1
|
Nguyen K, Carleton G, Lum JJ, Duncan KD. Expanding Spatial Metabolomics Coverage with Lithium-Doped Nanospray Desorption Electrospray Ionization Mass Spectrometry Imaging. Anal Chem 2024; 96:18427-18436. [PMID: 39504343 DOI: 10.1021/acs.analchem.4c03553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Spatial metabolomics has emerged as a powerful tool capable of revealing metabolic gradients throughout complex heterogeneous tissues. While mass spectrometry imaging (MSI) technologies designed to generate spatial metabolomic data have improved significantly over time, metabolite coverage is still a significant limitation. It is possible to achieve deeper metabolite coverage by imaging in positive and negative polarities or imaging several serial sections with different targeted biomolecular classes. However, this significantly increases the number of tissue samples required for biological studies and reduces the capacity for larger sample cohorts. Herein, we introduce lithium-doped nanospray desorption electrospray ionization (nano-DESI) as a simple and robust method to increase spatial metabolomics coverage, which is achieved through enhancements to ionization efficiencies in positive ion mode for metabolites and lipids lacking basic moieties, and improved structurally diagnostic tandem mass spectra for [M + Li]+ adducts. Specifically, signal intensities were found to be enhanced by 10-1000× for 96 compounds including small molecule metabolites, fatty acids, neutral lipids (e.g., diacylglycerols, DAG), and phospholipids when lithium was added to the ESI solvent. In addition, proof-of-principle results reveal that lithium-doped nano-DESI MSI was able to comprehensively visualize metabolites and lipids in the prostaglandin (PG) biosynthetic pathway with PG isomeric resolution in an ovarian tumor section. These data show colocalization of fatty acid (FA) 20:4 containing DAGs, FA 20:4 monoacylglycerols (MAGs), and FA 20:4 with PGE2 and disparate localizations of PGD2. Overall, this study describes a simple and powerful approach to more comprehensively probe the spatial metabolome with MSI.
Collapse
Affiliation(s)
- Kiera Nguyen
- Department of Chemistry, Vancouver Island University, Nanaimo, BC V9R 5S5, Canada
| | - Gillian Carleton
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, BC V8R 6 V5, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Julian J Lum
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, BC V8R 6 V5, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Kyle D Duncan
- Department of Chemistry, Vancouver Island University, Nanaimo, BC V9R 5S5, Canada
- Department of Chemistry, University of Victoria, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
2
|
Kuril AK. Exploring the versatility of mass spectrometry: Applications across diverse scientific disciplines. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2024; 30:209-220. [PMID: 39314187 DOI: 10.1177/14690667241278110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Mass spectrometry (MS) has become a pivotal analytical tool across various scientific disciplines due to its ability to provide detailed molecular information with high sensitivity and specificity. MS plays a crucial role in various fields, including drug discovery and development, proteomics, metabolomics, environmental analysis, and clinical diagnostics and Forensic science. In this article we are discussing the application of MS across the diverse scientific disciplines by focusing on some classical examples from each field of application. As the technology continues to evolve, it promises to unlock new possibilities in scientific research and practical applications, cementing its position as an essential tool in modern analytical science.
Collapse
|
3
|
Sarkar S, Roy D, Chatterjee B, Ghosh R. Clinical advances in analytical profiling of signature lipids: implications for severe non-communicable and neurodegenerative diseases. Metabolomics 2024; 20:37. [PMID: 38459207 DOI: 10.1007/s11306-024-02100-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/06/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND Lipids play key roles in numerous biological processes, including energy storage, cell membrane structure, signaling, immune responses, and homeostasis, making lipidomics a vital branch of metabolomics that analyzes and characterizes a wide range of lipid classes. Addressing the complex etiology, age-related risk, progression, inflammation, and research overlap in conditions like Alzheimer's Disease, Parkinson's Disease, Cardiovascular Diseases, and Cancer poses significant challenges in the quest for effective therapeutic targets, improved diagnostic markers, and advanced treatments. Mass spectrometry is an indispensable tool in clinical lipidomics, delivering quantitative and structural lipid data, and its integration with technologies like Liquid Chromatography (LC), Magnetic Resonance Imaging (MRI), and few emerging Matrix-Assisted Laser Desorption Ionization- Imaging Mass Spectrometry (MALDI-IMS) along with its incorporation into Tissue Microarray (TMA) represents current advances. These innovations enhance lipidomics assessment, bolster accuracy, and offer insights into lipid subcellular localization, dynamics, and functional roles in disease contexts. AIM OF THE REVIEW The review article summarizes recent advancements in lipidomic methodologies from 2019 to 2023 for diagnosing major neurodegenerative diseases, Alzheimer's and Parkinson's, serious non-communicable cardiovascular diseases and cancer, emphasizing the role of lipid level variations, and highlighting the potential of lipidomics data integration with genomics and proteomics to improve disease understanding and innovative prognostic, diagnostic and therapeutic strategies. KEY SCIENTIFIC CONCEPTS OF REVIEW Clinical lipidomic studies are a promising approach to track and analyze lipid profiles, revealing their crucial roles in various diseases. This lipid-focused research provides insights into disease mechanisms, biomarker identification, and potential therapeutic targets, advancing our understanding and management of conditions such as Alzheimer's Disease, Parkinson's Disease, Cardiovascular Diseases, and specific cancers.
Collapse
Affiliation(s)
- Sutanu Sarkar
- Amity Institute of Biotechnology (AIBNK), Amity University, Rajarhat, Newtown Action Area 2, Kolkata, 700135, West Bengal, India
| | - Deotima Roy
- Amity Institute of Biotechnology (AIBNK), Amity University, Rajarhat, Newtown Action Area 2, Kolkata, 700135, West Bengal, India
| | - Bhaskar Chatterjee
- Amity Institute of Biotechnology (AIBNK), Amity University, Rajarhat, Newtown Action Area 2, Kolkata, 700135, West Bengal, India
| | - Rajgourab Ghosh
- Amity Institute of Biotechnology (AIBNK), Amity University, Rajarhat, Newtown Action Area 2, Kolkata, 700135, West Bengal, India.
| |
Collapse
|
4
|
Levasseur M, Nicol E, Elie N, Houël E, Eparvier V, Touboul D. Spatialized Metabolomic Annotation Combining MALDI Imaging and Molecular Networks. Anal Chem 2024; 96:18-22. [PMID: 38134413 DOI: 10.1021/acs.analchem.3c03482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
MALDI mass spectrometry imaging has gained major interest in the field of chemical imaging. This technique makes it possible to locate tens to hundreds of ionic signals on the sample surface without any a priori. One of the current challenges is still the limited ability to annotate signals in order to convert m/z values into probable chemical structures. At the same time, data obtained by LC-MS/MS have benefited from the development of numerous chemoinformatics tools, in particular molecular networks, for their efficient annotation. For the first time, we present here the combination of MALDI-FT-ICR imaging with molecular networks from MALDI-MS/MS data directly acquired on plant tissue sections. Annotation improvements are demonstrated, paving the way for new annotation pipelines for MALDI imaging.
Collapse
Affiliation(s)
- Marceau Levasseur
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Edith Nicol
- Laboratoire de Chimie Moléculaire (LCM), CNRS, École Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Nicolas Elie
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Emeline Houël
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, Observatoire Océanologique, 66 650 Banyuls-sur-Mer, France
| | - Véronique Eparvier
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - David Touboul
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
- Laboratoire de Chimie Moléculaire (LCM), CNRS, École Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| |
Collapse
|
5
|
Nanostructured Silicon Enabled HR-MS for the Label-Free Detection of Biomarkers in Colorectal Cancer Plasma Small Extracellular Vesicles. JOURNAL OF NANOTHERANOSTICS 2022. [DOI: 10.3390/jnt3040013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Despite improvements in treatment options for advanced colorectal cancer (CRC), survival outcomes are still best for patients with non-metastasised disease. Diagnostic tools to identify blood-based biomarkers and assist in CRC subtype classification could afford a means to track CRC progression and treatment response. Cancer cell-derived small extracellular vesicles (EVs) circulating in blood carry an elevated cargo of lipids and proteins that could be used as a signature of tumour suppressor/promoting events or stages leading up to and including metastasis. Here, we used pre-characterised biobanked plasma samples from surgical units, typically with a low volume (~100 µL), to generate and discover signatures of CRC-derived EVs. We employed nanostructured porous silicon (pSi) surface assisted-laser desorption/ionisation (SALDI) coupled with high-resolution mass spectrometry (HR-MS), to allow sensitive detection of low abundant analytes in plasma EVs. When applied to CRC samples, SALDI-HR-MS enabled the detection of the peptide mass fingerprint of cancer suppressor proteins, including serine/threonine phosphatases and activating-transcription factor 3. SALDI-HR-MS also allowed the detection of a spectrum of glycerophospholipids and sphingolipid signatures in metastatic CRC. We observed that lithium chloride enhanced detection sensitivity to elucidate the structure of low abundant lipids in plasma EVs. pSi SALDI can be used as an effective system for label-free and high throughput analysis of low-volume patient samples, allowing rapid and sensitive analysis for CRC classification.
Collapse
|
6
|
Farrokhpour H, Aboutorab M, Amiri R, Tabrizchi M. Li + and Na + attachment to some dipeptides via LDI-TOF mass spectrometry: Fragmentation patterns. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120093. [PMID: 34175752 DOI: 10.1016/j.saa.2021.120093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/01/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Laser desorption ionization-time of flight (LDI-TOF) mass spectrometry is used for studying the attachment of Na+ and Li+ ions to four dipeptides including phenylalanyl-alanine (Phe-Ala), tyrosyl-alanine (Tyr-Ala), L-Phenylalanyl-L-Phenylalanine (Phe-Phe), and alanyl-glutamine (Ala-Gln) dipeptides. The LiCl, NaOH, and NaF salts are used as the source of Li+ and Na+ ions in the LDI of the dipeptides. Our aim is the investigation of the difference between the fragmentation patterns of the selected dipeptides in the presence of Na+ and Li+ ions due to the laser radiation and providing information for the fragmentation of larger peptides in the same conditions. The characteristic peak, related to [dipeptide-H + 2Na]+ species, is observed in the mass spectrum of Phe-Ala and Tyr-Ala dipeptides in the presence of NaF, while the breaking of the peptide bond (OC-NH) occurs for the Phe-Phe in the presence of the aforementioned salts. The characteristic peak of Ala-Gln dipeptide ([(Ala-Gln)-H + 2Na]+) is observed in the absence of any salt. The mass spectra of the dipeptides, recorded in the presence of LiCl, are crowded compared to those recorded in the presence of NaF and NaOH showing the effect of the type of alkali salt on the dipeptide fragmentation. The theoretical calculations are employed to investigate the ability of the interaction sites of dipeptides for the attachment of one and two Na+ and determine the most stable structure of the [dipeptide-H + 2Na]+ species for each dipeptide.
Collapse
Affiliation(s)
- H Farrokhpour
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - M Aboutorab
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - R Amiri
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - M Tabrizchi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
7
|
Liu H, Cao J, Balluff B, Jongen AC, Gijbels MJ, Melenhorst J, Heeren RM, Bouvy ND. Examination of lipid profiles in abdominal fascial healing using MALDI-TOF to identify potential therapeutic targets. J Mass Spectrom Adv Clin Lab 2021; 20:35-41. [PMID: 34820669 PMCID: PMC8600998 DOI: 10.1016/j.jmsacl.2021.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 11/20/2022] Open
Abstract
Lipids change overtime in normal fascial healing in the early post-surgery period. Specific lipid species are correlated with the changes of inflammation cells and fibroblasts. Lipid species in the present study are considered as predictive markers for the formation of incisional hernia.
Background Failure of fascial healing in the abdominal wall can result in incisional hernia, which is one of the most common complications after laparotomy. Understanding the molecular healing process of abdominal fascia may provide lipid markers of incisional hernia or therapeutic targets that allow prevention or treatment of incisional hernias. Purpose This study aims to investigate temporal and in situ changes of lipids during the normal healing process of abdominal fascia in the first postoperative week. Methods Open hemicolectomy was performed in a total of 35 Wistar rats. The midline fascia was closed identically for all rats using a single continuous suturing technique. These animals were sacrificed with equal numbers (n = 5) at each of 7-time points (6, 12, 24, 48, 72, 120, and 168 h. The local and temporal changes of lipids were examined with mass spectrometry imaging and correlated to histologically scored changes during healing using hematoxylin and eosin staining. Results Two phosphatidylcholine lipid species (PC O-38:5 and PC 38:4) and one phosphatidylethanolamine lipid (PE O-16:1_20:4) were found to significantly correlate with temporal changes of inflammation. A phosphatidylcholine (PC 32:0) and a monosialodihexosylganglioside (GM3 34:1;2) were found to correlate with fibroblast cell growth. Conclusion Glycerophospholipids and gangliosides are strongly involved in the normal healing process of abdominal fascia and their locally fluctuating concentrations are considered as potential lipid markers and therapeutic targets of fascial healing.
Collapse
Key Words
- AA, Arachidonic acid
- CL, Cardiolipin
- CerPE, Ceramide phosphorylethanolamine
- Fascia
- GM3, Monosialodihexosylganglioside
- Incisional hernia
- LPA, Lysophosphatidic acid
- LPC, Lysophosphatidylcholine
- Lipids
- MMPE, Monomethyl-phosphatidylethanolamine
- Mass spectrometry imaging
- PA, Phosphatidic acid
- PC, Phosphatidylcholine
- PE, Phosphatidylethanolamine
- PI, Phosphatidylinositol
- SM, Sphingomyelin
- Wound healing
Collapse
Affiliation(s)
- Hong Liu
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
- Corresponding author at: Department of General Surgery, Maastricht University Medical Centre, PO Box 5800, 6202 AZ Maastricht, The Netherlands.
| | - Jianhua Cao
- Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, Maastricht, The Netherlands
| | - Benjamin Balluff
- Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, Maastricht, The Netherlands
| | - Audrey C.H.M. Jongen
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Marion J. Gijbels
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pathology CARIM, Cardiovascular Research Institute Maastricht, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Jarno Melenhorst
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Ron M.A. Heeren
- Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, Maastricht, The Netherlands
| | - Nicole D. Bouvy
- Department of Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
8
|
Li B, Ge J, Liu W, Hu D, Li P. Unveiling spatial metabolome of Paeonia suffruticosa and Paeonia lactiflora roots using MALDI MS imaging. THE NEW PHYTOLOGIST 2021; 231:892-902. [PMID: 33864691 DOI: 10.1111/nph.17393] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/01/2021] [Indexed: 05/26/2023]
Abstract
Paeonia suffruticosa (PS) and Paeonia lactiflora (PL) belong to the only genus in the family Paeoniaceae. Comparative analysis of the spatial metabolomes of PS and PL has rarely been performed. In this work, combined with multiple matrixes and dual-polarity detection, high mass resolution matrix-assisted laser desorption/ionization MS imaging (MALDI MSI) and MALDI tandem MSI were performed on the root sections of the two Paeonia species. The spatial distributions of many metabolites including monoterpene and paeonol glycosides, tannins, flavonoids, saccharides and lipids were systematically characterized. The ambiguous tissue distribution of the two isomers paeoniflorin and albiflorin were distinguished by tandem MSI using lithium salt doped 2,5-dihydroxybenzoate matrix. In addition, the major intermediates involved in the biosynthetic pathway of gallotannins were successfully localized and visualized in the root sections. High-mass resolution MALDI full-scan MSI provides comprehensive and accurate spatial distribution of metabolites. The analytical power of the technique was further tested in the tandem MSI of two isomers. The ion images of individual metabolites provide chemical and microscopic characteristics beyond morphological identification, and the detailed spatiochemical information could not only improve our understanding of the biosynthetic pathway of hydrolyzable tannins, but also ensure the safety and effectiveness of their medicinal use.
Collapse
Affiliation(s)
- Bin Li
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Junyue Ge
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wei Liu
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Dejun Hu
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ping Li
- State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
9
|
Amiri R, Farrokhpour H, Tabrizchi M. Sodium salts effect on the time of flight mass spectra of some amino acids in the
direct‐
laser desorption ionization and matrix‐assisted laser desorption/ionization. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202000400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Razieh Amiri
- Department of Chemistry Isfahan University of Technology Isfahan Iran
| | | | - Mahmoud Tabrizchi
- Department of Chemistry Isfahan University of Technology Isfahan Iran
| |
Collapse
|
10
|
Removal of optimal cutting temperature (O.C.T.) compound from embedded tissue for MALDI imaging of lipids. Anal Bioanal Chem 2021; 413:2695-2708. [PMID: 33564925 DOI: 10.1007/s00216-020-03128-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/27/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022]
Abstract
Matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) is a common molecular imaging modality used to characterise the abundance and spatial distribution of lipids in situ. There are several technical challenges predominantly involving sample pre-treatment and preparation which have complicated the analysis of clinical tissues by MALDI-MSI. Firstly, the common embedding of samples in optimal cutting temperature (O.C.T.), which contains high concentrations of polyethylene glycol (PEG) polymers, causes analyte signal suppression during mass spectrometry (MS) by competing for available ions during ionisation. This suppressive effect has constrained the application of MALDI-MSI for the molecular mapping of clinical tissues. Secondly, the complexity of the mass spectra is obtained by the formation of multiple adduct ions. The process of analyte ion formation during MALDI can generate multiple m/z peaks from a single lipid species due to the presence of alkali salts in tissues, resulting in the suppression of protonated adduct formation and the generation of multiple near isobaric ions which produce overlapping spatial distributions. Presented is a method to simultaneously remove O.C.T. and endogenous salts. This approach was applied to lipid imaging in order to prevent analyte suppression, simplify data interpretation, and improve sensitivity by promoting lipid protonation and reducing the formation of alkali adducts.
Collapse
|
11
|
Complementary neuropeptide detection in crustacean brain by mass spectrometry imaging using formalin and alternative aqueous tissue washes. Anal Bioanal Chem 2021; 413:2665-2673. [PMID: 33403426 DOI: 10.1007/s00216-020-03073-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/04/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022]
Abstract
Neuropeptides are low abundance signaling molecules that modulate almost every physiological process, and dysregulation of neuropeptides is implicated in disease pathology. Mass spectrometry (MS) imaging is becoming increasingly useful for studying neuropeptides as new sample preparation methods for improving neuropeptide detection are developed. In particular, proper tissue washes prior to MS imaging have shown to be quick and effective strategies for increasing the number of detectable neuropeptides. Treating tissues with solvents could result in either gain or loss of detection of analytes, and characterization of these wash effects is important for studies targeting sub-classes of neuropeptides. In this communication, we apply aqueous tissue washes that contain sodium phosphate salts, including 10% neutral buffered formalin (NBF), on crustacean brain tissues. Our optimized method resulted in complementary identification of neuropeptides between washed and unwashed tissues, indicating that our wash protocol may be used to increase total neuropeptide identifications. Finally, we show that identical neuropeptides were detected between tissues treated with 10% NBF and an aqueous 1% w/v sodium phosphate solution (composition of 10% NBF without formaldehyde), suggesting that utilizing a salt solution wash affects neuropeptide detection and formaldehyde does not affect neuropeptide detection when our wash protocol is performed.
Collapse
|
12
|
Dufresne M, Patterson NH, Norris JL, Caprioli RM. Combining Salt Doping and Matrix Sublimation for High Spatial Resolution MALDI Imaging Mass Spectrometry of Neutral Lipids. Anal Chem 2019; 91:12928-12934. [DOI: 10.1021/acs.analchem.9b02974] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Martin Dufresne
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Ave S #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
| | - Nathan Heath Patterson
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Ave S #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
| | - Jeremy Lynn Norris
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Ave S #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
| | - Richard Micheal Caprioli
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Ave S #9160, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
- Department of Pharmacology, Vanderbilt University, 442 Robinson Research Building, 2220 Pierce Avenue, Nashville, Tennessee 37232, United States
- Department of Medicine, Vanderbilt University, 465 21st Ave S #9160, Nashville, Tennessee 37235, United States
| |
Collapse
|
13
|
Barbosa EA, Bonfim MF, Bloch C, Engler G, Rocha T, de Almeida Engler J. Imaging Mass Spectrometry of Endogenous Polypeptides and Secondary Metabolites from Galls Induced by Root-Knot Nematodes in Tomato Roots. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:1048-1059. [PMID: 29663868 DOI: 10.1094/mpmi-02-18-0049-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nematodes are devastating pests that infect most cultivated plant species and cause considerable agricultural losses worldwide. The understanding of metabolic adjustments induced during plant-nematode interaction is crucial to generate resistant plants or to select more efficient molecules to fight against this pest. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) has been used herein for in situ detection and mapping endogenous polypeptides and secondary metabolites from nematode-induced gall tissue. One of the major critical features of this technique is sample preparation; mainly, the generation of intact sections of plant cells with their rigid cell walls and vacuolated cytoplasm. Our experimental settings allowed us to obtain sections without contamination of exogenous ions or diffusion of molecules and to map the differential presence of low and high molecular weight ions in uninfected roots compared with nematode-induced galls. We predict the presence of lipids in both uninfected roots and galls, which was validated by MALDI time-of-flight tandem mass spectrometry and high-resolution mass spectrometry analysis of lipid extracts. Based on the isotopic ion distribution profile, both esters and glycerophospholipids were predicted compounds and may be playing an important role in gall development. Our results indicate that the MALDI-MSI technology is a promising tool to identify secondary metabolites as well as peptides and proteins in complex plant tissues like galls to decipher molecular processes responsible for infection and maintenance of these feeding sites during nematode parasitism.
Collapse
Affiliation(s)
- Eder Alves Barbosa
- 1 Laboratório de espectrometria de massa, Embrapa Recursos Genéticos e Biotecnologia, PqEB, 70770-900, Brasília-DF, Brazil
- 2 Laboratório de Síntese e Análise de Biomoléculas, Instituto de Química, Universidade de Brasília, 70910-900, Brasília-DF, Brazil
| | - Mauro Ferreira Bonfim
- 2 Laboratório de Síntese e Análise de Biomoléculas, Instituto de Química, Universidade de Brasília, 70910-900, Brasília-DF, Brazil
- 3 Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, PqEB; and
| | - Carlos Bloch
- 1 Laboratório de espectrometria de massa, Embrapa Recursos Genéticos e Biotecnologia, PqEB, 70770-900, Brasília-DF, Brazil
| | - Gilbert Engler
- 4 INRA, Université Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis, France
| | - Thales Rocha
- 3 Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, PqEB; and
| | | |
Collapse
|
14
|
Leopold J, Popkova Y, Engel KM, Schiller J. Visualizing phosphatidylcholine via mass spectrometry imaging: relevance to human health. Expert Rev Proteomics 2018; 15:791-800. [PMID: 30241449 DOI: 10.1080/14789450.2018.1526679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Mass spectrometry imaging (MSI) techniques are nowadays widely used to obtain spatially resolved metabolite information from biological tissues. Since (phospho)lipids occur in all animal tissues and are very sensitively detectable, they are often in the focus of such studies. This particularly applies for phosphatidylcholines (PC) which are very sensitively detectable as positive ions due to the permanent positive charge of their choline headgroup. Areas covered: After a short introduction of lipid species occurring in biological systems and approaches normally used to obtain spatially resolved mass spectra (with the focus on matrix-assisted laser desorption/ionization coupled to time-of-flight (MALDI-TOF) MSI) a survey will be given which diseases have so far been characterized by changes of the PC composition. Expert commentary: Since PC species are very sensitively detectable by MS, sensitivity is not a major issue. However, spatial resolution is still limited and cellular dimensions can be hardly resolved by MALDI-TOF MSI, which is a critical point of the available approaches. Due to lacks of reproducibility and standardization further development is required.
Collapse
Affiliation(s)
- Jenny Leopold
- a Faculty of Medicine, Institute for Medical Physics and Biophysics , Leipzig University , Leipzig , Germany
| | - Yulia Popkova
- a Faculty of Medicine, Institute for Medical Physics and Biophysics , Leipzig University , Leipzig , Germany
| | - Kathrin M Engel
- a Faculty of Medicine, Institute for Medical Physics and Biophysics , Leipzig University , Leipzig , Germany
| | - Jürgen Schiller
- a Faculty of Medicine, Institute for Medical Physics and Biophysics , Leipzig University , Leipzig , Germany
| |
Collapse
|
15
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
16
|
Korte AR, Stopka SA, Morris N, Razunguzwa T, Vertes A. Large-Scale Metabolite Analysis of Standards and Human Serum by Laser Desorption Ionization Mass Spectrometry from Silicon Nanopost Arrays. Anal Chem 2016; 88:8989-96. [PMID: 27399036 DOI: 10.1021/acs.analchem.6b01186] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The unique challenges presented by metabolomics have driven the development of new mass spectrometry (MS)-based techniques for small molecule analysis. We have previously demonstrated silicon nanopost arrays (NAPA) to be an effective substrate for laser desorption ionization (LDI) of small molecules for MS. However, the utility of NAPA-LDI-MS for a wide range of metabolite classes has not been investigated. Here we apply NAPA-LDI-MS to the large-scale acquisition of high-resolution mass spectra and tandem mass spectra from a collection of metabolite standards covering a range of compound classes including amino acids, nucleotides, carbohydrates, xenobiotics, lipids, and other classes. In untargeted analysis of metabolite standard mixtures, detection was achieved for 374 compounds and useful MS/MS spectra were obtained for 287 compounds, without individual optimization of ionization or fragmentation conditions. Metabolite detection was evaluated in the context of 31 metabolic pathways, and NAPA-LDI-MS was found to provide detection for 63% of investigated pathway metabolites. Individual, targeted analysis of the 20 common amino acids provided detection of 100% of the investigated compounds, demonstrating that improved coverage is possible through optimization and targeting of individual analytes or analyte classes. In direct analysis of aqueous and organic extracts from human serum samples, spectral features were assigned to a total of 108 small metabolites and lipids. Glucose and amino acids were quantitated within their physiological concentration ranges. The broad coverage demonstrated by this large-scale screening experiment opens the door for use of NAPA-LDI-MS in numerous metabolite analysis applications.
Collapse
Affiliation(s)
- Andrew R Korte
- Department of Chemistry, George Washington University , 800 22nd Street, North West, Washington, District of Columbia 20052, United States
| | - Sylwia A Stopka
- Department of Chemistry, George Washington University , 800 22nd Street, North West, Washington, District of Columbia 20052, United States
| | - Nicholas Morris
- Protea Biosciences, Inc. , Morgantown, West Virginia 26505, United States
| | - Trust Razunguzwa
- Protea Biosciences, Inc. , Morgantown, West Virginia 26505, United States
| | - Akos Vertes
- Department of Chemistry, George Washington University , 800 22nd Street, North West, Washington, District of Columbia 20052, United States
| |
Collapse
|
17
|
AlMasoud N, Correa E, Trivedi DK, Goodacre R. Fractional Factorial Design of MALDI-TOF-MS Sample Preparations for the Optimized Detection of Phospholipids and Acylglycerols. Anal Chem 2016; 88:6301-8. [DOI: 10.1021/acs.analchem.6b00512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Najla AlMasoud
- School
of Chemistry and Manchester
Institute of Biotechnology, University of Manchester, 131 Princess
Street, Manchester M1 7DN, U.K
| | - Elon Correa
- School
of Chemistry and Manchester
Institute of Biotechnology, University of Manchester, 131 Princess
Street, Manchester M1 7DN, U.K
| | - Drupad K. Trivedi
- School
of Chemistry and Manchester
Institute of Biotechnology, University of Manchester, 131 Princess
Street, Manchester M1 7DN, U.K
| | - Royston Goodacre
- School
of Chemistry and Manchester
Institute of Biotechnology, University of Manchester, 131 Princess
Street, Manchester M1 7DN, U.K
| |
Collapse
|
18
|
Multigrid MALDI mass spectrometry imaging (mMALDI MSI). Anal Bioanal Chem 2016; 408:3769-81. [PMID: 27039200 DOI: 10.1007/s00216-016-9465-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 10/22/2022]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) is an important technique for the spatially resolved molecular analysis of tissue sections. The selection of matrices influences the resulting mass spectra to a high degree. For extensive and simultaneous analysis, the application of different matrices to one tissue sample is desirable. To date, only a single matrix could be applied to a tissue section per experiment. However, repetitive removal of the matrix makes this approach time-consuming and damaging to tissue samples. To overcome these drawbacks, we developed a multigrid MALDI MSI technique (mMALDI MSI) that relies on automated inkjet printing to place differing matrices onto predefined dot grids. We used a cooled printhead to prevent cavitation of low viscosity solvents in the printhead nozzle. Improved spatial resolution of the dot grids was achieved by using a triple-pulse procedure that reduced droplet volume. The matrices can either be applied directly to the thaw-mounted tissue sample or by precoating the slide followed by mounting of the tissue sample. During the MALDI imaging process, we were able to precisely target different matrix point grids with the laser to simultaneously produce distinct mass spectra. Unlike the standard method, the prespotting approach optimizes the spectra quality, avoids analyte delocalization, and enables subsequent hematoxylin and eosin (H&E) staining. Graphical Abstract Scheme of the pre-spotted multigrid MALDI MSI workflow.
Collapse
|
19
|
Smolira A, Wessely-Szponder J. Importance of the matrix and the matrix/sample ratio in MALDI-TOF-MS analysis of cathelicidins obtained from porcine neutrophils. Appl Biochem Biotechnol 2014; 175:2050-65. [PMID: 25432341 PMCID: PMC4322226 DOI: 10.1007/s12010-014-1405-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 11/13/2014] [Indexed: 11/24/2022]
Abstract
Qualitative and quantitative mass spectrometric studies of biomolecules for example proteins, peptides, or lipids contained in biological samples like physiologic fluids are very important for many fields of science such as medicine, veterinary medicine, biology, biochemistry, molecular biology, or environmental sciences. In the last two decades, MALDI TOF MS — matrix-assisted laser desorption mass spectrometry, proved to be an especially convenient tool for these analyses. The main advantages of this method are its rapidity and high sensitivity which is particularly appreciated in the case of studies of complex biological specimen. A major challenge for many researchers is to maximize this sensitivity, among others, by appropriate procedures of sample preparation for the measurement. The objective of this work was to optimize these procedures, selecting the optimal matrix and optimum proportions of the sample and the matrix solution in a mixture of both solutions, aiming at the achievement of the maximum intensity of ion current. In this respect, five low molecular mass cathelicidins were studied: prophenin-2, protegrins 1–3, PR-39. All of them were obtained directly from the porcine blood. As a result of studies, the authors determined such experimental conditions when the intensity of investigated ionic current had the highest value.
Collapse
Affiliation(s)
- Anna Smolira
- Department of Molecular Physics, Institute of Physics, Maria Curie Sklodowska University, Pl. M. Curie-Skłodowskiej 1, 20-031, Lublin, Poland,
| | | |
Collapse
|
20
|
Mayeux C, Burk P, Gal JF, Kaljurand I, Koppel I, Leito I, Sikk L. Gas-phase lithium cation basicity: revisiting the high basicity range by experiment and theory. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1962-1973. [PMID: 25190215 DOI: 10.1007/s13361-014-0970-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 07/14/2014] [Accepted: 07/14/2014] [Indexed: 06/03/2023]
Abstract
According to high level calculations, the upper part of the previously published FT-ICR lithium cation basicity (LiCB at 373 K) scale appeared to be biased by a systematic downward shift. The purpose of this work was to determine the source of this systematic difference. New experimental LiCB values at 373 K have been measured for 31 ligands by proton-transfer equilibrium techniques, ranging from tetrahydrofuran (137.2 kJ mol(-1)) to 1,2-dimethoxyethane (202.7 kJ mol(-1)). The relative basicities (ΔLiCB) were included in a single self-consistent ladder anchored to the absolute LiCB value of pyridine (146.7 kJ mol(-1)). This new LiCB scale exhibits a good agreement with theoretical values obtained at G2(MP2) level. By means of kinetic modeling, it was also shown that equilibrium measurements can be performed in spite of the formation of Li(+) bound dimers. The key feature for achieving accurate equilibrium measurements is the ion trapping time. The potential causes of discrepancies between the new data and previous experimental measurements were analyzed. It was concluded that the disagreement essentially finds its origin in the estimation of temperature and the calibration of Cook's kinetic method.
Collapse
|
21
|
Durairaj A, Winograd N. Tandem MS and C
60
SIMS for the identification and characterization of lipids. SURF INTERFACE ANAL 2014. [DOI: 10.1002/sia.5664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anita Durairaj
- Department of Pathology and Anatomical Sciences University of Missouri Columbia MO USA
| | - Nicholas Winograd
- Department of Chemistry The Pennsylvania State University State College PA USA
| |
Collapse
|
22
|
Jadoul L, Malherbe C, Calligaris D, Longuespée R, Gilbert B, Eppe G, De Pauw E. Matrix-assisted laser desorption/ionization mass spectrometry and Raman spectroscopy: An interesting complementary approach for lipid detection in biological tissues. EUR J LIPID SCI TECH 2014. [DOI: 10.1002/ejlt.201300198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Laure Jadoul
- Mass Spectrometry Laboratory; Department of Chemistry; University of Liège; Liège Belgium
| | - Cédric Malherbe
- Inorganic Analytical Chemistry Laboratory; Department of Chemistry; University of Liège; Liège Belgium
| | - David Calligaris
- Mass Spectrometry Laboratory; Department of Chemistry; University of Liège; Liège Belgium
| | - Rémi Longuespée
- Mass Spectrometry Laboratory; Department of Chemistry; University of Liège; Liège Belgium
| | - Bernard Gilbert
- Inorganic Analytical Chemistry Laboratory; Department of Chemistry; University of Liège; Liège Belgium
| | - Gauthier Eppe
- Inorganic Analytical Chemistry Laboratory; Department of Chemistry; University of Liège; Liège Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory; Department of Chemistry; University of Liège; Liège Belgium
| |
Collapse
|
23
|
Optimization of Triacylglycerol-estolide Analysis by Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry. J AM OIL CHEM SOC 2014. [DOI: 10.1007/s11746-014-2437-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Li Z, Zhang YW, Xin YL, Bai Y, Zhou HH, Liu HW. A lithium-rich composite metal oxide used as a SALDI-MS matrix for the determination of small biomolecules. Chem Commun (Camb) 2014; 50:15397-9. [DOI: 10.1039/c4cc07479c] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A lithium-rich composite metal oxide material used as a SALDI matrix for high throughput analysis of small molecules.
Collapse
Affiliation(s)
- Ze Li
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871, China
| | - Yi-Wei Zhang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871, China
| | - Yue-Long Xin
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871, China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871, China
| | - Heng-Hui Zhou
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871, China
| | - Hu-Wei Liu
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871, China
| |
Collapse
|
25
|
Shariatgorji M, Svenningsson P, Andrén PE. Mass spectrometry imaging, an emerging technology in neuropsychopharmacology. Neuropsychopharmacology 2014; 39:34-49. [PMID: 23966069 PMCID: PMC3857656 DOI: 10.1038/npp.2013.215] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/04/2013] [Accepted: 07/08/2013] [Indexed: 01/03/2023]
Abstract
Mass spectrometry imaging is a powerful tool for directly determining the distribution of proteins, peptides, lipids, neurotransmitters, metabolites and drugs in neural tissue sections in situ. Molecule-specific imaging can be achieved using various ionization techniques that are suited to different applications but which all yield data with high mass accuracies and spatial resolutions. The ability to simultaneously obtain images showing the distributions of chemical species ranging from metal ions to macromolecules makes it possible to explore the chemical organization of a sample and to correlate the results obtained with specific anatomical features. The imaging of biomolecules has provided new insights into multiple neurological diseases, including Parkinson's and Alzheimer's disease. Mass spectrometry imaging can also be used in conjunction with other imaging techniques in order to identify correlations between changes in the distribution of important chemical species and other changes in the properties of the tissue. Here we review the applications of mass spectrometry imaging in neuroscience research and discuss its potential. The results presented demonstrate that mass spectrometry imaging is a useful experimental method with diverse applications in neuroscience.
Collapse
Affiliation(s)
- Mohammadreza Shariatgorji
- Department of Pharmaceutical Biosciences, Biomolecular Imaging and Proteomics, National Laboratory for Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
| | - Per Svenningsson
- Department of Neurology and Clinical Neuroscience, Centre for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Per E Andrén
- Department of Pharmaceutical Biosciences, Biomolecular Imaging and Proteomics, National Laboratory for Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
| |
Collapse
|
26
|
MALDI Mass Spectrometry Imaging of 1-Methyl-4-phenylpyridinium (MPP+) in Mouse Brain. Neurotox Res 2013; 25:135-45. [DOI: 10.1007/s12640-013-9449-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 11/24/2013] [Accepted: 12/05/2013] [Indexed: 12/01/2022]
|
27
|
Lee G, Son J, Cha S. Selective or Class-wide Mass Fingerprinting of Phosphatidylcholines and Cerebrosides from Lipid Mixtures by MALDI Mass Spectrometry. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.7.2143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Ruh H, Sandhoff R, Meyer B, Gretz N, Hopf C. Quantitative Characterization of Tissue Globotetraosylceramides in a Rat Model of Polycystic Kidney Disease by PrimaDrop Sample Preparation and Indirect High-Performance Thin Layer Chromatography–Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight-Mass Spectrometry with Automated Data Acquisition. Anal Chem 2013; 85:6233-40. [DOI: 10.1021/ac400931u] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Hermelindis Ruh
- Instrumental Analysis and Bioanalysis, Department of
Biotechnology, Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim,
Germany
- Applied Research
Center in Biomedical
Mass Spectrometry (ABIMAS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
- Institute of Medical Technology, University of Heidelberg and Mannheim University of Applied Sciences, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Medical Research Center, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Roger Sandhoff
- Applied Research
Center in Biomedical
Mass Spectrometry (ABIMAS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
- Lipid Pathobiochemistry, German Cancer Research Center, Im Neuenheimer Feld
280, 69120 Heidelberg, Germany
| | - Björn Meyer
- Instrumental Analysis and Bioanalysis, Department of
Biotechnology, Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim,
Germany
- Applied Research
Center in Biomedical
Mass Spectrometry (ABIMAS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
- Institute of Medical Technology, University of Heidelberg and Mannheim University of Applied Sciences, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Norbert Gretz
- Applied Research
Center in Biomedical
Mass Spectrometry (ABIMAS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
- Institute of Medical Technology, University of Heidelberg and Mannheim University of Applied Sciences, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Medical Research Center, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Carsten Hopf
- Instrumental Analysis and Bioanalysis, Department of
Biotechnology, Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim,
Germany
- Applied Research
Center in Biomedical
Mass Spectrometry (ABIMAS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
- Institute of Medical Technology, University of Heidelberg and Mannheim University of Applied Sciences, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| |
Collapse
|
29
|
Surface analysis of lipids by mass spectrometry: more than just imaging. Prog Lipid Res 2013; 52:329-53. [PMID: 23623802 DOI: 10.1016/j.plipres.2013.04.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 03/19/2013] [Accepted: 04/12/2013] [Indexed: 11/22/2022]
Abstract
Mass spectrometry is now an indispensable tool for lipid analysis and is arguably the driving force in the renaissance of lipid research. In its various forms, mass spectrometry is uniquely capable of resolving the extensive compositional and structural diversity of lipids in biological systems. Furthermore, it provides the ability to accurately quantify molecular-level changes in lipid populations associated with changes in metabolism and environment; bringing lipid science to the "omics" age. The recent explosion of mass spectrometry-based surface analysis techniques is fuelling further expansion of the lipidomics field. This is evidenced by the numerous papers published on the subject of mass spectrometric imaging of lipids in recent years. While imaging mass spectrometry provides new and exciting possibilities, it is but one of the many opportunities direct surface analysis offers the lipid researcher. In this review we describe the current state-of-the-art in the direct surface analysis of lipids with a focus on tissue sections, intact cells and thin-layer chromatography substrates. The suitability of these different approaches towards analysis of the major lipid classes along with their current and potential applications in the field of lipid analysis are evaluated.
Collapse
|
30
|
|
31
|
Griffiths RL, Bunch J. A survey of useful salt additives in matrix-assisted laser desorption/ionization mass spectrometry and tandem mass spectrometry of lipids: introducing nitrates for improved analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:1557-1566. [PMID: 22638973 DOI: 10.1002/rcm.6258] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
RATIONALE Matrix-assisted laser desorption/ionization (MALDI) is a powerful technique for the direct analysis of lipids in complex mixtures and thin tissue sections, making it an extremely attractive method for profiling lipids in health and disease. Lipids are readily detected as [M+H](+), [M+Na](+) and [M+K](+) ions in positive ion MALDI mass spectrometry (MS) experiments. This not only decreases sensitivity, but can also lead to overlapping m/z values of the various adducts of different lipids. Additives can be used to promote formation of a particular adduct, improving sensitivity, reducing spectral complexity and enhancing structural characterization in collision-induced dissociation (CID) experiments. METHODS Li(+), Na(+), K(+), Cs(+) and NH(4)(+) cations were considered as a range of salt types (acetates, chlorides and nitrates) incorporated into DHB matrix solutions at concentrations between 5 and 80 mM. The study was extended to evaluate the effect of these additives on CID experiments of a lipid standard, after optimization of collision energy parameters. Experiments were performed on a hybrid quadrupole time-of-flight (QqTOF) instrument. RESULTS The systematic evaluation of new and existing additives in MALDI-MS and MS/MS of lipids demonstrated the importance of additive cation and anion choice and concentration for tailoring spectral results. CONCLUSIONS The recommended choice of additive depends on the desired outcomes of the experiment to be performed (MS or MS/MS). Nitrates are found to be particularly useful additives for lipid analysis.
Collapse
Affiliation(s)
- Rian L Griffiths
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | |
Collapse
|
32
|
Cerruti CD, Benabdellah F, Laprévote O, Touboul D, Brunelle A. MALDI Imaging and Structural Analysis of Rat Brain Lipid Negative Ions with 9-Aminoacridine Matrix. Anal Chem 2012; 84:2164-71. [DOI: 10.1021/ac2025317] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Christopher D. Cerruti
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS,
Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Farida Benabdellah
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS,
Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Olivier Laprévote
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS,
Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
- Chimie Toxicologie Analytique et
Cellulaire, EA4463, Faculté des Sciences Pharmaceutiques et
Biologiques, Université Paris Descartes, Sorbonne Paris Cité, 4 avenue de l’Observatoire,
75006 Paris, France
| | - David Touboul
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS,
Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Alain Brunelle
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS,
Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| |
Collapse
|
33
|
Berry KAZ, Hankin JA, Barkley RM, Spraggins JM, Caprioli RM, Murphy RC. MALDI imaging of lipid biochemistry in tissues by mass spectrometry. Chem Rev 2011; 111:6491-512. [PMID: 21942646 PMCID: PMC3199966 DOI: 10.1021/cr200280p] [Citation(s) in RCA: 294] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Karin A. Zemski Berry
- Department of Pharmacology, University of Colorado Denver, Mail Stop 8303, 12801 E. 17 Ave., Aurora, CO 80045
| | - Joseph A. Hankin
- Department of Pharmacology, University of Colorado Denver, Mail Stop 8303, 12801 E. 17 Ave., Aurora, CO 80045
| | - Robert M. Barkley
- Department of Pharmacology, University of Colorado Denver, Mail Stop 8303, 12801 E. 17 Ave., Aurora, CO 80045
| | - Jeffrey M. Spraggins
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, 9160 MRB 3, 465 21 Ave. S., Nashville, TN 37232
| | - Richard M. Caprioli
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, 9160 MRB 3, 465 21 Ave. S., Nashville, TN 37232
| | - Robert C. Murphy
- Department of Pharmacology, University of Colorado Denver, Mail Stop 8303, 12801 E. 17 Ave., Aurora, CO 80045
| |
Collapse
|
34
|
Zimmerman TA, Debois D, Mazzucchelli G, Bertrand V, De Pauw-Gillet MC, De Pauw E. An Analytical Pipeline for MALDI In-Source Decay Mass Spectrometry Imaging. Anal Chem 2011; 83:6090-7. [DOI: 10.1021/ac201221h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tyler A. Zimmerman
- Mass Spectrometry Laboratory, ‡Histology-Cytology Laboratory, GIGA-R Systems Biology and Chemical Biology, University of Liège, B-4000 Liège (Sart-Tilman), Belgium
| | - Delphine Debois
- Mass Spectrometry Laboratory, ‡Histology-Cytology Laboratory, GIGA-R Systems Biology and Chemical Biology, University of Liège, B-4000 Liège (Sart-Tilman), Belgium
| | - Gabriel Mazzucchelli
- Mass Spectrometry Laboratory, ‡Histology-Cytology Laboratory, GIGA-R Systems Biology and Chemical Biology, University of Liège, B-4000 Liège (Sart-Tilman), Belgium
| | - Virginie Bertrand
- Mass Spectrometry Laboratory, ‡Histology-Cytology Laboratory, GIGA-R Systems Biology and Chemical Biology, University of Liège, B-4000 Liège (Sart-Tilman), Belgium
| | - Marie-Claire De Pauw-Gillet
- Mass Spectrometry Laboratory, ‡Histology-Cytology Laboratory, GIGA-R Systems Biology and Chemical Biology, University of Liège, B-4000 Liège (Sart-Tilman), Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, ‡Histology-Cytology Laboratory, GIGA-R Systems Biology and Chemical Biology, University of Liège, B-4000 Liège (Sart-Tilman), Belgium
| |
Collapse
|