1
|
Shi X, Xie G, Zhang W, Yu A. Assessment of the Hydrolysis of Pydiflumetofen and Its Degradation Characteristics in Agricultural Soils. Molecules 2023; 28:molecules28114282. [PMID: 37298758 DOI: 10.3390/molecules28114282] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Pydiflumetofen is a potent fungicide that effectively inhibits pathogenic fungal growth by regulating succinate dehydrogenase activity. It effectively prevents and treats various fungal diseases, including leaf spot, powdery mildew, grey mold, bakanae, scab, and sheath blight. Pydiflumetofen's hydrolytic and degradation properties were investigated indoors in four distinct soil types (phaeozems, lixisols, ferrosols, and plinthosols) to assess its risks in aquatic and soil environments. The effect of soil physicochemical properties and external environmental conditions on its degradation was also explored. Hydrolysis experiments found that pydiflumetofen's hydrolysis rate decreased with increasing concentration, regardless of the initial concentration. Furthermore, an increasing temperature significantly enhances the hydrolysis rate, with neutral conditions having higher degradation rates than acidic and alkaline conditions. Pydiflumetofen showed a degradation half-life of 10.79-24.82 days and a degradation rate of 0.0276-0.0642 in different soils. Phaeozems soils had the fastest degradation, while ferrosols soils had the slowest. Sterilization significantly reduced its soil degradation rate and extended its half-life, which confirmed that microorganisms were the primary cause. Therefore, when using pydiflumetofen in agricultural production activities, the characteristics of water bodies, soil, and environmental factors must be considered, while minimizing the emissions and environmental impact.
Collapse
Affiliation(s)
- Xianluo Shi
- Forest Protection Science and Technology Innovation Team, Jiangxi Academy of Forestry, Economic and Technological Development Area, 1629 West Fenglin Road, Nanchang 330013, China
- Jiangxi Water Resources Institute, Economic and Technological Development Zone, 99 Beishan Road, Nanchang 330013, China
| | - Guai Xie
- Forest Protection Science and Technology Innovation Team, Jiangxi Academy of Forestry, Economic and Technological Development Area, 1629 West Fenglin Road, Nanchang 330013, China
| | - Wei Zhang
- Jiangxi Water Resources Institute, Economic and Technological Development Zone, 99 Beishan Road, Nanchang 330013, China
| | - Ailin Yu
- Forest Protection Science and Technology Innovation Team, Jiangxi Academy of Forestry, Economic and Technological Development Area, 1629 West Fenglin Road, Nanchang 330013, China
| |
Collapse
|
2
|
Oloye FF, Femi-Oloye OP, Challis JK, Jones PD, Giesy JP. Dissipation, Fate, and Toxicity of Crop Protection Chemical Safeners in Aquatic Environments. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 258:27-53. [PMID: 34529146 DOI: 10.1007/398_2021_70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Safeners are a group of chemicals applied with herbicides to protect crop plants from potential adverse effects of agricultural products used to kill weeds in monocotyledonous crops. Various routes of dissipation of safeners from their point of applications were evaluated. Despite the large numbers of safeners (over 18) commercially available and the relatively large quantities (~2 × 106 kg/year) used, there is little information on their mobility and fate in the environment and occurrence in various environmental matrices. The only class of safeners for which a significant amount of information is available is dichloroacetamide safeners, which have been observed in some rivers in the USA at concentrations ranging from 42 to 190 ng/L. Given this gap in the literature, there is a clear need to determine the occurrence, fate, and bioavailability of other classes of safeners. Furthermore, since safeners are typically used in commercial formulations, it is useful to study them in relation to their corresponding herbicides. Common routes of dissipation for herbicides and applied safeners are surface run off (erosion), hydrolysis, photolysis, sorption, leaching, volatilization, and microbial degradation. Toxic potencies of safeners vary among organisms and safener compounds, ranging from as low as the LC50 for fish (Oncorhynchus mykiss) for isoxadifen-ethyl, which was 0.34 mg/L, to as high as the LC50 for Daphnia magna from dichlormid, which was 161 mg/L. Solubilities and octanol-water partition coefficients seem to be the principal driving force in understanding safener mobilities. This paper provides an up-to-date literature review regarding the occurrence, behaviour, and toxic potency of herbicide safeners and identifies important knowledge gaps in our understanding of these compounds and the potential risks posed to potentially impacted ecosystems.
Collapse
Affiliation(s)
- Femi F Oloye
- Department of Chemical Sciences, Adekunle Ajasin University, Akungba-Akoko, Nigeria.
| | - Oluwabunmi P Femi-Oloye
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Animal and Environmental Biology, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | | | - Paul D Jones
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biomedical Veterinary Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
3
|
Bernasinska J, Duchnowicz P, Koter-Michalak M, Koceva-Chyla A. Effect of safeners on damage of human erythrocytes treated with chloroacetamide herbicides. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:368-377. [PMID: 23732483 DOI: 10.1016/j.etap.2013.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 03/28/2013] [Accepted: 04/21/2013] [Indexed: 05/18/2023]
Abstract
Chloroacetamides are used as pre-emergent substances for growth control of annual grasses and weeds. Since they can be harmful for crop plants, protective compounds (safeners) are used along with herbicides. So far, their effects on human blood cells have not been evaluated, and this study is the very first one devoted to this subject. We examined the harmful effects of chloroacetamides, their metabolites and safeners, used alone or in combination with herbicides, on human erythrocytes measuring the extent of hemolysis, lipid peroxidation and catalase activity. Higher impact of herbicides than their metabolites on all of the investigated parameters was found. Safeners alone did not produce any damage to erythrocytes and did not elicit any changes in oxidative stress parameters. Combination of safener with herbicide did not attenuate hemolysis of erythrocytes compared to the herbicide alone. Safeners reduced lipid peroxidation induced by herbicides, which suggest the role of safeners as antioxidants.
Collapse
Affiliation(s)
- Joanna Bernasinska
- Department of Thermobiology, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-237 Lodz, Poland.
| | - Piotr Duchnowicz
- Department of Environmental Pollution Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-237 Lodz, Poland
| | - Maria Koter-Michalak
- Department of Environmental Pollution Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-237 Lodz, Poland
| | - Aneta Koceva-Chyla
- Department of Thermobiology, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-237 Lodz, Poland
| |
Collapse
|
4
|
Harir M, Chnirheb A, Kanawati B, El Azzouzi M, Schmitt-Kopplin P. Chromatography and high-resolution mass spectrometry for the characterization of the degradation products of the photodegradation of amidosulfuron: an analytical approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:5271-5278. [PMID: 23577633 DOI: 10.1021/jf400133w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Simulated sunlight irradiation causing degradation of amidosulfuron, a pyrimidinylsulfonylurea herbicide, has been investigated in aqueous solution. The main degradation products were followed up by ultrahigh-pressure liquid chromatography with a UV detector (UHPLC-UV) and identified by combining ultrahigh-pressure liquid chromatography-mass spectrometry (UHPLC-MS) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). On the basis of the retrosynthetic analysis, the most identified degradation products were mainly due to the losses of methylsulfamic acid (CH₅NO₃S), sulfocarbamic acid (CH₃NO₅S), carbamic acid (CH₃NO₂), methyl(methylsulfonyl)sulfamic acid (C₂H₇NO₅S₂), N-methylmethanesulfonamide (C₂H₇NO₂S), and sulfonic acid (H₂SO₄) molecules. Accordingly, O and S-demethylation as well as hydroxylation processes were also observed. Sum formulas of the main degradation products were assigned, and a mechanical pathway is proposed.
Collapse
Affiliation(s)
- Mourad Harir
- Research Unit Analytical BioGeoChemistry, German Research Center for Environmental Health, Helmholtz-Zentrum Muenchen , Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany
| | | | | | | | | |
Collapse
|
5
|
Sivey JD, Roberts AL. Abiotic reduction reactions of dichloroacetamide safeners: transformations of "inert" agrochemical constituents. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:2187-95. [PMID: 22300219 DOI: 10.1021/es203755h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Safeners are so-called "inert" constituents of herbicide formulations added to protect crops from the toxic effects of herbicides. We examined the reactivity of three dichloroacetamide safeners and 12 structural analogues [all neutral compounds of the form Cl(2)CXC(═O)NRR'; X = H, Cl; R-groups include alkyl, branched alkyl, n-allyl, and cyclic moieties] in one homogeneous and two heterogeneous reductant systems: solutions of Cr(H(2)O)(6)(2+), suspensions of Fe(II)-amended goethite, and suspensions of Fe(II)-amended hematite. Analyses of reaction products indicate each safener can undergo stepwise hydrogenolysis (replacement of chlorine by hydrogen) in each system at near-neutral pH. The first hydrogenolysis step generates compounds similar (in one case, identical) to herbicide active ingredients. Rates of product formation and (when reactions were sufficiently fast) parent loss were quantified; reaction rates in heterogeneous systems spanned 2 orders of magnitude and were strongly influenced by R-group structure. The length of n-alkyl R-groups exerted opposite effects on hydrogenolysis rates in homogeneous versus heterogeneous systems: as R-group size increased, reduction rates in heterogeneous systems increased, whereas reduction rates in the homogeneous system decreased. Branched alkyl R-groups decreased hydrogenolysis rates relative to their straight-chain homologues in both homogeneous and heterogeneous systems. Reaction rates in heterogeneous systems can be described via polyparameter linear free energy relationships employing molecular parameters likely to influence dichloroacetamide adsorption. The propensity of dichloroacetamide safeners to undergo reductive transformations into herbicide-like products challenges their classification as "inert" agrochemical ingredients.
Collapse
Affiliation(s)
- John D Sivey
- Department of Geography and Environmental Engineering, Johns Hopkins University, 313 Ames Hall, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | | |
Collapse
|
6
|
Chnirheb A, Harir M, Kanawati B, El AM, Gebefügi I, Schmitt-Kopplin P. Efficiency and degradation products elucidation of the photodegradation of mefenpyrdiethyl in water interface using TiO2 P-25 and Hombikat UV100. J Environ Sci (China) 2012; 24:1686-1693. [PMID: 23520878 DOI: 10.1016/s1001-0742(11)60990-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The photodegradation of mefenpyrdiethyl (MFD), an herbicide safener, was investigated in aqueous suspensions by using Degussa P-25 and Hombikat UV100 titanium oxide under simulated sunlight irradiation. The effects of initial concentration of the herbicide, pH, catalysts and hydrogen peroxide doses as well as their combinations were studied and optimized. Accordingly, the kinetic parameters were determined and the effectiveness of the processes was assessed by calculating the rate constants. A pseudo first-order kinetics was observed. Under experimental conditions, the degradation rate constants were strongly influenced using P-25 and no noticeable effect was observed for Hombikat UV100. DFT calculations with B3LYP/6-311+G(2d,p)//B3LYP/6-31+G(d,p) level of theory were performed to check whether significant conformational changes occur when the charge state of the MFD substrate changesand whether these changes could play a role in the dependency of photodegradation rate constant on the studied pH. High resolution mass spectrometry (FT-ICR/MS) was implemented to identify the main degradation products.
Collapse
Affiliation(s)
- Amina Chnirheb
- Department of BioGeoChemistry and Analytik, German Research Center for Environmental Health, Helmholtz Center Munich, Ingoldstädter Landstrasse 1, D-85764 Neuherberg, Germany.
| | | | | | | | | | | |
Collapse
|