic Materials and Interfaces; Department of Chemical Engineering; Delft University of Technology; Julianalaan 136 2628 BL Delft The Netherlands
| |
Collapse
|
33
|
Xu W, Foster E, Ma C, Bohn PW. On-demand in situ generation of oxygen in a nanofluidic embedded planar microband electrochemical reactor. MICROFLUIDICS AND NANOFLUIDICS 2015; 19:1181-1189. [PMID: 30319319 PMCID: PMC6178959 DOI: 10.1007/s10404-015-1636-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/25/2015] [Indexed: 06/07/2023]
Abstract
In situ generation of reagents and their subsequent use downstream presents new opportunities to amplify the utility of nanofluidic devices by exploiting the confined geometry to address mass transport limitations on reaction kinetics and efficiency. Oxygen, an inherently valuable reactant, can be produced from electrolysis of water, a process that can be conveniently integrated within a nanofluidic system. Here, we construct and characterize a nanofluidic device consisting of a planar microband electrode embedded within a nanochannel for in situ electrochemical generation and optical monitoring of O2. Fluorescein, a dye with a pH-sensitive emission intensity, was used to monitor the spatiotemporal characteristics of the oxidation of H2O, using the co-produced H+. Application of anodic potentials at the nanochannel-embedded electrode results in a decrease in fluorescence intensity, which reflects the decreasing solution pH. A combination of fluorescence intensity and chronoamperometric response was used to quantitatively determine proton generation, and the H+/O2 stoichiometry was then used to determine the concentration of the O2 in the channel. Comparison of the experimental results to finite element simulations validates the use of fluorescein emission intensity to spectroscopically determine the local oxygen concentration in the nanochannel. By varying the applied potential, spatially averaged O2 concentrations ranging from 0.13 to 0.41 mM were generated. The results demonstrate a convenient route to in situ modulation of the dissolved O2 level in a nanofluidic device and the use of an optical probe to monitor its spatial and temporal distribution under flow conditions.
Collapse
Affiliation(s)
- Wei Xu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Erick Foster
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Chaoxiong Ma
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Paul W Bohn
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
34
|
Xu Y, Matsumoto N, Wu Q, Shimatani Y, Kawata H. Site-specific nanopatterning of functional metallic and molecular arbitrary features in nanofluidic channels. LAB ON A CHIP 2015; 15:1989-1993. [PMID: 25786899 DOI: 10.1039/c5lc00190k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We established a versatile method for site-specific nanopatterning of functional metallic and molecular arbitrary features in glass nanofluidic channels, with well-controlled feature sizes ranging from tens to hundreds of nanometers and precisely controlled placements in the range of several tens of nanometers. With the method, we achieved the fabrication of quasi-0D, quasi-1D, 2D, and 3D gold nanopatterns in nanofluidic channels, as well as a high-density fluorescent molecular nanoarray in arrayed femtoliter nanofluidic channels. The method opens the way for precise functionalization of nanofluidic channels, which has been greatly challenging in the field of nanofluidics.
Collapse
Affiliation(s)
- Yan Xu
- Nanoscience and Nanotechnology Research Center, Research Organization for the 21st Century, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan.
| | | | | | | | | |
Collapse
|
35
|
Kazoe Y, Mawatari K, Kitamori T. Behavior of nanoparticles in extended nanospace measured by evanescent wave-based particle velocimetry. Anal Chem 2015; 87:4087-91. [PMID: 25806827 DOI: 10.1021/acs.analchem.5b00485] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The transport and behavior of nanoparticles, viruses, and biomacromolecules in 10-1000 nm confined spaces (hereafter "extended nanospaces") are important for novel analytical devices based on nanofluidics. This study investigated the concentration and diffusion of 64 nm nanoparticles in a fused-silica nanochannel of 410 nm depth, using evanescent wave-based particle velocimetry. We found that the injection of nanoparticles into the nanochannel by pressure-driven flow was significantly inhibited and that the nanoparticle diffusion was hindered anisotropically. A 0.2-pN repulsive force induced by the interaction between the nanoparticles and the channel wall is proposed as the dominant factor governing the behavior of nanoparticles in the nanochannel, on the basis of both experimental measurements and theoretical estimations. The results of this study will greatly further our understanding of mass transfer in extended nanospaces.
Collapse
Affiliation(s)
- Yutaka Kazoe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Kazuma Mawatari
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Takehiko Kitamori
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| |
Collapse
|
36
|
Fu G, Zheng Z, Li X, Sun Y, Chen H. A novel fluidic control method for nanofluidics by solvent-solvent interaction in a hybrid chip. LAB ON A CHIP 2015; 15:1004-1008. [PMID: 25563690 DOI: 10.1039/c4lc01241k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The fluidic control method is a fundamental technology for the development of nanofluidics. In this report, an organic phase was driven to flow inside the nanochannel because of its dissolution into an aqueous phase. With selective modification, a stable organic/aqueous interface was generated at the junction of the micro/nanochannels in a hybrid chip. The aqueous phase was kept flowing in the microchannel, and the organic phase in the nanochannel dissolved into the aqueous phase through the interface and produced a flow inside the nanochannel. This method is simple, easy to control and requires no specific equipment. Importantly, the flow is driven by the surface tension in a controllable manner, which will not be affected by the depth of the nanochannel. This method can be a useful alternative to the present fluidic control methods in nanofluidics.
Collapse
Affiliation(s)
- Guangchun Fu
- School of Physics and Mechanical & Electrical Engineering/Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, PR China.
| | | | | | | | | |
Collapse
|
37
|
Berry JD, Foong AE, Lade CE, Biscombe CJC, Davidson MR, Harvie DJE. Electroviscous resistance of nanofluidic bends. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:043008. [PMID: 25375594 DOI: 10.1103/physreve.90.043008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Indexed: 06/04/2023]
Abstract
Analysis tools that quantify the pressure and potential changes occurring over pressure-driven electrokinetic device elements are necessary for the design of optimal laboratory-on-a-chip devices. In this study, the resistance of a nanofluidic silica channel with negatively charged walls containing a 90^{∘} bend to the electroviscous flow of a potassium chloride salt solution is quantified in terms of two equivalent lengths using numerical analysis. One equivalent length is based on the excess pressure drop and the other on the excess potential rise. Over the entire range of simulations conducted, these equivalent lengths are relatively independent of salt concentration, flow velocity, channel size, and surface charge, remaining within the approximate ranges of 1.3-1.5 for the pressure equivalent length and 0.8-1.05 for the potential equivalent length.
Collapse
Affiliation(s)
- J D Berry
- Department of Chemical and Biomolecular Engineering, University of Melbourne, Melbourne, Victoria 3010, Australia and Commonwealth Scientific and Industrial Research Organisation (CSIRO) Computational Informatics, Victoria 3169, Australia
| | - A E Foong
- Department of Chemical and Biomolecular Engineering, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - C E Lade
- Department of Chemical and Biomolecular Engineering, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - C J C Biscombe
- Department of Chemical and Biomolecular Engineering, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - M R Davidson
- Department of Chemical and Biomolecular Engineering, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - D J E Harvie
- Department of Chemical and Biomolecular Engineering, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
38
|
Morikawa K, Tsukahara T. Investigation of Unique Protonic and Hydrodynamic Behavior of Aqueous Solutions Confined in Extended Nanospaces. Isr J Chem 2014. [DOI: 10.1002/ijch.201400095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Shirai K, Mawatari K, Kitamori T. Extended nanofluidic immunochemical reaction with femtoliter sample volumes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:1514-1522. [PMID: 24339226 DOI: 10.1002/smll.201302709] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 09/28/2013] [Indexed: 06/03/2023]
Abstract
The growing need to optimize immunoassay performance driven by interest in analyzing individual cells has resulted in a decrease in the amount of sample required. Miniaturized immunoassays that use ultra-small femtoliter to attoliter sample volumes, a range known as the extended nanospace, can satisfy this analytical need; however, capturing every targeted molecule without loss in extended nanochannels for subsequent detection remains challenging. This is the first report of a successful extended nanofluidics-based quantitative immunochemical reaction capable of high capture efficiency using a femtoliter-scale sample volume. A novel patterning method using a photolithographic technique with vacuum ultraviolet light and low-temperature (100 °C) bonding enables patterning of functional groups for antibody immobilization before bonding, resulting in an immunochemical reaction space of only 86 fL. Reaction rate analyses indicate a decrease in the required sample volume to 810 fL and improvement in the limit of detection to 3 zmol, 5-6 orders of magnitude better than possible with the microfluidic immunoassay format. Highly efficient (near 100%) immunochemical reactions on a seconds time scale are possible due to the nm-scale diffusion length, which should be advantageous for the analysis of ultra-low-volume samples.
Collapse
Affiliation(s)
- Kentaro Shirai
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8656, Japan
| | | | | |
Collapse
|
40
|
Mawatari K, Kazoe Y, Shimizu H, Pihosh Y, Kitamori T. Extended-nanofluidics: fundamental technologies, unique liquid properties, and application in chemical and bio analysis methods and devices. Anal Chem 2014; 86:4068-77. [PMID: 24689995 DOI: 10.1021/ac4026303] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Engineering using liquids confined in channels 10-1000 nm in dimension, or "extended-nanofluidics," is the next target of microfluidic science. Liquid properties at this scale were unrevealed until recently because of the lack of fundamental technologies for investigating these ultrasmall spaces. In this article, the fundamental technologies are reviewed, and the emerging science and technology in the extended-nanospace are discussed.
Collapse
Affiliation(s)
- Kazuma Mawatari
- Department of Applied Chemistry, School of Engineering, The University of Tokyo , 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | | | | | | | | |
Collapse
|
41
|
Tsukahara T. ELECTROCHEMISTRY 2014; 82:777-781. [DOI: 10.5796/electrochemistry.82.777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
42
|
Kazoe Y, Iseki K, Mawatari K, Kitamori T. Evanescent wave-based particle tracking velocimetry for nanochannel flows. Anal Chem 2013; 85:10780-6. [PMID: 24143898 DOI: 10.1021/ac401964h] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding fluid flows in 10-1000 nm space, which we call extended nanospace, is important for novel nanofluidic devices in analytical chemistry. This study therefore developed a particle tracking velocimetry for measuring velocity distribution in nanochannel flows, by using the evanescent wave illumination. 64 nm fluorescent nanoparticles were used as flow tracer. The particle position was determined from fluorescent intensity by the evanescent wave field, with a spatial resolution smaller than light wavelengths. The time resolution of 260 μs was achieved to make error by the Brownian diffusion of the tracer small to be neglected. An image processing by multitime particle tracking was established to detect the tracer nanoparticles of weak fluorescent intensity. Though the measurement region was affected by nonuniform particle distribution with the electrostatic interactions, pressure-driven flows of water in a nanochannel of 50 μm width and 410 nm depth were successfully measured. The results of the velocity distribution in the depth-wise direction approximately showed agreement with the fluid dynamics with the bulk liquid properties from the macroscopic view, however, suggested slip velocities even in the hydrophilic channel. We suggest a possibility of appearance of molecular behavior in the fluid near the wall within 10 nm-order scale.
Collapse
Affiliation(s)
- Yutaka Kazoe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo , 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | | | | | | |
Collapse
|
43
|
Wang C, Ye DK, Wang YY, Lu T, Xia XH. Insights into the "free state" enzyme reaction kinetics in nanoconfinement. LAB ON A CHIP 2013; 13:1546-1553. [PMID: 23429726 DOI: 10.1039/c3lc41319e] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The investigation of enzyme reaction kinetics in nanoconfined spaces mimicking the conditions in living systems is of great significance. Here, a nanofluidics chip integrated with an electrochemical detector has been designed for studying "free state" enzyme reaction kinetics in nanoconfinement. The nanofluidics chip is fabricated using the UV-ablation technique developed in our group. The enzyme and substrate solutions are simultaneously supplied from two single streams into a nanochannel through a Y-shaped junction. The laminar flow forms in the front of the nanochannel, then the two liquids fully mix at their downstream where a homogeneous enzyme reaction occurs. The "free state" enzyme reaction kinetics in nanoconfinement can thus be investigated in this laminar flow based nanofluidics device. For demonstration, glucose oxidase (GOx) is chosen as the model enzyme, which catalyzes the oxidation of beta-d-glucose. The reaction product hydrogen peroxide (H2O2) can be electrochemically detected by a microelectrode aligning to the end of nanochannel. The steady-state electrochemical current responding to various glucose concentrations is used to evaluate the activity of the "free state" GOx under nanoconfinement conditions. The effect of liquid flow rate, enzyme concentration, and nanoconfinement on reaction kinetics has been studied in detail. Results show that the "free state" GOx activity increases significantly compared to the immobilized enzyme and bath system, and the GOx reaction rate in the nanochannel is two-fold faster than that in bulk solution, demonstrating the importance of "free state" and spatial confinement for the enzyme reaction kinetics. The present approach provides an effective method for exploiting the "free state" enzyme activity in nanospatial confinement.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | | | | | | | | |
Collapse
|
44
|
Xu Y, Wang C, Li L, Matsumoto N, Jang K, Dong Y, Mawatari K, Suga T, Kitamori T. Bonding of glass nanofluidic chips at room temperature by a one-step surface activation using an O2/CF4 plasma treatment. LAB ON A CHIP 2013; 13:1048-1052. [PMID: 23377319 DOI: 10.1039/c3lc41345d] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A technical bottleneck to the broadening of applications of glass nanofluidic chips is bonding, due to the strict conditions, especially the extremely high temperatures (~1000 °C) and the high vacuum required in the current glass-to-glass fusion bonding method. Herein, we report a strong, nanostructure-friendly, and high pressure-resistant bonding method, performed at room temperature (RT, ~25 °C) for glass nanofluidic chips, using a one-step surface activation process with an O(2)/CF(4) gas mixture plasma treatment. The developed RT bonding method is believed to be able to conquer the technical bottleneck in bonding in nanofluidic fields.
Collapse
Affiliation(s)
- Yan Xu
- Nanoscience and Nanotechnology Research Center, Research Organization for the 21st Century, Osaka Prefecture University, 1-2, Sakai, Osaka 599-8570, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Tarhan MC, Yokokawa R, Morin FO, Fujita H. Specific Transport of Target Molecules by Motor Proteins in Microfluidic Channels. Chemphyschem 2013; 14:1618-25. [DOI: 10.1002/cphc.201300022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Indexed: 11/06/2022]
|
46
|
Mawatari K, Kubota S, Xu Y, Priest C, Sedev R, Ralston J, Kitamori T. Femtoliter droplet handling in nanofluidic channels: a Laplace nanovalve. Anal Chem 2012; 84:10812-6. [PMID: 23214507 DOI: 10.1021/ac3028905] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Analytical technologies of ultrasmall volume liquid, in particular femtoliter to attoliter liquid, is essential for single-cell and single-molecule analysis, which is becoming highly important in biology and medical diagnosis. Nanofluidic chips will be a powerful tool to realize chemical processes for such a small volume sample. However, a technical challenge exists in fluidic control, which is femtoliter to attoliter liquid generation in air and handling for further chemical analysis. Integrating mechanical valves fabricated by MEMS (microelectric mechanical systems) technology into nanofluidic channels is difficult. Here, we propose a nonmechanical valve, which is a Laplace nanovalve. For this purpose, a nanopillar array was embedded in a nanochannel using a two-step electron beam lithography and dry-etching process. The nanostructure allowed precise wettability patterning with a resolution below 100 nm, which was difficult by photochemical wettability patterning due to the optical diffraction. The basic principle of the Laplace nanovalve was verified, and a 1.7 fL droplet (water in air) was successfully generated and handled for the first time.
Collapse
Affiliation(s)
- Kazuma Mawatari
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Li L, Kazoe Y, Mawatari K, Sugii Y, Kitamori T. Viscosity and Wetting Property of Water Confined in Extended Nanospace Simultaneously Measured from Highly-Pressurized Meniscus Motion. J Phys Chem Lett 2012; 3:2447-2452. [PMID: 26292131 DOI: 10.1021/jz3009198] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Understanding fluid and interfacial properties in extended nanospace (10-1000 nm) is important for recent advances of nanofluidics. We studied properties of water confined in fused-silica nanochannels of 50-1500 nm sizes with two types of cross-section: (1) square channel of nanoscale width and depth, and (2) plate channel of microscale width and nanoscale depth. Viscosity and wetting property were simultaneously measured from capillary filling controlled by megapascal external pressure. The viscosity increased in extended nanospace, while the wetting property was almost constant. Especially, water in the square nanochannels had much higher viscosity than the plate channel, which can be explained considering loosely coupled water molecules by hydrogen bond on the surface within 24 nm. This study suggests specificity of fluids two-dimensionally confined in extended nanoscale, in which the liquid is highly viscous by the specific water phase, while the wetting dynamics is governed by the well-known adsorbed water layer of several-molecules thickness.
Collapse
Affiliation(s)
- Lixiao Li
- †Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Yutaka Kazoe
- ‡Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Kazuma Mawatari
- †Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
- ‡Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Yasuhiko Sugii
- ‡Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Takehiko Kitamori
- †Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
- ‡Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| |
Collapse
|
48
|
Ishibashi R, Mawatari K, Kitamori T. Highly efficient and ultra-small volume separation by pressure-driven liquid chromatography in extended nanochannels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:1237-1242. [PMID: 22354868 DOI: 10.1002/smll.201102420] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 12/14/2011] [Indexed: 05/31/2023]
Abstract
The rapidly developing interest in nanofluidic analysis, which is used to examine liquids ranging in amounts from the attoliter to the femtoliter scale, correlates with the recent interest in decreased sample amounts, such as in the field of single-cell analysis. For general nanofluidic analysis, the fact that a pressure-driven flow does not limit the choice of solvents (aqueous or organic) is important. This study shows the first pressure-driven liquid chromatography technique that enables separation of atto- to femtoliter sample volumes, with a high separation efficiency within a few seconds. The apparent diffusion coefficient measurement of the unretentive sample suggests that there is no increase in the viscosity of toluene in the extended nanospace, unlike in aqueous solvents. Evaluation of the normal phase separation, therefore, should involve only the examination of the effect of the small size of the extended nanospace. Compared to a conventionally packed high-performance liquid chromatography column, the separation here results in a faster separation (4 s) by 2 orders of magnitude, a smaller injection volume (10(0) fL) by 9 orders, and a higher separation efficiency (440,000 plates/m) by 1 order. Moreover, the separation behavior agrees with the theory showing that this high efficiency was due to the small and controlled size of the separation channel, where the diffusion through the channel depth direction is fast enough to be neglected. Our chip-based platform should allow direct and real-time analysis or screening of ultralow volume of sample.
Collapse
Affiliation(s)
- Ryo Ishibashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | | | | |
Collapse
|
49
|
Ishibashi R, Mawatari K, Takahashi K, Kitamori T. Development of a pressure-driven injection system for precisely time controlled attoliter sample injection into extended nanochannels. J Chromatogr A 2012; 1228:51-6. [DOI: 10.1016/j.chroma.2011.05.095] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 05/06/2011] [Accepted: 05/28/2011] [Indexed: 11/16/2022]
|
50
|
Chinen H, Mawatari K, Pihosh Y, Morikawa K, Kazoe Y, Tsukahara T, Kitamori T. Enhancement of proton mobility in extended-nanospace channels. Angew Chem Int Ed Engl 2012; 51:3573-7. [PMID: 22279041 DOI: 10.1002/anie.201104883] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 09/20/2011] [Indexed: 11/11/2022]
Affiliation(s)
- Hiroyuki Chinen
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | | | | | | | | | | | | |
Collapse
|