1
|
Kanwal F, Riaz A, Ali S, Zhang G. NRAMPs and manganese: Magic keys to reduce cadmium toxicity and accumulation in plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171005. [PMID: 38378068 DOI: 10.1016/j.scitotenv.2024.171005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
Cadmium (Cd), a toxic heavy metal, poses significant threats to both crop production and human health worldwide. Manganese (Mn), an essential micronutrient, plays a crucial role in plant growth and development. NRAMPs (Natural Resistance-Associated Macrophage Proteins) function as common transporters for both Cd and Mn. Deep understanding of the regulatory mechanisms governing NRAMP-mediated Cd and Mn transport is imperative for developing the crop varieties with high tolerance and low accumulation of Cd. This review reported the advance in studies on the fundamental properties and classification of NRAMPs in plants, and structural characteristics, expression patterns, and diverse functions of NRAMP genes across different plant species. We highlighted the pivotal role of NRAMPs in Cd/Mn uptake and transport in plants as a common transporter. Finally, we also comprehensively discussed over the strategies for reducing Cd uptake and accumulation in plants through using antagonism of Mn over Cd and altering the expression of NRAMP genes.
Collapse
Affiliation(s)
- Farah Kanwal
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, PR China
| | - Asad Riaz
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Saint Lucia, Brisbane 4072, Australia; Centre of Excellence for Plant Success in Nature and Agriculture, Saint Lucia, Brisbane 4072, Australia
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310029, PR China; Zhongyuan Institute, Zhejiang University, Zhengzhou 450000, PR China.
| |
Collapse
|
2
|
Ren ZW, Yang M, McKenna BA, Lian XM, Zhao FJ, Kopittke PM, Lombi E, Wang P. Fast X-ray fluorescence microscopy provides high-throughput phenotyping of element distribution in seeds. PLANT PHYSIOLOGY 2023; 191:1520-1534. [PMID: 36423229 PMCID: PMC10022620 DOI: 10.1093/plphys/kiac534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
The concentration, chemical speciation, and spatial distribution of essential and toxic mineral elements in cereal seeds have important implications for human health. To identify genes responsible for element uptake, translocation, and storage, high-throughput phenotyping methods are needed to visualize element distribution and concentration in seeds. Here, we used X-ray fluorescence microscopy (μ-XRF) as a method for rapid and high-throughput phenotyping of seed libraries and developed an ImageJ-based pipeline to analyze the spatial distribution of elements. Using this method, we nondestructively scanned 4,190 ethyl methanesulfonate (EMS)-mutagenized M1 rice (Oryza sativa) seeds and 533 diverse rice accessions in a genome-wide association study (GWAS) panel to simultaneously measure concentrations and spatial distribution of elements in the embryo, endosperm, and aleurone layer. A total of 692 putative mutants and 65 loci associated with the spatial distribution of elements in rice seed were identified. This powerful method provides a basis for investigating the genetics and molecular mechanisms controlling the accumulation and spatial variations of mineral elements in plant seeds.
Collapse
Affiliation(s)
- Zi-Wen Ren
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Meng Yang
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Brigid A McKenna
- School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Xing-Ming Lian
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Peter M Kopittke
- School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Enzo Lombi
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Peng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Center for Agriculture and Health, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
3
|
Deng G, Vu M, Korbas M, Bondici VF, Karunakaran C, Christensen D, Bart Lardner HA, Yu P. Distribution of Micronutrients in Arborg Oat (Avena sativa L.) Using Synchrotron X-ray Fluorescence Imaging. Food Chem 2023; 421:135661. [PMID: 37094404 DOI: 10.1016/j.foodchem.2023.135661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/25/2023]
Abstract
It is important to know the mineral distribution in cereal grains for nutritional improvement or genetic biofortification. Distributions and intensities of micro-elements (Mn, Fe, Cu, and Zn) and macro-elements (P, S, K and Ca) in Arborg oat were investigated using synchrotron-based on X-ray fluorescence imaging (XFI). Arborg oat provided by the Crop Development Center (CDC, Aaron Beattie) of the University of Saskatchewan for 2D X-ray fluorescence scans were measured at the BioXAS-Imaging beamline at the Canadian Light Source. The results show that the Ca and Mn were mainly localized in the aleurone layer and scutellum. P, K, Fe, Cu, and Zn were mainly accumulated in the aleurone layer and embryo. Particularly the intensities of P, K, Cu, and Zn in the scutellum were higher compared to other areas. S was also distributed in each tissue and its abundance in the sub-aleurone was the highest. In addition, the intensities of S and Cu were highest in the nucellar projection of the crease region. All these elements were also found in the pericarp but they were at lower levels than other tissues. Overall, the details of these experimental results can provide important information for micronutrient biofortification and processing strategies on oat through elemental mapping in Arborg oat.
Collapse
Affiliation(s)
- Ganqi Deng
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Miranda Vu
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
| | - Malgorzata Korbas
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada; Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK S7N 5E5, Canada
| | - Viorica F Bondici
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
| | - Chithra Karunakaran
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
| | - David Christensen
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - H A Bart Lardner
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Peiqiang Yu
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada.
| |
Collapse
|
4
|
Khoshravesh R, Hoffmann N, Hanson DT. Leaf microscopy applications in photosynthesis research: identifying the gaps. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1868-1893. [PMID: 34986250 DOI: 10.1093/jxb/erab548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Leaf imaging via microscopy has provided critical insights into research on photosynthesis at multiple junctures, from the early understanding of the role of stomata, through elucidating C4 photosynthesis via Kranz anatomy and chloroplast arrangement in single cells, to detailed explorations of diffusion pathways and light utilization gradients within leaves. In recent decades, the original two-dimensional (2D) explorations have begun to be visualized in three-dimensional (3D) space, revising our understanding of structure-function relationships between internal leaf anatomy and photosynthesis. In particular, advancing new technologies and analyses are providing fresh insight into the relationship between leaf cellular components and improving the ability to model net carbon fixation, water use efficiency, and metabolite turnover rate in leaves. While ground-breaking developments in imaging tools and techniques have expanded our knowledge of leaf 3D structure via high-resolution 3D and time-series images, there is a growing need for more in vivo imaging as well as metabolite imaging. However, these advances necessitate further improvement in microscopy sciences to overcome the unique challenges a green leaf poses. In this review, we discuss the available tools, techniques, challenges, and gaps for efficient in vivo leaf 3D imaging, as well as innovations to overcome these difficulties.
Collapse
Affiliation(s)
| | - Natalie Hoffmann
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - David T Hanson
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
5
|
Terzano R, Denecke MA, Falkenberg G, Miller B, Paterson D, Janssens K. Recent advances in analysis of trace elements in environmental samples by X-ray based techniques (IUPAC Technical Report). PURE APPL CHEM 2019; 91:1029-1063. [PMID: 32831407 PMCID: PMC7433040 DOI: 10.1515/pac-2018-0605] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Trace elements analysis is a fundamental challenge in environmental sciences. Scientists measure trace elements in environmental media in order to assess the quality and safety of ecosystems and to quantify the burden of anthropogenic pollution. Among the available analytical techniques, X-ray based methods are particularly powerful, as they can quantify trace elements in situ. Chemical extraction is not required, as is the case for many other analytical techniques. In the last few years, the potential for X-ray techniques to be applied in the environmental sciences has dramatically increased due to developments in laboratory instruments and synchrotron radiation facilities with improved sensitivity and spatial resolution. In this report, we summarize the principles of the X-ray based analytical techniques most frequently employed to study trace elements in environmental samples. We report on the most recent developments in laboratory and synchrotron techniques, as well as advances in instrumentation, with a special attention on X-ray sources, detectors, and optics. Lastly, we inform readers on recent applications of X-ray based analysis to different environmental matrices, such as soil, sediments, waters, wastes, living organisms, geological samples, and atmospheric particulate, and we report examples of sample preparation.
Collapse
Affiliation(s)
- Roberto Terzano
- Department of Soil, Plant and Food Sciences, University of Bari, Via Amendola 165/A, 70126 Bari, Italy
| | - Melissa A. Denecke
- The University of Manchester, Dalton Nuclear Institute, Oxford Road, Manchester M14 9PL, UK
| | - Gerald Falkenberg
- Deutsches Elektronen-Synchrotron DESY, Photon Science, Notkestr. 85, 22603 Hamburg, Germany
| | - Bradley Miller
- United States Environmental Protection Agency, National Enforcement Investigations Center, Lakewood, Denver, CO 80225, USA
| | - David Paterson
- Australian Synchrotron, ANSTO Clayton Campus, Clayton, Victoria 3168, Australia
| | - Koen Janssens
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| |
Collapse
|
6
|
Kopittke PM, Punshon T, Paterson DJ, Tappero RV, Wang P, Blamey FPC, van der Ent A, Lombi E. Synchrotron-Based X-Ray Fluorescence Microscopy as a Technique for Imaging of Elements in Plants. PLANT PHYSIOLOGY 2018; 178:507-523. [PMID: 30108140 PMCID: PMC6181034 DOI: 10.1104/pp.18.00759] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/07/2018] [Indexed: 05/06/2023]
Abstract
Understanding the distribution of elements within plant tissues is important across a range of fields in plant science. In this review, we examine synchrotron-based x-ray fluorescence microscopy (XFM) as an elemental imaging technique in plant sciences, considering both its historical and current uses as well as discussing emerging approaches. XFM offers several unique capabilities of interest to plant scientists, including in vivo analyses at room temperature and pressure, good detection limits (approximately 1-100 mg kg-1), and excellent resolution (down to 50 nm). This has permitted its use in a range of studies, including for functional characterization in molecular biology, examining the distribution of nutrients in food products, understanding the movement of foliar fertilizers, investigating the behavior of engineered nanoparticles, elucidating the toxic effects of metal(loid)s in agronomic plant species, and studying the unique properties of hyperaccumulating plants. We anticipate that continuing technological advances at XFM beamlines also will provide new opportunities moving into the future, such as for high-throughput screening in molecular biology, the use of exotic metal tags for protein localization, and enabling time-resolved, in vivo analyses of living plants. By examining current and potential future applications, we hope to encourage further XFM studies in plant sciences by highlighting the versatility of this approach.
Collapse
Affiliation(s)
- Peter M Kopittke
- University of Queensland, School of Agriculture and Food Sciences, St. Lucia, Queensland 4072, Australia
| | - Tracy Punshon
- Dartmouth College, Department of Biological Sciences, Life Science Center, Hanover, New Hampshire 03755
| | | | - Ryan V Tappero
- Brookhaven National Laboratory, Photon Sciences Division, Upton, New York 11973
| | - Peng Wang
- Nanjing Agricultural University, College of Resources and Environmental Sciences, Nanjing 210095, China
- University of Queensland, Centre for Soil and Environmental Research, School of Agriculture and Food Sciences, St. Lucia, Queensland 4072, Australia
| | - F Pax C Blamey
- University of Queensland, School of Agriculture and Food Sciences, St. Lucia, Queensland 4072, Australia
| | - Antony van der Ent
- University of Queensland, Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, St. Lucia, Queensland 4072, Australia
| | - Enzo Lombi
- University of South Australia, Future Industries Institute, Mawson Lakes, South Australia 5095, Australia
| |
Collapse
|
7
|
Tools for the Discovery of Hyperaccumulator Plant Species and Understanding Their Ecophysiology. AGROMINING: FARMING FOR METALS 2018. [DOI: 10.1007/978-3-319-61899-9_7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
8
|
Yan J, Chia JC, Sheng H, Jung HI, Zavodna TO, Zhang L, Huang R, Jiao C, Craft EJ, Fei Z, Kochian LV, Vatamaniuk OK. Arabidopsis Pollen Fertility Requires the Transcription Factors CITF1 and SPL7 That Regulate Copper Delivery to Anthers and Jasmonic Acid Synthesis. THE PLANT CELL 2017; 29:3012-3029. [PMID: 29114014 PMCID: PMC5757271 DOI: 10.1105/tpc.17.00363] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/09/2017] [Accepted: 11/03/2017] [Indexed: 05/21/2023]
Abstract
A deficiency of the micronutrient copper (Cu) leads to infertility and grain/seed yield reduction in plants. How Cu affects fertility, which reproductive structures require Cu, and which transcriptional networks coordinate Cu delivery to reproductive organs is poorly understood. Using RNA-seq analysis, we showed that the expression of a gene encoding a novel transcription factor, CITF1 (Cu-DEFICIENCY INDUCED TRANSCRIPTION FACTOR1), was strongly upregulated in Arabidopsis thaliana flowers subjected to Cu deficiency. We demonstrated that CITF1 regulates Cu uptake into roots and delivery to flowers and is required for normal plant growth under Cu deficiency. CITF1 acts together with a master regulator of copper homeostasis, SPL7 (SQUAMOSA PROMOTER BINDING PROTEIN LIKE7), and the function of both is required for Cu delivery to anthers and pollen fertility. We also found that Cu deficiency upregulates the expression of jasmonic acid (JA) biosynthetic genes in flowers and increases endogenous JA accumulation in leaves. These effects are controlled in part by CITF1 and SPL7. Finally, we show that JA regulates CITF1 expression and that the JA biosynthetic mutant lacking the CITF1- and SPL7-regulated genes, LOX3 and LOX4, is sensitive to Cu deficiency. Together, our data show that CITF1 and SPL7 regulate Cu uptake and delivery to anthers, thereby influencing fertility, and highlight the relationship between Cu homeostasis, CITF1, SPL7, and the JA metabolic pathway.
Collapse
Affiliation(s)
- Jiapei Yan
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Ju-Chen Chia
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Huajin Sheng
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Ha-Il Jung
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Tetiana-Olena Zavodna
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Lu Zhang
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Rong Huang
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York 14853
| | - Chen Jiao
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | - Eric J Craft
- Robert W. Holley Center for Agriculture and Health, U.S. Department of Agriculture-Agricultural Research Service, Ithaca, New York 14853-2901
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | - Leon V Kochian
- Global Institute for Food Security, University of Saskatchewan, Saskatoon S7N 5A8, Canada
| | - Olena K Vatamaniuk
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| |
Collapse
|
9
|
Sutton SR, Lanzirotti A, Newville M, Rivers ML, Eng P, Lefticariu L. Spatially Resolved Elemental Analysis, Spectroscopy and Diffraction at the GSECARS Sector at the Advanced Photon Source. JOURNAL OF ENVIRONMENTAL QUALITY 2017; 46:1158-1165. [PMID: 29293842 DOI: 10.2134/jeq2016.10.0401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
X-ray microprobes (XRM) coupled with high-brightness synchrotron X-ray facilities are powerful tools for environmental biogeochemistry research. One such instrument, the XRM at the Geo Soil Enviro Center for Advanced Radiation Sources Sector 13 at the Advanced Photon Source (APS; Argonne National Laboratory, Lemont, IL) was recently improved as part of a canted undulator geometry upgrade of the insertion device port, effectively doubling the available undulator beam time and extending the operating energy of the branch supporting the XRM down to the sulfur K edge (2.3 keV). Capabilities include rapid, high-resolution, elemental imaging including fluorescence microtomography, microscale X-ray absorption fine structure spectroscopy including sulfur K edge capability, and microscale X-ray diffraction. These capabilities are advantageous for (i) two-dimensional elemental mapping of relatively large samples at high resolution, with the dwell times typically limited only by the count times needed to obtain usable counting statistics for low concentration elements, (ii) three-dimensional imaging of internal elemental distributions in fragile hydrated specimens, such as biological tissues, avoiding the need for physical slicing, (iii) spatially resolved speciation determinations of contaminants in environmental materials, and (iv) identification of contaminant host phases. In this paper, we describe the XRM instrumentation, techniques, applications demonstrating these capabilities, and prospects for further improvements associated with the proposed upgrade of the APS.
Collapse
|
10
|
Kopittke PM, Wang P, Lombi E, Donner E. Synchrotron-based X-Ray Approaches for Examining Toxic Trace Metal(loid)s in Soil-Plant Systems. JOURNAL OF ENVIRONMENTAL QUALITY 2017; 46:1175-1189. [PMID: 29293828 DOI: 10.2134/jeq2016.09.0361] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Elevated levels of trace metal(loid)s reduce plant growth, both in soils contaminated by industrial activities and in acid agricultural soils. Although the adverse effects of trace metal(loid)s have long been recognized, there remains much unknown both about their behavior in soils, their toxicity to plants, and the mechanisms that plants use to tolerate elevated concentrations. Synchrotron-based approaches are being utilized increasingly in soil-plant systems to examine toxic metal(loid)s. In the present review, brief consideration is given to the theory of synchrotron radiation. Thereafter, we review the use of synchrotron-based approaches for the examination of various trace metal(loid)s in soil-plant systems, including aluminum, chromium, manganese, cobalt, nickel, copper, zinc, arsenic, selenium, and cadmium. Within the context of this review, X-ray absorption spectroscopy (XAS) and X-ray fluorescence microscopy (μ-XRF) are of particular interest. These techniques can provide in situ analyses of the distribution and speciation of metal(loid)s in soil-plant systems. The information presented here serves not only to understand the behavior of trace metals in soil-plant systems, but also to provide examples of the potential applications of synchrotron radiation that can be used to advantage in other studies.
Collapse
|
11
|
Spielman-Sun E, Lombi E, Donner E, Howard D, Unrine JM, Lowry GV. Impact of Surface Charge on Cerium Oxide Nanoparticle Uptake and Translocation by Wheat (Triticum aestivum). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:7361-7368. [PMID: 28575574 DOI: 10.1021/acs.est.7b00813] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nanoparticle (NP) physiochemical properties, including surface charge, affect cellular uptake, translocation, and tissue localization. To evaluate the influence of surface charge on NP uptake by plants, wheat seedlings were hydroponically exposed to 20 mg/L of ∼4 nm CeO2 NPs functionalized with positively charged, negatively charged, and neutral dextran coatings. Fresh, hydrated roots and leaves were analyzed at various time points over 34 h using fluorescence X-ray absorption near-edge spectroscopy to provide laterally resolved spatial distribution and speciation of Ce. A 15-20% reduction from Ce(IV) to Ce(III) was observed in both roots and leaves, independent of NP surface charge. Because of its higher affinity with negatively charged cell walls, CeO2(+) NPs adhered to the plant roots the strongest. After 34 h, CeO2(-), and CeO2(0) NP exposed plants had higher Ce leaf concentrations than the plants exposed to CeO2(+) NPs. Whereas Ce was found mostly in the leaf veins of the CeO2(-) NP exposed plant, Ce was found in clusters in the nonvascular leaf tissue of the CeO2(0) NP exposed plant. These results provide important information for understanding mechanisms responsible for plant uptake, transformation, and translocation of NPs, and suggest that NP coatings can be designed to target NPs to specific parts of plants.
Collapse
Affiliation(s)
- Eleanor Spielman-Sun
- Civil and Environmental Engineering, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | - Enzo Lombi
- Future Industries Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
| | - Erica Donner
- Future Industries Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
| | - Daryl Howard
- Australian Synchrotron , Clayton, Victoria 3168 Australia
| | - Jason M Unrine
- Department of Plant and Soil Sciences, University of Kentucky , Lexington, Kentucky 40546, United States
| | - Gregory V Lowry
- Civil and Environmental Engineering, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
12
|
Eroglu S, Giehl RFH, Meier B, Takahashi M, Terada Y, Ignatyev K, Andresen E, Küpper H, Peiter E, von Wirén N. Metal Tolerance Protein 8 Mediates Manganese Homeostasis and Iron Reallocation during Seed Development and Germination. PLANT PHYSIOLOGY 2017; 174:1633-1647. [PMID: 28461400 PMCID: PMC5490884 DOI: 10.1104/pp.16.01646] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 04/26/2017] [Indexed: 05/05/2023]
Abstract
Metal accumulation in seeds is a prerequisite for germination and establishment of plants but also for micronutrient delivery to humans. To investigate metal transport processes and their interactions in seeds, we focused on METAL TOLERANCE PROTEIN8 (MTP8), a tonoplast transporter of the manganese (Mn) subclade of cation diffusion facilitators, which in Arabidopsis (Arabidopsis thaliana) is expressed in embryos of seeds. The x-ray fluorescence imaging showed that expression of MTP8 was responsible for Mn localization in subepidermal cells on the abaxial side of the cotyledons and in cortical cells of the hypocotyl. Accordingly, under low Mn availability, MTP8 increased seed stores of Mn, required for efficient seed germination. In mutant embryos lacking expression of VACUOLAR IRON TRANSPORTER1 (VIT1), MTP8 built up iron (Fe) hotspots in MTP8-expressing cells types, suggesting that MTP8 transports Fe in addition to Mn. In mtp8 vit1 double mutant seeds, Mn and Fe were distributed in all cell types of the embryo. An Fe transport function of MTP8 was confirmed by its ability to complement Fe hypersensitivity of a yeast mutant defective in vacuolar Fe transport. Imbibing mtp8-1 mutant seeds in the presence of Mn or subjecting seeds to wet-dry cycles showed that MTP8 conferred Mn tolerance. During germination, MTP8 promoted reallocation of Fe from the vasculature. These results indicate that cell type-specific accumulation of Mn and Fe in seeds depends on MTP8 and that this transporter plays an important role in the generation of seed metal stores as well as for metal homeostasis and germination efficiency under challenging environmental conditions.
Collapse
Affiliation(s)
- Seckin Eroglu
- Molecular Plant Nutrition, Leibniz-Institute for Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
- Department of Genetics and Bioengineering, Izmir University of Economics, 35330 Izmir, Turkey
| | - Ricardo F H Giehl
- Molecular Plant Nutrition, Leibniz-Institute for Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
| | - Bastian Meier
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Michiko Takahashi
- Laboratory of Plant Nutrition, Department of Plant Science, Faculty of Agriculture, Utsunomiya University, 321-8505 Utsunomiya, Japan
| | - Yasuko Terada
- Spring-8, Japan Synchrotron Radiation Research Institute, 679-5198 Japan
| | - Konstantin Ignatyev
- Diamond Light Source, Harwell Science and Innovation Campus, OX11 0DE Didcot, United Kingdom
| | - Elisa Andresen
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Plant Biophysics and Biochemistry, CZ-37005 České Budějovice, Czech Republic
| | - Hendrik Küpper
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Plant Biophysics and Biochemistry, CZ-37005 České Budějovice, Czech Republic
| | - Edgar Peiter
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Leibniz-Institute for Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
| |
Collapse
|
13
|
Abstract
Bone is a complex hierarchical structure, and its principal function is to resist mechanical forces and fracture. Bone strength depends not only on the quantity of bone tissue but also on the shape and hierarchical structure. The hierarchical levels are interrelated, especially the micro-architecture, collagen and mineral components; hence, analysis of their specific roles in bone strength and stiffness is difficult. Synchrotron imaging technologies including micro-CT and small/wide angle X-ray scattering/diffraction are becoming increasingly popular for studying bone because the images can resolve deformations in the micro-architecture and collagen-mineral matrix under in situ mechanical loading. Synchrotron cannot be directly applied in vivo due to the high radiation dose but will allow researchers to carry out systematic multifaceted studies of bone ex vivo. Identifying characteristics of aging and disease will underpin future efforts to generate novel devices and interventional therapies for assessing and promoting healthy aging. With our own research work as examples, this paper introduces how synchrotron imaging technology can be used with in situ testing in bone research.
Collapse
Affiliation(s)
- Shaocheng Ma
- Department of Mechanical Engineering, Faculty of Engineering, Imperial College London, London, SW7 2AZ UK
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR UK
| | - Oliver Boughton
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR UK
| | - Angelo Karunaratne
- Department of Mechanical Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa, 10400 Sri Lanka
| | - Andi Jin
- Department of Mechanical Engineering, Faculty of Engineering, Imperial College London, London, SW7 2AZ UK
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR UK
| | - Justin Cobb
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR UK
| | - Ulrich Hansen
- Department of Mechanical Engineering, Faculty of Engineering, Imperial College London, London, SW7 2AZ UK
| | - Richard Abel
- MSk Laboratory, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W6 8PR UK
| |
Collapse
|
14
|
Tsednee M, Huang YC, Chen YR, Yeh KC. Identification of metal species by ESI-MS/MS through release of free metals from the corresponding metal-ligand complexes. Sci Rep 2016; 6:26785. [PMID: 27240899 PMCID: PMC4886218 DOI: 10.1038/srep26785] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 05/09/2016] [Indexed: 01/06/2023] Open
Abstract
Electrospray ionization-mass spectrometry (ESI-MS) is used to analyze metal species in a variety of samples. Here, we describe an application for identifying metal species by tandem mass spectrometry (ESI-MS/MS) with the release of free metals from the corresponding metal-ligand complexes. The MS/MS data were used to elucidate the possible fragmentation pathways of different metal-deoxymugineic acid (-DMA) and metal-nicotianamine (-NA) complexes and select the product ions with highest abundance that may be useful for quantitative multiple reaction monitoring. This method can be used for identifying different metal-ligand complexes, especially for metal species whose mass spectra peaks are clustered close together. Different metal-DMA/NA complexes were simultaneously identified under different physiological pH conditions with this method. We further demonstrated the application of the technique for different plant samples and with different MS instruments.
Collapse
Affiliation(s)
- Munkhtsetseg Tsednee
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529 Taiwan
| | - Yu-Chen Huang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529 Taiwan
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529 Taiwan
| | - Kuo-Chen Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529 Taiwan
| |
Collapse
|
15
|
Davies HS, Cox F, Robinson CH, Pittman JK. Radioactivity and the environment: technical approaches to understand the role of arbuscular mycorrhizal plants in radionuclide bioaccumulation. FRONTIERS IN PLANT SCIENCE 2015; 6:580. [PMID: 26284096 PMCID: PMC4515546 DOI: 10.3389/fpls.2015.00580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/13/2015] [Indexed: 06/04/2023]
Abstract
Phytoaccumulation of radionuclides is of significant interest with regards to monitoring radionuclide build-up in food chains, developing methods for environmental bioremediation and for ecological management. There are many gaps in our understanding of the characteristics and mechanisms of plant radionuclide accumulation, including the importance of symbiotically-associated arbuscular mycorrhizal (AM) fungi. We first briefly review the evidence that demonstrates the ability of AM fungi to enhance the translocation of (238)U into plant root tissues, and how fungal association may prevent further mobilization into shoot tissues. We then focus on approaches that should further advance our knowledge of AM fungi-plant radionuclide accumulation. Current research has mostly used artificial cultivation methods and we consider how more ecologically-relevant analysis might be performed. The use of synchrotron-based X-ray fluorescence imaging and absorption spectroscopy techniques to understand the mechanisms of radionuclide transfer from soil to plant via AM fungi is evaluated. Without such further knowledge, the behavior and mobilization of radionuclides cannot be accurately modeled and the potential risks cannot be accurately predicted.
Collapse
Affiliation(s)
- Helena S. Davies
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
- School of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Manchester, UK
| | - Filipa Cox
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
- School of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Manchester, UK
| | - Clare H. Robinson
- School of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Manchester, UK
| | - Jon K. Pittman
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
16
|
Downie HF, Adu MO, Schmidt S, Otten W, Dupuy LX, White PJ, Valentine TA. Challenges and opportunities for quantifying roots and rhizosphere interactions through imaging and image analysis. PLANT, CELL & ENVIRONMENT 2015; 38:1213-32. [PMID: 25211059 DOI: 10.1111/pce.12448] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/02/2014] [Accepted: 08/25/2014] [Indexed: 05/19/2023]
Abstract
The morphology of roots and root systems influences the efficiency by which plants acquire nutrients and water, anchor themselves and provide stability to the surrounding soil. Plant genotype and the biotic and abiotic environment significantly influence root morphology, growth and ultimately crop yield. The challenge for researchers interested in phenotyping root systems is, therefore, not just to measure roots and link their phenotype to the plant genotype, but also to understand how the growth of roots is influenced by their environment. This review discusses progress in quantifying root system parameters (e.g. in terms of size, shape and dynamics) using imaging and image analysis technologies and also discusses their potential for providing a better understanding of root:soil interactions. Significant progress has been made in image acquisition techniques, however trade-offs exist between sample throughput, sample size, image resolution and information gained. All of these factors impact on downstream image analysis processes. While there have been significant advances in computation power, limitations still exist in statistical processes involved in image analysis. Utilizing and combining different imaging systems, integrating measurements and image analysis where possible, and amalgamating data will allow researchers to gain a better understanding of root:soil interactions.
Collapse
Affiliation(s)
- H F Downie
- The SIMBIOS Centre, Abertay University, Dundee, DD1 1HG, UK
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK
| | - M O Adu
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Leicestershire, LE12 5RD, UK
| | - S Schmidt
- The SIMBIOS Centre, Abertay University, Dundee, DD1 1HG, UK
| | - W Otten
- The SIMBIOS Centre, Abertay University, Dundee, DD1 1HG, UK
| | - L X Dupuy
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK
| | - P J White
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK
- King Saud University, Riyadh, Saudi Arabia
| | - T A Valentine
- Ecological Sciences, The James Hutton Institute, Dundee, DD2 5DA, UK
| |
Collapse
|
17
|
Dimmock MR, de Jonge MD, Howard DL, James SA, Kirkham R, Paganin DM, Paterson DJ, Ruben G, Ryan CG, Brown JMC. Validation of a Geant4 model of the X-ray fluorescence microprobe at the Australian Synchrotron. JOURNAL OF SYNCHROTRON RADIATION 2015; 22:354-365. [PMID: 25723937 DOI: 10.1107/s1600577515000223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/07/2015] [Indexed: 06/04/2023]
Abstract
A Geant4 Monte Carlo simulation of the X-ray fluorescence microprobe (XFM) end-station at the Australian Synchrotron has been developed. The simulation is required for optimization of the scan configuration and reconstruction algorithms. As part of the simulation process, a Gaussian beam model was developed. Experimental validation of this simulation has tested the efficacy for use of the low-energy physics models in Geant4 for this synchrotron-based technique. The observed spectral distributions calculated in the 384 pixel Maia detector, positioned in the standard back-scatter configuration, were compared with those obtained from experiments performed at three incident X-ray beam energies: 18.5, 11.0 and 6.8 keV. The reduced χ-squared (\chi^{2}_{\rm{red}}) was calculated for the scatter and fluorescence regions of the spectra and demonstrates that the simulations successfully reproduce the scatter distributions. Discrepancies were shown to occur in the multiple-scatter tail of the Compton continuum. The model was shown to be particularly sensitive to the impurities present in the beryllium window of the Maia detector and their concentrations were optimized to improve the \chi^{2}_{\rm{red}} parametrization in the low-energy fluorescence regions of the spectra.
Collapse
Affiliation(s)
- Matthew Richard Dimmock
- Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, VIC 3800, Australia
| | | | - Daryl Lloyd Howard
- Australian Synchrotron, 800 Blackburn Road, Clayton, VIC 3168, Australia
| | | | | | | | | | - Gary Ruben
- Australian Synchrotron, 800 Blackburn Road, Clayton, VIC 3168, Australia
| | | | | |
Collapse
|
18
|
Schultz C, Powell K, Crossley A, Jurkschat K, Kille P, Morgan AJ, Read D, Tyne W, Lahive E, Svendsen C, Spurgeon DJ. Analytical approaches to support current understanding of exposure, uptake and distributions of engineered nanoparticles by aquatic and terrestrial organisms. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:239-261. [PMID: 25516483 DOI: 10.1007/s10646-014-1387-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/18/2014] [Indexed: 06/04/2023]
Abstract
Initiatives to support the sustainable development of the nanotechnology sector have led to rapid growth in research on the environmental fate, hazards and risk of engineered nanoparticles (ENP). As the field has matured over the last 10 years, a detailed picture of the best methods to track potential forms of exposure, their uptake routes and best methods to identify and track internal fate and distributions following assimilation into organisms has begun to emerge. Here we summarise the current state of the field, focussing particularly on metal and metal oxide ENPs. Studies to date have shown that ENPs undergo a range of physical and chemical transformations in the environment to the extent that exposures to pristine well dispersed materials will occur only rarely in nature. Methods to track assimilation and internal distributions must, therefore, be capable of detecting these modified forms. The uptake mechanisms involved in ENP assimilation may include a range of trans-cellular trafficking and distribution pathways, which can be followed by passage to intracellular compartments. To trace toxicokinetics and distributions, analytical and imaging approaches are available to determine rates, states and forms. When used hierarchically, these tools can map ENP distributions to specific target organs, cell types and organelles, such as endosomes, caveolae and lysosomes and assess speciation states. The first decade of ENP ecotoxicology research, thus, points to an emerging paradigm where exposure is to transformed materials transported into tissues and cells via passive and active pathways within which they can be assimilated and therein identified using a tiered analytical and imaging approach.
Collapse
Affiliation(s)
- Carolin Schultz
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Wallingford, Oxfordshire, OX10 8BB, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Viehweger K. How plants cope with heavy metals. BOTANICAL STUDIES 2014; 55:35. [PMID: 28510963 PMCID: PMC5432744 DOI: 10.1186/1999-3110-55-35] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 11/13/2013] [Indexed: 05/19/2023]
Abstract
Heavy metals are naturally occurring in the earth's crust but anthropogenic and industrial activities have led to drastic environmental pollutions in distinct areas. Plants are able to colonize such sites due to several mechanisms of heavy metal tolerance. Understanding of these pathways enables different fruitful approaches like phytoremediation and biofortification.Therefore, this review addresses mechanisms of heavy metal tolerance and toxicity in plants possessing a sophisticated network for maintenance of metal homeostasis. Key elements of this are chelation and sequestration which result either in removal of toxic metal from sensitive sites or conduct essential metal to their specific cellular destination. This implies shared pathways which can result in toxic symptoms especially in an excess of metal. These overlaps go on with signal transduction pathways induced by heavy metals which include common elements of other signal cascades. Nevertheless, there are specific reactions some of them will be discussed with special focus on the cellular level.
Collapse
Affiliation(s)
- Katrin Viehweger
- Radiotherapeutics Division, Helmholtz-Zentrum Dresden-Rossendorf eV; Institute of Radiopharmacy, P.O. Box 510119, D-01314, Dresden, Germany.
| |
Collapse
|
20
|
de Jonge MD, Ryan CG, Jacobsen CJ. X-ray nanoprobes and diffraction-limited storage rings: opportunities and challenges of fluorescence tomography of biological specimens. JOURNAL OF SYNCHROTRON RADIATION 2014; 21:1031-47. [PMID: 25177992 PMCID: PMC4151681 DOI: 10.1107/s160057751401621x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/11/2014] [Indexed: 05/22/2023]
Abstract
X-ray nanoprobes require coherent illumination to achieve optic-limited resolution, and so will benefit directly from diffraction-limited storage rings. Here, the example of high-resolution X-ray fluorescence tomography is focused on as one of the most voracious demanders of coherent photons, since the detected signal is only a small fraction of the incident flux. Alternative schemes are considered for beam delivery, sample scanning and detectors. One must consider as well the steps before and after the X-ray experiment: sample preparation and examination conditions, and analysis complexity due to minimum dose requirements and self-absorption. By understanding the requirements and opportunities for nanoscale fluorescence tomography, one gains insight into the R&D challenges in optics and instrumentation needed to fully exploit the source advances that diffraction-limited storage rings offer.
Collapse
Affiliation(s)
- Martin D. de Jonge
- Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Christopher G. Ryan
- CSIRO Earth Science and Research Engineering, Clayton, Victoria 3168, Australia
| | - Chris J. Jacobsen
- Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
- Department of Physics, Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, USA
| |
Collapse
|
21
|
Álvarez-Fernández A, Díaz-Benito P, Abadía A, López-Millán AF, Abadía J. Metal species involved in long distance metal transport in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:105. [PMID: 24723928 PMCID: PMC3971170 DOI: 10.3389/fpls.2014.00105] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/04/2014] [Indexed: 05/19/2023]
Abstract
The mechanisms plants use to transport metals from roots to shoots are not completely understood. It has long been proposed that organic molecules participate in metal translocation within the plant. However, until recently the identity of the complexes involved in the long-distance transport of metals could only be inferred by using indirect methods, such as analyzing separately the concentrations of metals and putative ligands and then using in silico chemical speciation software to predict metal species. Molecular biology approaches also have provided a breadth of information about putative metal ligands and metal complexes occurring in plant fluids. The new advances in analytical techniques based on mass spectrometry and the increased use of synchrotron X-ray spectroscopy have allowed for the identification of some metal-ligand species in plant fluids such as the xylem and phloem saps. Also, some proteins present in plant fluids can bind metals and a few studies have explored this possibility. This study reviews the analytical challenges researchers have to face to understand long-distance metal transport in plants as well as the recent advances in the identification of the ligand and metal-ligand complexes in plant fluids.
Collapse
Affiliation(s)
| | | | | | | | - Javier Abadía
- Plant Nutrition Department, Aula Dei Experimental Station (CSIC)Zaragoza, Spain
| |
Collapse
|
22
|
Rak M, Salome M, Kaminskyj SGW, Gough KM. X-ray microfluorescence (μXRF) imaging of Aspergillus nidulans cell wall mutants reveals biochemical changes due to gene deletions. Anal Bioanal Chem 2014; 406:2809-16. [DOI: 10.1007/s00216-014-7726-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 02/05/2014] [Accepted: 02/25/2014] [Indexed: 10/25/2022]
|
23
|
Socha AL, Guerinot ML. Mn-euvering manganese: the role of transporter gene family members in manganese uptake and mobilization in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:106. [PMID: 24744764 PMCID: PMC3978347 DOI: 10.3389/fpls.2014.00106] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/05/2014] [Indexed: 05/18/2023]
Abstract
Manganese (Mn), an essential trace element, is important for plant health. In plants, Mn serves as a cofactor in essential processes such as photosynthesis, lipid biosynthesis and oxidative stress. Mn deficient plants exhibit decreased growth and yield and are more susceptible to pathogens and damage at freezing temperatures. Mn deficiency is most prominent on alkaline soils with approximately one third of the world's soils being too alkaline for optimal crop production. Despite the importance of Mn in plant development, relatively little is known about how it traffics between plant tissues and into and out of organelles. Several gene transporter families have been implicated in Mn transport in plants. These transporter families include NRAMP (natural resistance associated macrophage protein), YSL (yellow stripe-like), ZIP (zinc regulated transporter/iron-regulated transporter [ZRT/IRT1]-related protein), CAX (cation exchanger), CCX (calcium cation exchangers), CDF/MTP (cation diffusion facilitator/metal tolerance protein), P-type ATPases and VIT (vacuolar iron transporter). A combination of techniques including mutant analysis and Synchrotron X-ray Fluorescence Spectroscopy can assist in identifying essential transporters of Mn. Such knowledge would vastly improve our understanding of plant Mn homeostasis.
Collapse
Affiliation(s)
- Amanda L. Socha
- *Correspondence: Amanda L. Socha, Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH 03766, USA e-mail:
| | | |
Collapse
|
24
|
Punshon T, Ricachenevsky FK, Hindt M, Socha AL, Zuber H. Methodological approaches for using synchrotron X-ray fluorescence (SXRF) imaging as a tool in ionomics: examples from Arabidopsis thaliana. Metallomics 2013; 5:1133-45. [PMID: 23912758 PMCID: PMC3869573 DOI: 10.1039/c3mt00120b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Here we present approaches for using multi-elemental imaging (specifically synchrotron X-ray fluorescence microscopy, SXRF) in ionomics, with examples using the model plant Arabidopsis thaliana. The complexity of each approach depends on the amount of a priori information available for the gene and/or phenotype being studied. Three approaches are outlined, which apply to experimental situations where a gene of interest has been identified but has an unknown phenotype (phenotyping), an unidentified gene is associated with a known phenotype (gene cloning) and finally, a screening approach, where both gene and phenotype are unknown. These approaches make use of open-access, online databases with which plant molecular genetics researchers working in the model plant Arabidopsis will be familiar, in particular the Ionomics Hub and online transcriptomic databases such as the Arabidopsis eFP browser. The approaches and examples we describe are based on the assumption that altering the expression of ion transporters can result in changes in elemental distribution. We provide methodological details on using elemental imaging to aid or accelerate gene functional characterization by narrowing down the search for candidate genes to the tissues in which elemental distributions are altered. We use synchrotron X-ray microprobes as a technique of choice, which can now be used to image all parts of an Arabidopsis plant in a hydrated state. We present elemental images of leaves, stem, root, siliques and germinating hypocotyls.
Collapse
Affiliation(s)
- Tracy Punshon
- Dartmouth College, Department of Biological Sciences, Life Science Center, 78 College Street, Hanover, NH 03755
| | | | - Maria Hindt
- Dartmouth College, Department of Biological Sciences, Life Science Center, 78 College Street, Hanover, NH 03755
| | - Amanda L Socha
- Dartmouth College, Department of Biological Sciences, Life Science Center, 78 College Street, Hanover, NH 03755
| | - Hélène Zuber
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, 12 rue du général Zimmer, 67084 Strasbourg Cedex, France
| |
Collapse
|
25
|
Jones AM, Grossmann G, Danielson JÅ, Sosso D, Chen LQ, Ho CH, Frommer WB. In vivo biochemistry: applications for small molecule biosensors in plant biology. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:389-95. [PMID: 23587939 PMCID: PMC3679211 DOI: 10.1016/j.pbi.2013.02.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 02/22/2013] [Accepted: 02/22/2013] [Indexed: 05/02/2023]
Abstract
Revolutionary new technologies, namely in the areas of DNA sequencing and molecular imaging, continue to impact new discoveries in plant science and beyond. For decades we have been able to determine properties of enzymes, receptors and transporters in vitro or in heterologous systems, and more recently been able to analyze their regulation at the transcriptional level, to use GFP reporters for obtaining insights into cellular and subcellular localization, and tp measure ion and metabolite levels with unprecedented precision using mass spectrometry. However, we lack key information on the location and dynamics of the substrates of enzymes, receptors and transporters, and on the regulation of these proteins in their cellular environment. Such information can now be obtained by transitioning from in vitro to in vivo biochemistry using biosensors. Genetically encoded fluorescent protein-based sensors for ion and metabolite dynamics provide highly resolved spatial and temporal information, and are complemented by sensors for pH, redox, voltage, and tension. They serve as powerful tools for identifying missing processes (e.g., glucose transport across ER membranes), components (e.g., SWEET sugar transporters for cellular sugar efflux), and signaling networks (e.g., from systematic screening of mutants that affect sugar transport or cytosolic and vacuolar pH). Combined with the knowledge of properties of enzymes and transporters and their interactions with the regulatory machinery, biosensors promise to be key diagnostic tools for systems and synthetic biology.
Collapse
Affiliation(s)
- Alexander M Jones
- Carnegie Institution for Science, Department of Plant Biology, 260 Panama St., Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Carrasco-Gil S, Siebner H, Leduc DL, Webb SM, Millán R, Andrews JC, Hernández LE. Mercury localization and speciation in plants grown hydroponically or in a natural environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:3082-3090. [PMID: 23406525 DOI: 10.1021/es303310t] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Better understanding of mercury (Hg) accumulation, distribution, and speciation in plants is required to evaluate potential risks for the environment and to optimize phytostabilization strategies for Hg-contaminated soils. The behavior of Hg in alfalfa (Medicago sativa) plants grown under controlled conditions in a hydroponic system (30 μM HgCl2) was compared with that of naturally occurring Horehound (Marrubium vulgare) plants collected from a mining soil polluted with Hg (Almadenejos, Spain) to characterize common mechanisms of tolerance. Synchrotron X-ray Fluorescence microprobe (μ-SXRF) showed that Hg accumulated at the root apex of alfalfa and was distributed through the vascular system to the leaves. Transmission electron microscopy (TEM) implied association of Hg with cell walls, accompanied by their structural changes, in alfalfa roots. Extended X-ray absorption fine structure (EXAFS) determined that Hg was principally bound to biothiols and/or proteins in M. sativa roots, stems, and leaves. However, the major fraction of Hg detected in M. vulgare plants consisted of mineral species, possibly associated with soil components. Interestingly, the fraction of Hg bound to biothiols/proteins (i.e., metabolically processed Hg) in leaves of both plants (alfalfa and M. vulgare) was similar, in spite of the big difference in Hg accumulation in roots, suggesting that some tolerance mechanisms might be shared.
Collapse
Affiliation(s)
- Sandra Carrasco-Gil
- Laboratory of Plant Physiology, Department of Biology, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
27
|
Schnell Ramos M, Khodja H, Mary V, Thomine S. Using μPIXE for quantitative mapping of metal concentration in Arabidopsis thaliana seeds. FRONTIERS IN PLANT SCIENCE 2013; 4:168. [PMID: 23761799 PMCID: PMC3669754 DOI: 10.3389/fpls.2013.00168] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 05/13/2013] [Indexed: 05/03/2023]
Abstract
Seeds are a crucial stage in plant life. They contain the nutrients necessary to initiate the development of a new organism. Seeds also represent an important source of nutrient for human beings. Iron (Fe) and zinc (Zn) deficiencies affect over a billion people worldwide. It is therefore important to understand how these essential metals are stored in seeds. In this work, Particle-Induced X-ray Emission with the use of a focused ion beam (μPIXE) has been used to map and quantify essential metals in Arabidopsis seeds. In agreement with Synchrotron radiation X-ray fluorescence (SXRF) imaging and Perls/DAB staining, μPIXE maps confirmed the specific pattern of Fe and Mn localization in the endodermal and subepidermal cell layers in dry seeds, respectively. Moreover, μPIXE allows absolute quantification revealing that the Fe concentration in the endodermal cell layer reaches ~800 μg·g(-1) dry weight. Nevertheless, this cell layer accounts only for about half of Fe stores in dry seeds. Comparison between Arabidopsis wild type (WT) and mutant seeds impaired in Fe vacuolar storage (vit1-1) or release (nramp3nramp4) confirmed the strongly altered Fe localization pattern in vit1-1, whereas no alteration could be detected in nramp3nramp4 dry seeds. Imaging of imbibed seeds indicates a dynamic localization of metals as Fe and Zn concentrations increase in the subepidermal cell layer of cotyledons after imbibition. The complementarities between μPIXE and other approaches as well as the importance of being able to quantify the patterns for the interpretation of mutant phenotypes are discussed.
Collapse
Affiliation(s)
- Magali Schnell Ramos
- Institut des Sciences du Végétal, UPR2355, Centre National de la Recherche ScientifiqueGif-sur-Yvette, France
- Chimica Agraria, Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di UdineUdine, Italy
- *Correspondence: Magali Schnell Ramos, Chimica Agraria, Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Udine, Via delle Scienze 208, 33100 Udine, Italy e-mail:
| | - Hicham Khodja
- Laboratoire d'Etude des Eléments légers, SIS2M, UMR 3299, CEA-CNRS, CEA SaclayGif-sur-Yvette, France
| | - Viviane Mary
- Institut des Sciences du Végétal, UPR2355, Centre National de la Recherche ScientifiqueGif-sur-Yvette, France
| | - Sébastien Thomine
- Institut des Sciences du Végétal, UPR2355, Centre National de la Recherche ScientifiqueGif-sur-Yvette, France
| |
Collapse
|
28
|
Manceau A, Simionovici A, Lanson M, Perrin J, Tucoulou R, Bohic S, Fakra SC, Marcus MA, Bedell JP, Nagy KL. Thlaspi arvense binds Cu(ii) as a bis-(l-histidinato) complex on root cell walls in an urban ecosystem. Metallomics 2013; 5:1674-84. [DOI: 10.1039/c3mt00215b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Majumdar S, Peralta-Videa JR, Castillo-Michel H, Hong J, Rico CM, Gardea-Torresdey JL. Applications of synchrotron μ-XRF to study the distribution of biologically important elements in different environmental matrices: A review. Anal Chim Acta 2012; 755:1-16. [DOI: 10.1016/j.aca.2012.09.050] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 09/24/2012] [Accepted: 09/30/2012] [Indexed: 10/27/2022]
|
30
|
Yang J, Punshon T, Guerinot ML, Hirschi KD. Plant calcium content: ready to remodel. Nutrients 2012; 4:1120-36. [PMID: 23016135 PMCID: PMC3448090 DOI: 10.3390/nu4081120] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 07/12/2012] [Accepted: 07/31/2012] [Indexed: 12/12/2022] Open
Abstract
By identifying the relationship between calcium location in the plant cell and nutrient bioavailability, the plant characteristics leading to maximal calcium absorption by humans can be identified. Knowledge of plant cellular and molecular targets controlling calcium location in plants is emerging. These insights should allow for better strategies for increasing the nutritional content of foods. In particular, the use of preparation-free elemental imaging technologies such as synchrotron X-ray fluorescence (SXRF) microscopy in plant biology may allow researchers to understand the relationship between subcellular location and nutrient bioavailability. These approaches may lead to better strategies for altering the location of calcium within the plant to maximize its absorption from fruits and vegetables. These modified foods could be part of a diet for children and adults identified as at-risk for low calcium intake or absorption with the ultimate goal of decreasing the incidence and severity of inadequate bone mineralization.
Collapse
Affiliation(s)
- Jian Yang
- United States Department of Agriculture/Agriculture Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Tracy Punshon
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA; (T.P.); (M.L.G.)
| | - Mary Lou Guerinot
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA; (T.P.); (M.L.G.)
| | - Kendal D. Hirschi
- United States Department of Agriculture/Agriculture Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA;
- Vegetable and Fruit Improvement Center, Texas A&M University, College Station, TX 77845, USA
| |
Collapse
|