1
|
Singh AB, Paul T, Shukla SP, Kumar S, Kumar S, Kumar G, Kumar K. Gut microbiome as biomarker for triclosan toxicity in Labeo rohita: bioconcentration, immunotoxicity and metagenomic profiling. ECOTOXICOLOGY (LONDON, ENGLAND) 2024:10.1007/s10646-024-02817-0. [PMID: 39427267 DOI: 10.1007/s10646-024-02817-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/12/2024] [Indexed: 10/22/2024]
Abstract
Triclosan (TCS) is a lipophilic, broad spectrum antimicrobial agent commonly used in personal care products with a projected continuous escalation in aquatic environments in the post COVID 19 era. There is rich documentation in the literature on the alteration of physiological responses in fish due to TCS exposure; however, studies on gut associated bacteria of fish are still scarce. This is the first attempt to determine changes in bacterial community structure due to exposure of TCS on Labeo rohita, a commercially essential freshwater species, using 16S V3-V4 region ribosomal RNA (rRNA) next-generation sequencing (NGS). Chronic exposure of TCS at environmentally realistic concentrations viz. 1/5th (T1: 0.129 mg/L) and 1/10th (T2: 0.065 mg/L) of LC50 for 28 days resulted in the dose dependent bioconcentration of TCS in the fish gut. Prolonged exposure to TCS leads to disruption of gut bacteria evidenced by down regulation of the host immune system. Additionally, high-throughput sequencing analysis showed alternation in the abundance and diversity of microbial communities in the gut, signifying Proteobacteria and Verrucomicrobia as dominant phyla. Significant changes were also observed in the relative abundance of Chloroflexi and Gammatimonadetes phyla in TCS exposed groups. The study revealed that gut microbiome can be used as a biomarker in assessing the degree of TCS toxicity in commercially important fish species.
Collapse
Affiliation(s)
| | - Tapas Paul
- College of Fisheries, Bihar Animal Sciences University, Kishanganj, Bihar, 855107, India
| | - S P Shukla
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Saurav Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Sanath Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Ganesh Kumar
- Rani Lakshmi Bai Central Agricultural University, Jhansi, Uttar Pradesh, 284003, India
| | - Kundan Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India.
| |
Collapse
|
2
|
Kumar G, Kumar S, Paul T, Pal P, Shukla SP, Kumar K, Jha AK, Pradeep S. Ecotoxicological risk assessment of triclosan, an emerging pollutant in a riverine and estuarine ecosystems: A comparative study. MARINE POLLUTION BULLETIN 2024; 205:116667. [PMID: 38972216 DOI: 10.1016/j.marpolbul.2024.116667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/09/2024]
Abstract
Triclosan (TCS), an antibacterial biocide, pervades water and sediment matrices globally, posing a threat to aquatic life. In densely populated cities like Mumbai, rivers and coastal bodies demand baseline TCS data for ecotoxicological assessment due to the excessive use of personal care products comprising TCS. This pioneering study compares spatiotemporal TCS variations and risks in freshwater and marine ecosystems employing multivariate analysis of physicochemical parameters. Over five months (January to May 2022), Mithi River exhibited higher TCS concentrations (water: 1.68 μg/L, sediment: 3.19 μg/kg) than Versova Creek (water: 0.49 μg/L, sediment: 0.69 μg/kg). Principal component analysis revealed positive correlations between TCS and physicochemical parameters. High-risk quotients (>1) underscore TCS threats in both water bodies. This study furnishes crucial baseline data, emphasizing the need for effective treatment plans for TCS in effluent waters released into the adjacent aquatic systems.
Collapse
Affiliation(s)
- Ganesh Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra 400061, India
| | - Saurav Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra 400061, India.
| | - Tapas Paul
- College of Fisheries, Bihar Animal Sciences University, Kishanganj, Bihar 855107, India
| | - Prasenjit Pal
- College of Fisheries, Central Agricultural University (I), Lembucherra, Tripura 799210, India
| | - Satya Prakash Shukla
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra 400061, India
| | - Kundan Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra 400061, India
| | - Ashish Kumar Jha
- ICAR-Central Institute of Fisheries Technology, Veraval Research Centre, Gujarat 362265, India
| | - Shilpa Pradeep
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra 400061, India
| |
Collapse
|
3
|
Yao L, Liu YH, Zhou X, Yang JH, Zhao JL, Chen ZY. Uptake, tissue distribution, and biotransformation pattern of triclosan in tilapia exposed to environmentally-relevant concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171270. [PMID: 38428603 DOI: 10.1016/j.scitotenv.2024.171270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
Although triclosan has been ubiquitously detected in aquatic environment and is known to have various adverse effects to fish, details on its uptake, bioconcentration, and elimination in fish tissues are still limited. This study investigated the uptake and elimination toxicokinetics, bioconcentration, and biotransformation potential of triclosan in Nile tilapia (Oreochromis niloticus) exposed to environmentally-relevant concentrations under semi-static regimes for 7 days. For toxicokinetics, triclosan reached a plateau concentration within 5-days of exposure, and decreased to stable concentration within 5 days of elimination. Approximately 50 % of triclosan was excreted by fish through feces, and up to 29 % of triclosan was excreted through the biliary excretion. For fish exposed to 200 ng·L-1, 2000 ng·L-1, and 20,000 ng·L-1, the bioconcentration factors (log BCFs) of triclosan in fish tissues obeyed similar order: bile ≈ intestine > gonad ≈ stomach > liver > kidney ≈ gill > skin ≈ plasma > brain > muscle. The log BCFs of triclosan in fish tissues are approximately maintained constants, no matter what triclosan concentrations in exposure water. Seven biotransformation products of triclosan, involved in both phase I and phase II metabolism, were identified in this study, which were produced through hydroxylation, bond cleavages, dichlorination, and sulfation pathways. Metabolite of triclosan-O-sulfate was detected in all tissues of tilapia, and more toxic product of 2,4-dichlorophenol was also found in intestine, gonad, and bile of tilapia. Meanwhile, two metabolites of 2,4-dichlorophenol-O-sulfate and monohydroxy-triclosan-O-sulfate were firstly discovered in the skin, liver, gill, intestine, gonad, and bile of tilapia in this study. These findings highlight the importance of considering triclosan biotransformation products in ecological assessment. They also provide a scientific basis for health risk evaluation of triclosan to humans, who are associated with dietary exposure through ingesting fish.
Collapse
Affiliation(s)
- Li Yao
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Yue-Hong Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Environmental Theoretical Chemistry, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Xi Zhou
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Jia-Hui Yang
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Environmental Theoretical Chemistry, School of Environment, South China Normal University, Guangzhou 510006, China.
| | - Zhi-Yong Chen
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China.
| |
Collapse
|
4
|
Sun C, Zhang T, Zhou Y, Liu ZF, Zhang Y, Bian Y, Feng XS. Triclosan and related compounds in the environment: Recent updates on sources, fates, distribution, analytical extraction, analysis, and removal techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161885. [PMID: 36731573 DOI: 10.1016/j.scitotenv.2023.161885] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Triclosan (TCS) has been widely used in daily life because of its broad-spectrum antibacterial activities. The residue of TCS and related compounds in the environment is one of the critical environmental safety problems, and the pandemic of COVID-19 aggravates the accumulation of TCS and related compounds in the environment. Therefore, detecting TCS and related compound residues in the environment is of great significance to human health and environmental safety. The distribution of TCS and related compounds are slightly different worldwide, and the removal methods also have advantages and disadvantages. This paper summarized the research progress on the source, distribution, degradation, analytical extraction, detection, and removal techniques of TCS and related compounds in different environmental samples. The commonly used analytical extraction methods for TCS and related compounds include solid-phase extraction, liquid-liquid extraction, solid-phase microextraction, liquid-phase microextraction, and so on. The determination methods include liquid chromatography coupled with different detectors, gas chromatography and related methods, sensors, electrochemical method, capillary electrophoresis. The removal techniques in various environmental samples mainly include biodegradation, advanced oxidation, and adsorption methods. Besides, both the pros and cons of different techniques have been compared and summarized, and the development and prospect of each technique have been given.
Collapse
Affiliation(s)
- Chen Sun
- School of Pharmacy, China Medical University, Shenyang 110122, China; Department of Pharmaceutics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Ting Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhi-Fei Liu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
5
|
Nozaki K, Tanoue R, Kunisue T, Tue NM, Fujii S, Sudo N, Isobe T, Nakayama K, Sudaryanto A, Subramanian A, Bulbule KA, Parthasarathy P, Tuyen LH, Viet PH, Kondo M, Tanabe S, Nomiyama K. Pharmaceuticals and personal care products (PPCPs) in surface water and fish from three Asian countries: Species-specific bioaccumulation and potential ecological risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161258. [PMID: 36587684 DOI: 10.1016/j.scitotenv.2022.161258] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/13/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
In Asian developing countries, undeveloped and ineffective sewer systems are causing surface water pollution by a lot of contaminants, especially pharmaceuticals and personal care products (PPCPs). Therefore, the risks for freshwater fauna need to be assessed. The present study aimed at: i) elucidating the contamination status; ii) evaluating the bioaccumulation; and iii) assessing the potential risks of PPCP residues in surface water and freshwater fish from three Asian countries. We measured 43 PPCPs in the plasma of several fish species as well as ambient water samples collected from India (Chennai and Bengaluru), Indonesia (Jakarta and Tangerang), and Vietnam (Hanoi and Hoa Binh). In addition, the validity of the existing fish blood-water partitioning model based solely on the lipophilicity of chemicals is assessed for ionizable and readily metabolizable PPCPs. When comparing bioaccumulation factors calculated from the PPCP concentrations measured in the fish and water (BAFmeasured) with bioconcentration factors predicted from their pH-dependent octanol-water partition coefficient (BCFpredicted), close values (within an order of magnitude) were observed for 58-91 % of the detected compounds. Nevertheless, up to 110 times higher plasma BAFmeasured than the BCFpredicted were found for the antihistamine chlorpheniramine in tilapia but not in other fish species. The plasma BAFmeasured values of the compound were significantly different in the three fish species (tilapia > carp > catfish), possibly due to species-specific differences in toxicokinetics (e.g., plasma protein binding and hepatic metabolism). Results of potential risk evaluation based on the PPCP concentrations measured in the fish plasma suggested that chlorpheniramine, triclosan, haloperidol, triclocarban, diclofenac, and diphenhydramine can pose potential adverse effects on wild fish. Results of potential risk evaluation based on the PPCP concentrations measured in the surface water indicated high ecological risks of carbamazepine, sulfamethoxazole, erythromycin, and triclosan on Asian freshwater ecosystems.
Collapse
Affiliation(s)
- Kazusa Nozaki
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790 8577, Japan
| | - Rumi Tanoue
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790 8577, Japan.
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790 8577, Japan
| | - Nguyen Minh Tue
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790 8577, Japan; Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi 11400, Viet Nam
| | - Sadahiko Fujii
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790 8577, Japan
| | - Nao Sudo
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790 8577, Japan
| | - Tomohiko Isobe
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305 8506, Japan
| | - Kei Nakayama
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790 8577, Japan
| | - Agus Sudaryanto
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency (BRIN), Building 820, Puspiptek Serpong, South Tangerang, Banten, Indonesia
| | - Annamalai Subramanian
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India
| | - Keshav A Bulbule
- KLE Society's S. Nijalingappa College, 2nd Block, Rajajinagar, Bangaluru 560 010, India
| | - Peethambaram Parthasarathy
- E-Parisaraa Pvt. Ltd., Plot No. 30-P3, Karnataka Industrial Area Development Board, Dobaspet Industrial Area, Bengaluru 562 111, India
| | - Le Huu Tuyen
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi 11400, Viet Nam
| | - Pham Hung Viet
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi 11400, Viet Nam
| | - Masakazu Kondo
- Department of Applied Aquabiology, National Fisheries University, Japan Fisheries Research and Education Agency, Yamaguchi 759 6595, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790 8577, Japan
| | - Kei Nomiyama
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790 8577, Japan
| |
Collapse
|
6
|
Muacevic A, Adler JR. Ototoxicity of Triclosan: A Rat Model Study. Cureus 2022; 14:e32189. [PMID: 36505955 PMCID: PMC9728979 DOI: 10.7759/cureus.32189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2022] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Triclosan is utilized as an antibacterial factor in many industrial products. Although there are many toxic features of triclosan in the literature, there is no study on the effect of triclosan on hearing. The purpose of this study is to determine the effect of triclosan on hearing in rats. METHODS In this prospective, experimental animal study, 40 healthy Sprague-Dawley rats with normal response to the distortion-product otoacoustic emission (DPOAE) measurements were divided into four groups. Group 1, as the control group, was given only corn oil, group 2 was given 5 mg/kg triclosan dissolved in corn oil, group 3 was given 10 mg/kg triclosan dissolved in corn oil, and group 4 was given 100 mg/kg triclosan dissolved in corn oil; triclosan and corn oil were administered by oral gavage to all groups. RESULTS In our study, low-dose triclosan did not cause hearing loss, but hearing loss was observed in the group that was given high-dose triclosan (100 mg/kg). CONCLUSION These findings suggest that triclosan causes hearing loss in rats. This issue should be investigated further to avoid triclosan ototoxicity in humans.
Collapse
|
7
|
Kumar S, Paul T, Shukla SP, Kumar K, Karmakar S, Bera KK, Bhushan Kumar C. Biomarkers-based assessment of triclosan toxicity in aquatic environment: A mechanistic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117569. [PMID: 34438492 DOI: 10.1016/j.envpol.2021.117569] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/21/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
Triclosan (TCS), an emergent pollutant, is raising a global concern due to its toxic effects on organisms and aquatic ecosystems. The non-availability of proven treatment technologies for TCS remediation is the central issue stressing thorough research on understanding the underlying mechanisms of toxicity and assessing vital biomarkers in the aquatic organism for practical monitoring purposes. Given the unprecedented circumstances during COVID 19 pandemic, a several-fold higher discharge of TCS in the aquatic ecosystems cannot be considered a remote possibility. Therefore, identifying potential biomarkers for assessing chronic effects of TCS are prerequisites for addressing the issues related to its ecological impact and its monitoring in the future. It is the first holistic review on highlighting the biomarkers of TCS toxicity based on a comprehensive review of available literature about the biomarkers related to cytotoxicity, genotoxicity, hematological, alterations of gene expression, and metabolic profiling. This review establishes that biomarkers at the subcellular level such as oxidative stress, lipid peroxidation, neurotoxicity, and metabolic enzymes can be used to evaluate the cytotoxic effect of TCS in future investigations. Micronuclei frequency and % DNA damage proved to be reliable biomarkers for genotoxic effects of TCS in fishes and other aquatic organisms. Alteration of gene expression and metabolic profiling in different organs provides a better insight into mechanisms underlying the biocide's toxicity. In the concluding part of the review, the present status of knowledge about mechanisms of antimicrobial resistance of TCS and its relevance in understanding the toxicity is also discussed referring to the relevant reports on microorganisms.
Collapse
Affiliation(s)
- Saurav Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India.
| | - Tapas Paul
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| | - S P Shukla
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| | - Kundan Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| | - Sutanu Karmakar
- West Bengal University of Animal & Fishery Sciences, Kolkata, 700037, West Bengal, India
| | - Kuntal Krishna Bera
- West Bengal University of Animal & Fishery Sciences, Kolkata, 700037, West Bengal, India
| | - Chandra Bhushan Kumar
- ICAR-National Bureau of Fish Genetic Resources, Lucknow, 226002, Uttar Pradesh, India
| |
Collapse
|
8
|
Jinadasa B, Moreda-Piñeiro A, Fowler SW. Ultrasound-Assisted Extraction in Analytical Applications for Fish and Aquatic Living Resources, a Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1967378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- B.K.K.K. Jinadasa
- Analytical Chemistry Laboratory (ACL), National Aquatic Resources Research & Development Agency (NARA), Colombo-15, Sri Lanka
- Le Blanc-Mesnil, France
| | - Antonio Moreda-Piñeiro
- Department of Analytical Chemistry, Nutrition, & Bromatology, Faculty Of Chemistry, Universidade De Santiago De Compostela. Avenida Das Ciencias, Santiago De Compostela, Spain
| | - Scott W. Fowler
- School of Marine & Atmospheric Sciences, Stony Brook University, Stony Brook,New York, USA
- Institute Bobby, Cap d’Ail, France
| |
Collapse
|
9
|
Das Sarkar S, Nag SK, Kumari K, Saha K, Bandyopadhyay S, Aftabuddin M, Das BK. Occurrence and Safety Evaluation of Antimicrobial Compounds Triclosan and Triclocarban in Water and Fishes of the Multitrophic Niche of River Torsa, India. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 79:488-499. [PMID: 33215293 DOI: 10.1007/s00244-020-00785-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/01/2020] [Indexed: 05/05/2023]
Abstract
Personal care product (PCP) chemicals have a greater chance of accumulation in the aquatic environments because of their volume of use. PCPs are biologically active substances that can exert an adverse effect on the ecology and food safety. Information on the status of these substances in Indian open water ecosystems is scarce. In this paper, we report the incidence of two synthetic antimicrobials, triclosan (TCS), including its metabolite methyl-triclosan (Me-TCS) and triclocarban (TCC) in Torsa, a transboundary river flowing through India. In water TCS and TCC were detected at levels exceeding their respective PNEC (Predictive No Effect Concentration). Both the compounds were found to be bioaccumulative in fish. TCS concentration (91.1-589 µg/kg) in fish was higher than that of TCC (29.1-285.5 µg/kg). The accumulation of residues of the biocides varied widely among fishes of different species, ecological niche, and feeding habits. Me-TCS could be detected in fishes and not in water. The environmental hazard quotient of both TCS and TCC in water indicated a moderate risk. However, the health risk analysis revealed that fishes of the river would not pose any direct hazard to human when consumed. This is the first report of the occurrence of these PCP chemicals in a torrential river system of the eastern Himalayan region.
Collapse
Affiliation(s)
- Soma Das Sarkar
- Fishery Resource and Environmental Management Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India
| | - Subir Kumar Nag
- Fishery Resource and Environmental Management Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India.
| | - Kavita Kumari
- Fishery Resource and Environmental Management Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India
| | - Keya Saha
- Fishery Resource and Environmental Management Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India
| | - Sudarshan Bandyopadhyay
- Fishery Resource and Environmental Management Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India
| | - Mohammad Aftabuddin
- Fishery Resource and Environmental Management Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India
| | - Basanta Kumar Das
- Fishery Resource and Environmental Management Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, West Bengal, India
| |
Collapse
|
10
|
Dar OI, Sharma S, Singh K, Kaur A. Teratogenicity and accumulation of triclosan in the early life stages of four food fish during the bioassay. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 176:346-354. [PMID: 30954000 DOI: 10.1016/j.ecoenv.2019.03.102] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
TCS [5-chloro-2-(2,4-dichlorophenoxy)phenol] caused a concentration dependent delay in embryonic development, delay and decline in hatching and reduction in length and weight of hatchlings along with an increase in abnormal/deformed embryos and larvae and percent mortality. These parameters varied in a species specific manner and increased with TCS residue in body. The 96 h LC50 values of TCS for Cyprinus carpio, Ctenopharyngodon idella, Labeo rohita and Cirrhinus mrigala were estimated at 0.315, 0.116, 0.096 and 0.131 mg/L, respectively. Hatching got delayed by 16.33 h for C. carpio (0.47 and 0.50 mg/L TCS) and C. idella (0.20 mg/L TCS) but by 18.07 h for L. rohita (0.15 mg/L TCS) and by 19.33 h for C. mrigala (0.18 mg/L TCS). Spine malformations, oedema (yolk sac and cardiac) and deflated swim bladder were present in 100% larvae of C. carpio, C. idella, L. rohita and C. mrigala at 0.30, 0.08, 0.13 and 0.14 mg/L TCS, respectively. TCS also caused hemorrhage (all but C. idella, only 3.33%), albinism and deformed caudal fin (C. idella), hypopigmentation and rupturing of yolk sac (C. mrigala), gas bubble disease (C. mrigala and L. rohita), fusion of eyes (C. carpio) and degeneration of digestive tract (L. rohita) in 10-40% hatchlings. Exposed hatchlings were very weak and paralyzed, could not swim and remained settled at the bottom of jars. Embryonic development was observed to be an early indicator of the toxicity of TCS as oedema and bubbles in yolk were observed in 40-100% embryos/hatchlings at 0.08 mg/L TCS while 100% mortality was observed between 0.15 and 0.50 mg/L TCS. L. rohita was most sensitive and C. carpio was least sensitive to the stress of TCS. Accumulation of TCS in the hatchlings (1/10 of TCS in water) after 96 h exposure hints that even small quantities of TCS may change species diversity in natural waters.
Collapse
Affiliation(s)
- Owias Iqbal Dar
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Sunil Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Kirpal Singh
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Arvinder Kaur
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
11
|
Wirt H, Botka R, Perez KE, King-Heiden T. Embryonic exposure to environmentally relevant concentrations of triclosan impairs foraging efficiency in zebrafish larvae. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:3124-3133. [PMID: 30264895 DOI: 10.1002/etc.4281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/13/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
The ubiquitous and persistent contaminant triclosan is known to cause developmental and behavioral toxicity in fish, but few studies have evaluated the long-term effects of these responses. We used a phenotypically anchored approach to evaluate the behavioral responses caused by early exposure to environmentally relevant concentrations of triclosan to better understand the risk triclosan poses to fish. Zebrafish were exposed to 0, 0.4, 4, or 40 μg triclosan/L (nominal concentrations) for 5 d followed by depuration for 16 d to assess effects on mortality, development, and foraging efficiency. Because foraging efficiency can be impacted by neurological and structural alterations, we assessed morphological and behavioral indicators of neurotoxicity and morphology of craniofacial features associated with gape to identify potential underlying mechanisms associated with altered foraging behaviors. To our knowledge, we are the first to show that early exposure to environmentally relevant concentrations of triclosan impairs foraging efficiency in larval fish by 10%, leading to emaciation and reduced growth and survival. The cause of the impacts of triclosan on foraging efficiency remains unknown, because effects were not associated with overt indicators of neurotoxicity or grossly malformed craniofacial structures. Our results suggest that early exposure to triclosan has the potential to impact the sustainability of wild fish populations, and thus the mechanism underlying behavioral alterations following exposure to triclosan warrants further study. Environ Toxicol Chem 2018;37:3124-3133. © 2018 SETAC.
Collapse
Affiliation(s)
- Heidi Wirt
- Department of Biology and River Studies Center, University of Wisconsin-La Crosse, La Crosse, Wisconsin, USA
| | - Rosalea Botka
- Department of Biology and River Studies Center, University of Wisconsin-La Crosse, La Crosse, Wisconsin, USA
| | - Kathryn E Perez
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Tisha King-Heiden
- Department of Biology and River Studies Center, University of Wisconsin-La Crosse, La Crosse, Wisconsin, USA
| |
Collapse
|
12
|
Nag SK, Das Sarkar S, Manna SK. Triclosan - an antibacterial compound in water, sediment and fish of River Gomti, India. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2018; 28:461-470. [PMID: 29925273 DOI: 10.1080/09603123.2018.1487044] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 06/06/2018] [Indexed: 06/08/2023]
Abstract
Triclosan (TCS), the antibacterial agent commonly used in personal care products is highly toxic to aquatic lives particularly algae, zooplankton and fish. It is bio-accumulative and has endocrine disruptive properties. In this present study, we monitored the occurrence of TCS in water, sediment and fish samples collected from stretch of about 450 km of River Gomti, a major tributary of River Ganga, in India. An isocratic reversed-phase HPLC method was standardized for determination of TCS in samples. In water, TCS was detected in the range of 1.1-9.65 μg/l while in sediments the level was 5.11-50.36 μg/kg. It was also found in fishes of different species in concentrations ranging from 13 to 1040 μg/kg on wet weight basis. However, estimated daily intake of TCS through contaminated fish was much below the acceptable daily intake (50 μg/kg body wt/day) and thus safe from human health hazard point of view.
Collapse
Affiliation(s)
- Subir Kumar Nag
- a Fishery Resource and Environmental Management Division , ICAR-Central Inland Fisheries Research Institute , Barrackpore, Kolkata , India
| | - Soma Das Sarkar
- a Fishery Resource and Environmental Management Division , ICAR-Central Inland Fisheries Research Institute , Barrackpore, Kolkata , India
| | - Sanjib Kumar Manna
- a Fishery Resource and Environmental Management Division , ICAR-Central Inland Fisheries Research Institute , Barrackpore, Kolkata , India
| |
Collapse
|
13
|
Montesdeoca-Esponda S, Checchini L, Del Bubba M, Sosa-Ferrera Z, Santana-Rodriguez JJ. Analytical approaches for the determination of personal care products and evaluation of their occurrence in marine organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 633:405-425. [PMID: 29579652 DOI: 10.1016/j.scitotenv.2018.03.182] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
Contamination of the aquatic environment caused by multiple human activities may exert a negative impact on all living organisms. Several contaminants of emerging concern such as personal care products (PCPs) are continuously released into the aquatic environment where they are biologically active and persistent. This work reviews the current knowledge, provided by papers published after 2010 and indexed by SciFinder, Scopus, and Google search engines, about the determination and occurrence of PCPs in marine biota. Analytical methodologies have been critically reviewed, emphasizing the importance of green and high-throughput approaches and focusing the discussion on the complexity of the solute-matrix interaction in the extraction step, as well as the matrix effect in the instrumental determination. Finally, the worldwide distribution of PCPs is surveyed, taking into account the concentrations found in the same organism in different marine environments. Differences among various world areas have been highlighted, evidencing some critical aspects from an environmental point of view.
Collapse
Affiliation(s)
- Sarah Montesdeoca-Esponda
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
| | - Leonardo Checchini
- Department of Chemistry, University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Massimo Del Bubba
- Department of Chemistry, University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy.
| | - Zoraida Sosa-Ferrera
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
| | - José Juan Santana-Rodriguez
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
14
|
Kristofco LA, Haddad SP, Chambliss CK, Brooks BW. Differential uptake of and sensitivity to diphenhydramine in embryonic and larval zebrafish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:1175-1181. [PMID: 29274281 DOI: 10.1002/etc.4068] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/17/2017] [Accepted: 12/21/2017] [Indexed: 06/07/2023]
Abstract
The zebrafish fish embryo toxicity (FET) test is increasingly employed for alternative toxicity studies, yet our previous research identified increased sensitivity of zebrafish slightly older than embryos employed in FET methods (0-4 d postfertilization [dpf]). We identified rapid steady-state accumulation of diphenhydramine across zebrafish embryo and larval stages. However, significantly (p < 0.05) lower accumulation was observed at 48 h compared to 96 h in chorionated and dechorionated embryos (0-4 dpf), but not in zebrafish at 7 to 11 and 14 to 18 dpf. Increased uptake and toxicity of diphenhydramine was further observed in zebrafish at 7 to 11 and 14 to 18 dpf compared with 0-4 dpf embryos with chorion or dechorionated, which indicates that differential zebrafish sensitivity with age is associated with accumulation resulting from gill and other toxicokinetic and toxicodynamic changes during development. Environ Toxicol Chem 2018;37:1175-1181. © 2017 SETAC.
Collapse
Affiliation(s)
- Lauren A Kristofco
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
| | - Samuel P Haddad
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
| | - C Kevin Chambliss
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| | - Bryan W Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
- Institute of Biomedical Studies, Baylor University, Waco, Texas, USA
| |
Collapse
|
15
|
Arnot JA, Pawlowski S, Champ S. A weight-of-evidence approach for the bioaccumulation assessment of triclosan in aquatic species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 618:1506-1518. [PMID: 29029804 DOI: 10.1016/j.scitotenv.2017.09.322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/29/2017] [Accepted: 09/29/2017] [Indexed: 06/07/2023]
Abstract
The bioaccumulation assessment of chemicals is challenging because of various metrics and criteria, multiple lines of evidence and underlying uncertainty in the data. Measured in vivo laboratory and field bioaccumulation data are generally considered preferable; however, quantitative structure-activity relationships (QSARs), mass balance models and in vitro data can also be considered. This case study critically evaluates in vivo, in vitro and in silico data and provides new data for the bioaccumulation assessment of triclosan (TCS). The review focusses on measured fish bioconcentration factors (BCFs) because this is the most commonly used regulatory metric. Reported measured fish BCFs range from about 20 to 8700L/kg-ww spanning a range of possible bioaccumulation assessment outcomes, i.e. from "not bioaccumulative" to "very bioaccumulative". Estimated biotransformation rate constants for fish obtained from in vivo, in vitro and in silico methods show general consensus fostering confidence in the selection of plausible values to confront uncertainty in the measured fish BCF tests. Other measurements (lines of evidence) from various species are also collected and reviewed. The estimated biotransformation rate constants and selected chemical property data are used to parameterize bioaccumulation models for aquatic species. Collectively the available lines of evidence are presented using a weight of evidence approach for assessing the bioaccumulation of TCS in aquatic species. Acceptable quality measured data and model predictions for TCS BCFs and bioaccumulation factors are lower than 2000L/kg. Biomagnification factors are <1 (kg/kg). The general consistency in the acceptable quality data is largely explained by the relatively efficient rates of TCS biotransformation in a range of species including measurements of significant in vitro activity of phase II conjugation reactions. The review demonstrates the value of combining models and measurements and, when necessary, applying multiple lines of evidence for chemical assessment.
Collapse
Affiliation(s)
- Jon A Arnot
- ARC Arnot Research and Consulting Inc., 36 Sproat Avenue, Toronto, ON M4M 1W4, Canada; Department of Physical and Environmental Sciences, University of Toronto at Scarborough, 1265 Military Trail, Toronto, ON M1C1A4, Canada; Department of Pharmacology and Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| | | | - Samantha Champ
- BASF SE, Carl-Bosch Str. 38, 67056 Ludwigshafen, Germany
| |
Collapse
|
16
|
Kurth D, Krauss M, Schulze T, Brack W. Measuring the internal concentration of volatile organic compounds in small organisms using micro-QuEChERS coupled to LVI–GC–MS/MS. Anal Bioanal Chem 2017; 409:6041-6052. [DOI: 10.1007/s00216-017-0532-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 06/15/2017] [Accepted: 07/19/2017] [Indexed: 11/27/2022]
|
17
|
Molina-Fernandez N, Perez-Conde C, Rainieri S, Sanz-Landaluze J. Method for quantifying NSAIDs and clofibric acid in aqueous samples, lumpfish (Cyclopterus lumpus) roe, and zebrafish (Danio rerio) eleutheroembryos and evaluation of their bioconcentration in zebrafish eleutheroembryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:10907-10918. [PMID: 27164891 DOI: 10.1007/s11356-016-6671-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/10/2016] [Indexed: 06/05/2023]
Abstract
Pharmaceuticals such as nonsteroidal anti-inflammatory drugs (NSAIDs) and lipid regulators are being repeatedly detected at low concentrations (pg · mL-1-ng · mL-1) in the environment. A large fraction of these compounds are ionizable. Ionized compounds show different physico-chemical properties and environmental behavior in comparison to their neutral analogs; as a consequence, the quantification methods currently available, based on the neutral molecules, might not be suitable to detect the corresponding ionized compounds. To overcome this problem, we developed a specific analytical method to quantify NSAIDs and lipid regulators (i.e., ibuprofen, diclofenac, naproxen, and clofibric acid) and their ionized compounds. This method is based on three steps: (1) the extraction of the organic compounds with an organic solvent assisted with an ultrasonic probe, (2) the cleaning of the extracts with a dispersive SPE with C18, and (3) the determination of the chemical compounds by GC-MS (prior derivatization of the analytes). We demonstrated that the proposed method can successfully quantify the pharmaceuticals and their ionized compounds in aqueous samples, lumpfish eggs, and zebrafish eleutheroembryos. Additionally, it allows the extraction and the cleanup of extracts from small samples (0.010 g of wet weight in pools of 20 larvae) and complex matrixes (due to high lipid content) and can be used as a basis for bioaccumulation assays performed with zebrafish eleutheroembryos in alternative to OECD test 305.
Collapse
Affiliation(s)
- N Molina-Fernandez
- Department of Analytical Chemistry, Faculty of Chemical Science, Complutense University of Madrid, Avenida Complutense s/n, 28040, Madrid, Spain
| | - C Perez-Conde
- Department of Analytical Chemistry, Faculty of Chemical Science, Complutense University of Madrid, Avenida Complutense s/n, 28040, Madrid, Spain
| | - S Rainieri
- Food Research Division, AZTI, Parque Tecnológico de Bizkaia, Astondo Bidea 609, 48160, Derio, Spain
| | - J Sanz-Landaluze
- Department of Analytical Chemistry, Faculty of Chemical Science, Complutense University of Madrid, Avenida Complutense s/n, 28040, Madrid, Spain.
| |
Collapse
|
18
|
Carmosini N, Grandstrand S, King-Heiden TC. Developmental Toxicity of Triclosan in the Presence of Dissolved Organic Carbon: Moving Beyond Standard Acute Toxicity Assays to Understand Ecotoxicological Risk. Zebrafish 2016; 13:424-31. [DOI: 10.1089/zeb.2015.1220] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Nadia Carmosini
- Department of Chemistry and Biochemistry, University of Wisconsin—La Crosse, La Crosse, Wisconsin
| | - Sarah Grandstrand
- Department of Biology, University of Wisconsin—La Crosse, La Crosse, Wisconsin
| | | |
Collapse
|
19
|
Brox S, Seiwert B, Küster E, Reemtsma T. Toxicokinetics of Polar Chemicals in Zebrafish Embryo (Danio rerio): Influence of Physicochemical Properties and of Biological Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:10264-72. [PMID: 27571242 DOI: 10.1021/acs.est.6b04325] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The time-resolved uptake of 17 nonionic and ionic polar compounds (logD ≤ 2) with a diversity of functional groups into zebrafish embryos (ZFE) was studied over 96 h of exposure. Among them were pharmaceuticals, pesticides and plant active ingredients. Uptake rates for the diffusion controlled passive uptake through the ZFE membrane ranged from 0.02 to 24 h(-1) for the nonionic compounds and were slower for ionic compounds (<0.008-0.08 h(-1)). The study compounds did not enrich much in the ZFE (median bioconcentration factor of 1, max. 7). Biotransformation significantly influenced the internal concentration of some of the test compounds over time (benzocaine, phenacetin, metribuzin, phenytoin, thiacloprid, valproic acid). For benzocaine, valproic acid and phenacetin several transformation products (TPs) were observed by LC-MS already at early life-stages (before 28 hpf); for benzocaine the TPs comprised >90% of the initial amount taken up into the ZFE. For six compounds internal concentrations remained very low (rel. int. conc. < 0.2). Besides biotransformation (sulfamethoxazole), poor membrane permeability (cimetidine, colchicine) and also affinity to efflux transporters (atropine and chloramphenicol) are the likely reasons for these low internal concentrations. This study outlines that the uptake of polar compounds into ZFE is influenced by their physicochemical properties. However, biological processes, biotransformation and, likely, efflux can strongly affect the internal concentrations already in early developmental stages of the ZFE. This should be considered in future toxicokinetic modeling. The evaluation of the toxicity of chemicals by ZFE requires toxicokinetic studies of the test compounds and their TPs to increase comparability to effects in fish.
Collapse
Affiliation(s)
- Stephan Brox
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ , Permoserstrasse 15, 04318 Leipzig, Germany
| | - Bettina Seiwert
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ , Permoserstrasse 15, 04318 Leipzig, Germany
| | - Eberhard Küster
- Department Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ , Permoserstrasse 15, 04318 Leipzig, Germany
| | - Thorsten Reemtsma
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ , Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|
20
|
Escarrone ALV, Caldas SS, Primel EG, Martins SE, Nery LEM. Uptake, tissue distribution and depuration of triclosan in the guppy Poecilia vivipara acclimated to freshwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 560-561:218-24. [PMID: 27101458 DOI: 10.1016/j.scitotenv.2016.04.039] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 05/23/2023]
Abstract
The agent triclosan has been extensively used in different personal care products as a broad-spectrum antimicrobial and preservative agent. Due to its continuous release into the environment, including discharge via wastewater treatment plants, triclosan has been widely detected in aquatic environments. There is growing interest in improving the knowledge about the environmental fate of triclosan due to its possible bioaccumulation and the toxicity it may pose to organisms, such as fish and other non-target species. To investigate the distribution and bioconcentration of triclosan in fish, Poecilia vivipara was exposed to 0.2mgL(-1). Contents of triclosan in whole fish, brain, gonads, liver, muscle and gills were quantified by LC-MS/MS. When lipid normalised concentration was used, the liver exhibited the highest concentration followed by the gills, gonads, brain and muscle tissues. Bioconcentration was increased with time reaching a steady-state around 7-14days for most all tissues. After 24h depuration, triclosan concentrations declined >80% in all tissues except liver, in which triclosan takes longer to be depurated. These results not only clearly indicate that triclosan accumulated in P. vivipara, with tissue-specific bioconcentration factors (BCF) that ranged from 40.2 to 1025.4, but also show that the elimination of triclosan after transferring the fish to triclosan-free freshwater is rapid in all tissues.
Collapse
Affiliation(s)
- Ana Laura Venquiaruti Escarrone
- Instituto de Ciências Biológicas, Programa de Pós-graduação em Fisiologia Animal Comparada, Universidade Federal do Rio Grande, Av Itália, km8, s/n, Rio Grande, Rio Grande do Sul State 96203-900, Brazil
| | - Sergiane Souza Caldas
- Laboratório de Análises de Compostos Orgânicos e Metais, Escola de Química e Alimentos, Programa de Pós-graduação em Química Tecnológica e Ambiental, Universidade Federal do Rio Grande, Av Itália, km8, s/n, Rio Grande, Rio Grande do Sul State 96203-900, Brazil
| | - Ednei Gilberto Primel
- Laboratório de Análises de Compostos Orgânicos e Metais, Escola de Química e Alimentos, Programa de Pós-graduação em Química Tecnológica e Ambiental, Universidade Federal do Rio Grande, Av Itália, km8, s/n, Rio Grande, Rio Grande do Sul State 96203-900, Brazil
| | - Samantha Eslava Martins
- Instituto de Ciências Biológicas, Programa de Pós-graduação em Fisiologia Animal Comparada, Universidade Federal do Rio Grande, Av Itália, km8, s/n, Rio Grande, Rio Grande do Sul State 96203-900, Brazil
| | - Luiz Eduardo Maia Nery
- Instituto de Ciências Biológicas, Programa de Pós-graduação em Fisiologia Animal Comparada, Universidade Federal do Rio Grande, Av Itália, km8, s/n, Rio Grande, Rio Grande do Sul State 96203-900, Brazil.
| |
Collapse
|
21
|
López-Serrano Oliver A, Muñoz-Olivas R, Sanz Landaluze J, Rainieri S, Cámara C. Bioaccumulation of ionic titanium and titanium dioxide nanoparticles in zebrafish eleutheroembryos. Nanotoxicology 2015; 9:835-42. [DOI: 10.3109/17435390.2014.980758] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
22
|
Sanz-Landaluze J, Pena-Abaurrea M, Muñoz-Olivas R, Cámara C, Ramos L. Zebrafish (Danio rerio) eleutheroembryo-based procedure for assessing bioaccumulation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:1860-9. [PMID: 25590991 DOI: 10.1021/es504685c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This paper reports on the development and preliminary evaluation of a new bioaccumulation test based on the use of zebrafish (Danio renio) eleutheroembryos (72 h after hatching, corresponding to 144 h post fertilization, hpf) as an alternative to adult fish-based procedures for regulatory purposes regarding REACH application. The proposed test accomplished the OECD 305 guideline and consists of a 48 h uptake period followed by a 24 h depuration step. Bioaccumulation experiments were performed for a selected of hyper hydrophobic chemicals (log Kow> 7.6), that is, PCB 136 and PBDE 154 at two concentration levels corresponding roughly to 1% and 0.1% the chemicaĺs LC50(nominal concentrations of 4.0 and 12.0 μg/L for PCB 136, and 1.0 and 5.0 μg/L PBDE 154, respectively). Toxicokinetic models were used to calculate the bioconcentration factors (BCFs) based on of the chemical concentrations found in the contaminated eleutheroembryos and their surrounding media. The experimentally determined accumulation profiles show bioaccumulation by zebrafish eleutheroembryos of both chemicals, and that the process is more complex than simple water-lipid partition. Calculated log BCFs using a first-order accumulation model(3.97 and 3.73 for PCB 136, and 3.95 and 4.29 for PBDE 154) were in the range of those previously reported in the literature. The suitability of this new nonprotected life stage bioaccumulation protocol for BCF estimation was evaluated by application to widely divergent micropollutants with different accumulation mechanisms. The results were compared with those in the MITE-NITE database for adult rice fish (Oryzias latipes).
Collapse
Affiliation(s)
- J Sanz-Landaluze
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense de Madrid , Ciudad Universitaria, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
23
|
Brox S, Ritter AP, Küster E, Reemtsma T. Influence of the perivitelline space on the quantification of internal concentrations of chemicals in eggs of zebrafish embryos (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 157:134-140. [PMID: 25456227 DOI: 10.1016/j.aquatox.2014.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/06/2014] [Accepted: 10/12/2014] [Indexed: 06/04/2023]
Abstract
The chorion and the perivitelline space which surround unhatched zebrafish embryos (ZFE, Danio rerio) may affect the determination of internal concentrations of study compounds taken up in early life-stages of ZFE. Internal concentration-time profiles were gathered for benzocaine, caffeine, clofibric acid, metribuzin and phenacetin as study compounds over 96 h of exposure starting with ZFE at 4h post-fertilization. Liquid chromatography coupled to tandem-mass spectrometry (LC-MS/MS) was used to determine the concentration of the study compounds from intact (i.e. unhatched), dechorionated and from hatched ZFE. The mass of the study compounds per ZFE was 5-30 ng higher for intact ZFE compared to dechorionated ones. Thus, internal concentrations were overestimated if only intact ZFE were analyzed. Dechorionation of unhatched ZFE after their exposure is proposed to determine the true internal concentration in the embryo. For the compounds studied here the mass of the study compounds determined in unhatched ZFE after a short term (5 min) exposure provided a reasonable estimate of the mass taken up by the chorion and the PVS. This mass can be subtracted from the total mass found in unhatched ZFE to calculate the true internal mass. Estimating the mass in the chorion and the PVS from the concentration of the study compound in the external exposure medium and the volume of the PVS provided no reasonable results.
Collapse
Affiliation(s)
- Stephan Brox
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Axel P Ritter
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Eberhard Küster
- Department Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Thorsten Reemtsma
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany.
| |
Collapse
|
24
|
Tu W, Lu B, Niu L, Xu C, Lin C, Liu W. Dynamics of uptake and elimination of pyrethroid insecticides in zebrafish (Danio rerio) eleutheroembryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 107:186-91. [PMID: 24952374 DOI: 10.1016/j.ecoenv.2014.05.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 05/15/2023]
Abstract
Synthetic pyrethroids (SPs) are among the most heavily used insecticides for residential and agricultural applications. Their residues have frequently been detected in aquatic ecosystems. Despite their high aquatic toxicity, their toxicokinetics are still unclear. In this study, the kinetics of uptake and depuration of three SPs, permethrin (PM), bifenthrin (BF) and λ-cyhalothrin (λ-CH), were determined for the first time using zebrafish eleutheroembryo assays. The diastereoisomer selectivity of PM in eleutheroembryos was further examined. The results indicated that three SPs were quickly taken up by eleutheroembryos. The bioaccumulation factors of the SPs ranged from 125.4 to 708.4. The depuration of SPs in zebrafish eleutheroembryos followed the first-order process. The elimination rate constants (k2) of SPs in eleutheroembryos ranged from 0.018 h(-1) to 0.0533 h(-1). The half-lives (t1/2) were in the range 13.0-38.5h. The diastereoisomer fraction (DF) values for PM in the eleutheroembryos estimated at different uptake and depuration times were all significantly greater than the original value (DF=0.43), indicating selective enrichment and elimination of cis-PM relative to trans-PM. These results reveal a high capacity for SP bioconcentration by zebrafish eleutheroembryos, suggesting that SPs possess a highly cumulative risk to fish.
Collapse
Affiliation(s)
- Wenqing Tu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Bin Lu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Lili Niu
- IJRC-PTS, MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chao Xu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Chunmian Lin
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Weiping Liu
- IJRC-PTS, MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
25
|
Brox S, Ritter AP, Küster E, Reemtsma T. A quantitative HPLC–MS/MS method for studying internal concentrations and toxicokinetics of 34 polar analytes in zebrafish (Danio rerio) embryos. Anal Bioanal Chem 2014; 406:4831-40. [DOI: 10.1007/s00216-014-7929-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/16/2014] [Accepted: 05/26/2014] [Indexed: 10/25/2022]
|
26
|
Histological study of adult male rat seminiferous tubules following triclosan administration and the possible protective role of pomegranate juice. ACTA ACUST UNITED AC 2014. [DOI: 10.1097/01.ehx.0000446590.49937.e9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
27
|
Gonzalo-Lumbreras R, Sanz-Landaluze J, Cámara C. Analytical performance of two miniaturised extraction methods for triclosan and methyltriclosan, in fish roe and surimi samples. Food Chem 2013; 146:141-8. [PMID: 24176325 DOI: 10.1016/j.foodchem.2013.09.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 09/06/2013] [Accepted: 09/08/2013] [Indexed: 10/26/2022]
Abstract
A new and reliable miniaturised QuEChERS-based extraction method combined with a dispersive SPE cleanup procedure for extracting triclosan and methyltriclosan from fish roe and surimi samples was proposed. The effectiveness of different extraction/partition conditions for QuEChERS method was systematically investigated, and the use of acetonitrile extraction solvent and MgSO4, PSA, C18 and Florisil as cleanup reagents was recommended in the final method. Other method based on ultrasonic extraction with ethylacetate and clean-up with SPE was also evaluated for these samples. Different polymeric and silica sorbents for clean up were tested and the combination of Florisil and PSA was finally selected. The performance of these miniaturised sample preparation methods combined with GC-MS with quadrupole detection were compared. Extraction efficiency as well as cleaning effectiveness, laboriousness and speed were taken as criteria for method evaluation. Satisfactory validation parameters, such as linearity, recovery, precision and LODs and LOQs for both developed analytical methods were obtained from fish roe and surimi samples. Finally, both methods were applied to real samples. The sensitivity of the proposed methods was good enough to ensure reliable determination of target analytes at concentration levels commonly found in this kind of samples.
Collapse
Affiliation(s)
- R Gonzalo-Lumbreras
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense Madrid, Ciudad Universitaria, 28040 Madrid, Spain.
| | | | | |
Collapse
|
28
|
El-Amrani S, Pena-Abaurrea M, Sanz-Landaluze J, Ramos L, Guinea J, Cámara C. Bioconcentration of pesticides in zebrafish eleutheroembryos (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 425:184-190. [PMID: 22464960 DOI: 10.1016/j.scitotenv.2012.02.065] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 02/20/2012] [Accepted: 02/26/2012] [Indexed: 05/31/2023]
Abstract
The feasibility of a bioaccumulation test based on the use of zebrafish eleutheroembryos as an alternative to adult-individual-based approaches for REACH application has been evaluated for three test compounds, chlorpyrifos, dicofol and atrazine. Following the OECD 305 guidelines, zebrafish eleutheroembryos (72 h after hatching, hpf) were separately exposed to the investigated pesticides at two nominal concentrations below 1% of its corresponding LC(50). The uptake experiments lasted for 48 h. Then, the exposure medium was replaced by a non-contaminated medium for depuration experiments (up to 72 h). Zebrafish eleutheroembryos (larvae 144 hpf, i.e. at the end of the depuration step) and their corresponding exposure media was sampled at ten different times during each experiment and the concentration of the investigated pesticide determined in both the organisms and in the exposure medium. The experimentally determined pesticide accumulation profiles in the eleutheroembryos demonstrated that atrazine has a very fast accumulation kinetic, reaching steady sate (SS) within 24h. Chlorpyrifos and dicofol did not reach the SS within the 48-h uptake experiments although they exhibit higher accumulations than the former pesticide. Two toxicokinetic models were used to calculate the bioconcentration factor (BCF) of the studied pesticide in zebrafish eleutheroembryos. In the former, the BCF was calculated under SS conditions (BCF(SS)). The second was used when the compounds did not reach the SS during the uptake experiment (BCF(k)). Log BCF values of 3.55 and 3.84 for chlorpyrifos; 0.6 and 1.17 for atrazine, and 3.90 for dicofol were experimentally calculated at selected exposure concentrations. These values have been compared with those reported in related bioaccumulation studies and official databases.
Collapse
Affiliation(s)
- S El-Amrani
- Department of Analytical Chemistry, Faculty of Chemistry, University Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|