1
|
Kalász H, Tekes K, Bátor G, Adeghate J, Adeghate E, Darvas F, Fűrész J, Karvaly G. Investigation of the Experimental Pharmacokinetics of the Bis-Chlorinated Bis-pyridinium Mono-aldoxime Cholinesterase Reactivator K-868 in Rats. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2021. [DOI: 10.2174/1874104502015010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The widespread use of organophosphorus compounds in agriculture and their existence in some military arsenals present continuous threats. Quaternary bis-pyridinium aldoximes are potent, highly polar cholinesterase reactivators and the most intensively studied candidate antidotes against poisoning with organophosphorus compounds.
Objective:
The in vivo experimental pharmacokinetic properties of K-868, a novel bis-chlorinated, bis-pyridinium mono-aldoxime are detailed and put in context with regard to similar compounds described earlier.
Methods:
Rats received 30 µmol K-868 i.m. and were sacrificed at various time points following treatment. Blood, cerebrospinal fluid and tear were collected, while the brains, eyes, kidneys, livers, lungs and testes were removed, dissected and homogenized. K-868 concentrations were determined using high performance liquid chromatography with ultraviolet absorption detection.
Results:
K-868 was detected in the eyes, kidneys, lungs and tear within 5 minutes in maximal serum concentrations attained 15 minutes following administration. Elimination was slow for K-868 which remained detectable at 120 minutes in the blood and the kidneys, and at 60 minutes in the eyes, lungs and tear following its administration. Nevertheless, its distribution was overall poor with areas under the 120-minute concentration curves (AUC120) showing close similarity in the blood and the kidneys, while reaching just approximately 5% of serum AUC120 in the eyes and lungs.
Conclusion:
K-868 is a potent candidate antidote against organophosphate poisoining with a prolonged presence in the circulation.
Collapse
|
2
|
Pyaram A, Rampilla M, Deore J, Sengupta P. Challenges and Strategies for Quantification of Drugs in the Brain: Current Scenario and Future Advancement. Crit Rev Anal Chem 2020; 52:93-105. [PMID: 32687414 DOI: 10.1080/10408347.2020.1791041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The site of action of centrally acting drugs lies inside the brain and therefore, needs to reach the brain to exert their therapeutic efficacy. Discovery and development process of such types of drugs demands their quantification in brain to establish the dose, study pharmacokinetics, pharmacodynamics, and optimize the overall efficacy. Moreover, some drugs of other categories also have potential to cross blood-brain barrier resulting in various adverse events by acting centrally. However, the collection of a matrix to analyze the amount of drugs present in brain is highly challenging. In this review, we have summarized different bioanalytical strategies to quantitate drugs inside the brain. A detailed discussion on various in vivo and in vitro techniques for monitoring drugs inside the brain has been incorporated. In addition, various sampling techniques have been discussed in brief with case studies. Therefore, this review can guide the researcher to choose appropriate bioanalytical techniques for analyzing drugs in brain depending upon the specific need and quantification threshold considering the commonly associated difficulties of the methods.
Collapse
Affiliation(s)
- Akhila Pyaram
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar - 382355, Gujarat, INDIA
| | - Madhuri Rampilla
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar - 382355, Gujarat, INDIA
| | - Jayshri Deore
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar - 382355, Gujarat, INDIA
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar - 382355, Gujarat, INDIA
| |
Collapse
|
3
|
Kalász H, Szimrók Z, Karvaly G, Adeghate J, Tekes K. Pharmacokinetics of Two Chlorine-Substituted Bis-Pyridinium Mono-Aldoximes with Regenerating Effect on Butyrylcholinesterase. Molecules 2020; 25:molecules25051250. [PMID: 32164301 PMCID: PMC7179459 DOI: 10.3390/molecules25051250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/27/2020] [Accepted: 03/09/2020] [Indexed: 01/23/2023] Open
Abstract
Our aim was to find chlorine-substituted antidotes against organophosphate poisoning and compare their pharmacokinetics to their parent compound, K-203. White male Wistar rats were intramuscularly injected with K-203, K-867 or K-870. Serum, brain, kidneys, liver, lung, eyes, and testes tissues were taken after 5, 15, 30, 60, and 120 min and analyzed using reversed-phase high-performance liquid chromatography. K-203, K-867, or K-870 was present in every tissue that was analyzed, including the serum, the eyes, testes, liver, kidneys, lungs, and the brain. The serum levels of K-867 and K-870 (chlorine-substituted derivatives of K-203) were nearly constant between 15 and 30 min, while their parent compound (K-203) showed peak level at 15 min after the administration of 30 µmol/rat. Neither K-203, nor K-867 or K-870 were toxic at a dose of 100 µmol/200 g in rats. Chlorine-substitution of K-867 and K-870 produced limited absorbance and distribution compared to their parent compound, K203.
Collapse
Affiliation(s)
- Huba Kalász
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary; (Z.S.); (J.A.)
- Kalász Teaching and Research Co., Gvadányi utca 44-46, 1144 Budapest, Hungary
- Correspondence:
| | - Zoltán Szimrók
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary; (Z.S.); (J.A.)
| | - Gellért Karvaly
- Department of Laboratory Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary;
| | - Jennifer Adeghate
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary; (Z.S.); (J.A.)
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Suite 820, Eye & Ear Building, 203 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Kornélia Tekes
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary;
| |
Collapse
|
4
|
Tekes K, Karvaly G, Nurulain S, Kuca K, Musilek K, Adeghate E, Jung YS, Kalász H. Pharmacokinetics of K117 and K127, two novel antidote candidates to treat Tabun poisoning. Chem Biol Interact 2019; 310:108737. [PMID: 31279792 DOI: 10.1016/j.cbi.2019.108737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/21/2019] [Accepted: 07/04/2019] [Indexed: 10/26/2022]
Abstract
AIMS K117 and K127 are bis-pyridinium aldoximes but K117 is a bis-pyridinium bis-aldoxime while K127 has only one single aldoxime in addition to its amide substituent. Is there any difference in pharmacokinetics in these compounds that otherwise have the same chemical structure? Both K117 and K127 are developed as antidotes in acetylcholinesterase and butyrylcholinesterase poisoning in terrorist attacks or intoxication with other organophosphorous compounds. Their distributions have been scouted in the bodies of rats. MAIN METHODS White male Wistar rats were intramuscularly injected. The animals were sacrificed, tissue samples were homogenized, and either K117 or K127 concentrations were determined using reversed-phase high-performance liquid chromatography. KEY FINDINGS Both K117 and K127 were present in all tissues that were analyzed including blood (serum), the brains, cerebrospinal fluid, the eyes, livers, kidneys, lungs and testes. Their pharmacokinetics and body distributions are similar. SIGNIFICANCE Either K117 or K127 meets the essential requirements for antidotes. Dose dependence and kinetics of their distribution were compared to that of other pyridinium aldoximes.
Collapse
Affiliation(s)
- K Tekes
- Department of Pharmacodynamics, Semmelweis University, H-1089, Budapest, Nagyvárad tér 4, Hungary.
| | - G Karvaly
- Department of Laboratory Medicine, Semmelweis University, H-1089, Budapest, Nagyvárad tér 4, Hungary.
| | | | - K Kuca
- Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - K Musilek
- Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic.
| | - E Adeghate
- Department of Anatomy, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Y-S Jung
- Medicinal Science Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea.
| | - H Kalász
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089, Budapest, Nagyvárad tér 4, Hungary.
| |
Collapse
|
5
|
Gorecki L, Soukup O, Kucera T, Malinak D, Jun D, Kuca K, Musilek K, Korabecny J. Oxime K203: a drug candidate for the treatment of tabun intoxication. Arch Toxicol 2018; 93:673-691. [PMID: 30564897 DOI: 10.1007/s00204-018-2377-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022]
Abstract
For over 60 years, researchers across the world have sought to deal with poisoning by nerve agents, the most toxic and lethal chemical weapons. To date, there is no efficient causal antidote with sufficient effect. Every trialed compound fails to fulfil one or more criteria (e.g. reactivation potency, broad reactivation profile). In this recent contribution, we focused our attention to one of the promising compounds, namely the bis-pyridinium reactivator K203. The oxime K203 is very often cited as the best reactivator against tabun poisoning. Herein, we provide all the available literature data in comprehensive and critical review to address whether K203 could be considered as a new drug candidate against organophosphorus poisoning with the stress on tabun. We describe its development from the historical point of view and review all available in vitro as well as in vivo data to date. K203 is easily accessible by a relatively simple two-step synthesis. It is well accommodated in the enzyme active gorge of acetylcholinesterase providing suitable interactions for reactivation, as shown by molecular docking simulations. According to a literature survey, in vitro data for tabun-inhibited AChE are extraordinary. However, in vivo efficiency remains unconvincing. The K203 toxicity profile did not show any perturbations compared to clinically used standards; on the other hand versatility of K203 does not exceed currently available oximes. In summary, K203 does not seem to address current issues associated with the organophosphorus poisoning, especially the broad profile against all nerve agents. However, its reviewed efficacy entitles K203 to be considered as a backup or tentative replacement for obidoxime and trimedoxime, currently only available anti-tabun drugs.
Collapse
Affiliation(s)
- Lukas Gorecki
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Králové, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Králové, Czech Republic
| | - Ondrej Soukup
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Králové, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Králové, Czech Republic
| | - Tomas Kucera
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Králové, Czech Republic
| | - David Malinak
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Králové, Czech Republic.,Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Králové, Czech Republic
| | - Daniel Jun
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Králové, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Králové, Czech Republic
| | - Kamil Kuca
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Králové, Czech Republic.,Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Králové, Czech Republic
| | - Kamil Musilek
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Králové, Czech Republic. .,Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Králové, Czech Republic.
| | - Jan Korabecny
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Králové, Czech Republic. .,Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
6
|
Hashemi F, Laufer R, Szegi P, Csomor V, Kalász H, Tekes K. HPLC determination of brain biogenic amines following treatment with bispyridinium aldoxime K203. ACTA ACUST UNITED AC 2014; 101:40-6. [DOI: 10.1556/aphysiol.101.2014.1.5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Nurulain SM, Kalász H, Szegi P, Kuca K, Adem A, Hasan MYB, Hashemi F, Tekes K. HPLC analysis in drug level monitoring of K027. ACTA CHROMATOGR 2013. [DOI: 10.1556/achrom.25.2013.4.8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Ram N, Szegi P, Kuča K, Hashemi F, Tekes K. Stability monitoring of some acetylcholinesterase reactivating drugs. BMC Pharmacol 2011. [PMCID: PMC3194288 DOI: 10.1186/1471-2210-11-s2-a52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|