1
|
Jahanban-Esfahlan A, Amarowicz R. Molecularly imprinted polymers for sensing/depleting human serum albumin (HSA): A critical review of recent advances and current challenges. Int J Biol Macromol 2024; 266:131132. [PMID: 38531529 DOI: 10.1016/j.ijbiomac.2024.131132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
Human serum albumin (HSA) is an essential biomacromolecule in the blood circulatory system because it carries numerous molecules, including fatty acids (FAs), bilirubin, metal ions, hormones, and different pharmaceuticals, and plays a significant role in regulating blood osmotic pressure. Fluctuations in HSA levels in human biofluids, particularly urine and serum, are associated with several disorders, such as elevated blood pressure, diabetes mellitus (DM), liver dysfunction, and a wide range of renal diseases. Thus, the ability to quickly and accurately measure HSA levels is important for the rapid identification of these disorders in human populations. Molecularly imprinted polymers (MIPs), well known as artificial antibodies (Abs), have been extensively used for the quantitative detection of small molecules and macromolecules, especially HSA, in recent decades. This review highlights major challenges and recent developments in the application of MIPs to detect HSA in artificial and real samples. The fabrication and application of various MIPs for the depletion of HSA are also discussed, as well as different MIP preparation approaches and strategies for overcoming obstacles that hinder the development of MIPs with high efficiency and recognition capability for HSA determination/depletion.
Collapse
Affiliation(s)
- Ali Jahanban-Esfahlan
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665813, Iran.
| | - Ryszard Amarowicz
- Division of Food Sciences, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Street Tuwima 10, 10-748 Olsztyn, Poland.
| |
Collapse
|
2
|
Karasu T, Özgür E, Uzun L. MIP-on-a-chip: Artificial receptors on microfluidic platforms for biomedical applications. J Pharm Biomed Anal 2023; 226:115257. [PMID: 36669397 DOI: 10.1016/j.jpba.2023.115257] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Lab-on-a-chip (LOC) as an alternative biosensing approach concerning cost efficiency, parallelization, ergonomics, diagnostic speed, and sensitivity integrates the techniques of various laboratory operations such as biochemical analysis, chemical synthesis, or DNA sequencing, etc. on miniaturized microfluidic single chips. Meanwhile, LOC tools based on molecularly imprinted biosensing approach permit their applications in various fields such as medical diagnostics, pharmaceuticals, etc., which are user-, and eco-friendly sensing platforms for not only alternative to the commercial competitor but also on-site detection like point-of-care measurements. In this review, we focused our attention on compiling recent pioneer studies that utilized those intriguing methodologies, the microfluidic Lab-on-a-chip and molecularly imprinting approach, and their biomedical applications.
Collapse
Affiliation(s)
- Tunca Karasu
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkiye
| | - Erdoğan Özgür
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkiye
| | - Lokman Uzun
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkiye.
| |
Collapse
|
3
|
Yang L, Luo Y, Zhou Y, Huang C, Shen X. Specific nanoantibiotics for selective removal of antibiotic-resistant bacteria: New insights in bacterial imprinting based on interfacial biomimetic mineralization. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130254. [PMID: 36356522 DOI: 10.1016/j.jhazmat.2022.130254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/28/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic resistance has been a worsening global concern and selective elimination of antibiotic-resistant bacteria (ARB) while retaining the co-existed beneficial bacteria has been essential in environmental protection, which having attracted considerable interest. In this work, by integrating the whole cell imprinting and epitope imprinting strategy, magnetic bacterial imprinted polymers (BIPs) towards ARB were synthesized with interfacial biomimetic mineralization followed by a screening process. The binding data showed that the BIPs owned highly specific affinity towards the target bacteria. Taking advantage of this specific binding ability of BIPs, a two-step selective antimicrobial approach was developed. Remarkably, the BIP nanoantibiotics (nAbts) could efficiently destroy ARB without harming the beneficial bacteria. In comparison with the non-bacterial imprinted polymers, the biocompatible BIP nAbts showed a 12.5-fold increase in the survival percentage for the beneficial bacteria in wastewater. To the best of our knowledge, this is the first time that bacterial imprinting via interfacial biomimetic mineralization was developed, and also the first report of killing ARB without harming the beneficial bacteria in wastewater. We believe that this strategy provides a new insight into the design of novel affinity materials for the selective elimination of ARB in biological treatment for environmental protection.
Collapse
Affiliation(s)
- Liuqian Yang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Yaoyu Luo
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Yikai Zhou
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Chuixiu Huang
- Department of Forensic Medicine, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China.
| | - Xiantao Shen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China.
| |
Collapse
|
4
|
Fan J, Huang C, Cheng Y, Xie C, Chen H, Peng H. Silk fibroin/calcium alginate composite modifying supermacroporous molecularly imprinted membrane synthesis for high performance on recognizing bovine hemoglobin. J Appl Polym Sci 2022. [DOI: 10.1002/app.52842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jie‐Ping Fan
- Department of Chemical Engineering Nanchang University Nanchang China
| | - Cong‐Bo Huang
- Department of Chemical Engineering Nanchang University Nanchang China
| | - Yu‐Tong Cheng
- Department of Chemical Engineering Nanchang University Nanchang China
| | - Chun‐Fang Xie
- Department of Chemical Engineering Nanchang University Nanchang China
| | - Hui‐Ping Chen
- Department of Chemical Engineering Nanchang University Nanchang China
| | - Hai‐Long Peng
- Department of Chemical Engineering Nanchang University Nanchang China
| |
Collapse
|
5
|
Preparation of C-Terminal Epitope Imprinted Particles Via Reversible Addition-Fragmentation Chain Transfer Polymerization and Zn2+ Chelating Strategy: Selective Recognition of Cytochrome c. Chromatographia 2022. [DOI: 10.1007/s10337-022-04180-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
6
|
N-terminal epitope surface imprinted particles for high selective cytochrome c recognition prepared by reversible addition- fragmentation chain transfer strategy. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02134-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
Naeem M, Khalil AB, Tariq Z, Mahmoud M. A Review of Advanced Molecular Engineering Approaches to Enhance the Thermostability of Enzyme Breakers: From Prospective of Upstream Oil and Gas Industry. Int J Mol Sci 2022; 23:ijms23031597. [PMID: 35163528 PMCID: PMC8836274 DOI: 10.3390/ijms23031597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/04/2022] Open
Abstract
During the fracture stimulation of oil and gas wells, fracturing fluids are used to create fractures and transport the proppant into the fractured reservoirs. The fracturing fluid viscosity is responsible for proppant suspension, the viscosity can be increased through the incorporation of guar polymer and cross-linkers. After the fracturing operation, the fluid viscosity is decreased by breakers for efficient oil and gas recovery. Different types of enzyme breakers have been engineered and employed to reduce the fracturing fluid′s viscosity, but thermal stability remains the major constraint for the use of enzymes. The latest enzyme engineering approaches such as direct evolution and rational design, have great potential to increase the enzyme breakers’ thermostability against high temperatures of reservoirs. In this review article, we have reviewed recently advanced enzyme molecular engineering technologies and how these strategies could be used to enhance the thermostability of enzyme breakers in the upstream oil and gas industry.
Collapse
Affiliation(s)
- Muhammad Naeem
- Department of Bioengineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia;
| | - Amjad Bajes Khalil
- Department of Bioengineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia;
- Correspondence: (A.B.K.); (M.M.)
| | - Zeeshan Tariq
- Department of Petroleum Engineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia;
| | - Mohamed Mahmoud
- Department of Petroleum Engineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia;
- Correspondence: (A.B.K.); (M.M.)
| |
Collapse
|
8
|
El-Sharif H, Patel S, Ndunda E, Reddy S. Electrochemical detection of dioctyl phthalate using molecularly imprinted polymer modified screen-printed electrodes. Anal Chim Acta 2022; 1196:339547. [DOI: 10.1016/j.aca.2022.339547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/14/2022] [Accepted: 01/22/2022] [Indexed: 11/01/2022]
|
9
|
Nahhas AF, Webster TJ. The promising use of nano-molecular imprinted templates for improved SARS-CoV-2 detection, drug delivery and research. J Nanobiotechnology 2021; 19:305. [PMID: 34615526 PMCID: PMC8492821 DOI: 10.1186/s12951-021-01032-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/10/2021] [Indexed: 12/22/2022] Open
Abstract
Molecular imprinting (MI) is a technique that creates a template of a molecule for improving complementary binding sites in terms of size and shape to a peptide, protein, bacteria, mammalian cell, or virus on soft materials (such as polymers, hydrogels, or self-assembled materials). MI has been widely investigated for over 90 years in various industries but is now focused on improved tissue engineering, regenerative medicine, drug delivery, sensors, diagnostics, therapeutics and other medical applications. Molecular targets that have been studied so far in MI include those for the major antigenic determinants of microorganisms (like bacteria or viruses) leading to innovations in disease diagnosis via solid-phase extraction separation and biomimetic sensors. As such, although not widely investigated yet, MI demonstrates much promise for improving the detection of and treatment for the current Coronavirus Disease of 2019 (COVID-2019) pandemic as well as future pandemics. In this manner, this review will introduce the numerous applications of MI polymers, particularly using proteins and peptides, and how these MI polymers can be used as improved diagnostic and therapeutic tools for COVID-19.
Collapse
Affiliation(s)
- Alaa F Nahhas
- Biochemistry Department, College of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Thomas J Webster
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, 02115, United States
| |
Collapse
|
10
|
Marfà J, Pupin RR, Sotomayor M, Pividori MI. Magnetic-molecularly imprinted polymers in electrochemical sensors and biosensors. Anal Bioanal Chem 2021; 413:6141-6157. [PMID: 34164705 DOI: 10.1007/s00216-021-03461-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022]
Abstract
Magnetic particles, as well as molecularly imprinted polymers, have revolutionized separation and bioanalytical methodologies in the 1980s due to their wide range of applications. Today, biologically modified magnetic particles are used in many scientific and technological applications and are integrated in more than 50,000 diagnostic instruments for the detection of a huge range of analytes. However, the main drawback of this material is their stability and high cost. In this work, we review recent advances in the synthesis and characterization of hybrid molecularly imprinted polymers with magnetic properties, as a cheaper and robust alternative for the well-known biologically modified magnetic particles. The main advantages of these materials are, besides the magnetic properties, the possibility to be stored at room temperature without any loss in the activity. Among all the applications, this work reviews the direct detection of electroactive analytes based on the preconcentration by using magnetic-MIP integrated on magneto-actuated electrodes, including food safety, environmental monitoring, and clinical and pharmaceutical analysis. The main features of these electrochemical sensors, including their analytical performance, are summarized. This simple and rapid method will open the way to incorporate this material in different magneto-actuated devices with no need for extensive sample pretreatment and sophisticated instruments.
Collapse
Affiliation(s)
- J Marfà
- Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - R R Pupin
- Department of Analytical Chemistry, Institute of Chemistry, State University of São Paulo (UNESP), Araraquara, SP, 14801-970, Brazil
| | - Mpt Sotomayor
- Department of Analytical Chemistry, Institute of Chemistry, State University of São Paulo (UNESP), Araraquara, SP, 14801-970, Brazil
| | - M I Pividori
- Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain. .,Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
11
|
Cubuk H, Ozbil M, Cakir Hatir P. Computational analysis of functional monomers used in molecular imprinting for promising COVID-19 detection. COMPUT THEOR CHEM 2021; 1199:113215. [PMID: 33747754 PMCID: PMC7960027 DOI: 10.1016/j.comptc.2021.113215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 11/16/2022]
Abstract
Today, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has recently caused a severe outbreak worldwide. There are still several challenges in COVID-19 diagnoses, such as limited reagents, equipment, and long turnaround times. In this research, we propose to design molecularly imprinted polymers as a novel approach for the rapid and accurate detection of SARS-CoV-2. For this purpose, we investigated molecular interactions between the target spike protein, receptor-binding domain of the virus, and the common functional monomers used in molecular imprinting by a plethora of computational analyses; sequence analysis, molecular docking, and molecular dynamics (MD) simulations. Our results demonstrated that AMPS and IA monomers gave promising results on the SARS-CoV-2 specific TEIYQAGST sequence for further analysis. Therefore, we propose an epitope approach-based synthesis route for specific recognition of SARS-CoV-2 by using AMPS and IA as functional monomers and the peptide fragment of the TEIYQAGST sequence as a template molecule.
Collapse
Affiliation(s)
- Hasan Cubuk
- Istanbul Arel University, Department of Biomedical Engineering, Bioinspired Functional Polymers and Nanomaterials Laboratory, 34537 Buyukcekmece, Istanbul, Turkey
| | - Mehmet Ozbil
- Gebze Technical University, Institute of Biotechnology, 41400 Gebze, Kocaeli, Turkey
| | - Pinar Cakir Hatir
- Istanbul Arel University, Department of Biomedical Engineering, Bioinspired Functional Polymers and Nanomaterials Laboratory, 34537 Buyukcekmece, Istanbul, Turkey
| |
Collapse
|
12
|
Dar KK, Shao S, Tan T, Lv Y. Molecularly imprinted polymers for the selective recognition of microorganisms. Biotechnol Adv 2020; 45:107640. [DOI: 10.1016/j.biotechadv.2020.107640] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/18/2020] [Accepted: 10/01/2020] [Indexed: 12/20/2022]
|
13
|
Protein Determination with Molecularly Imprinted Polymer Recognition Combined with Birefringence Liquid Crystal Detection. SENSORS 2020; 20:s20174692. [PMID: 32825278 PMCID: PMC7547379 DOI: 10.3390/s20174692] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 11/17/2022]
Abstract
Liquid crystal-based sensors offer the advantage of high sensitivity at a low cost. However, they often lack selectivity altogether or require costly and unstable biomaterials to impart this selectivity. To incur this selectivity, we herein integrated a molecularly imprinted polymer (MIP) film recognition unit with a liquid crystal (LC) in an optical cell transducer. We tested the resulting chemosensor for protein determination. We examined two different LCs, each with a different optical birefringence. That way, we revealed the influence of that parameter on the sensitivity of the (human serum albumin)-templated (MIP-HSA) LC chemosensor. The response of this chemosensor with the (MIP-HSA)-recognizing film was linear from 2.2 to 15.2 µM HSA, with a limit of detection of 2.2 µM. These values are sufficient to use the devised chemosensor for HSA determination in biological samples. Importantly, the imprinting factor (IF) of this chemosensor was appreciable, reaching IF = 3.7. This IF value indicated the predominant binding of the HSA through specific rather than nonspecific interactions with the MIP.
Collapse
|
14
|
Suravajhala R, Burri HR, Malik B. Selective Targeted Drug Delivery Mechanism via Molecular Imprinted Polymers in Cancer Therapeutics. Curr Top Med Chem 2020; 20:1993-1998. [PMID: 32568022 DOI: 10.2174/1568026620666200622150710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/21/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023]
Abstract
Artificial receptor-like structures such as molecular imprinted polymers (MIPs) are biomimetic molecules are used to replicate target specific antibody-antigen mechanism. In MIPs, selective binding of template molecule can be significantly correlated with lock and key mechanism, which play a major role in the drug delivery mechanism. The MIPs are biocompatible with high efficiency and are considered in several drug delivery and biosensor applications besides continuous and controlled drug release leading to better therapeutics. There is a need to explore the potential synthetic methods to improve MIPs with respect to the imprinting capacity in cancer therapeutics. In this review, we focus on MIPs as drug delivery mechanism in cancer and the challenges related to their synthesis and applications.
Collapse
Affiliation(s)
- Renuka Suravajhala
- Department of Chemistry, School of Basic Science, Manipal University Jaipur, Jaipur, India
| | | | - Babita Malik
- Department of Chemistry, School of Basic Science, Manipal University Jaipur, Jaipur, India
| |
Collapse
|
15
|
Yang K, Li S, Liu L, Chen Y, Zhou W, Pei J, Liang Z, Zhang L, Zhang Y. Epitope Imprinting Technology: Progress, Applications, and Perspectives toward Artificial Antibodies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902048. [PMID: 31423663 DOI: 10.1002/adma.201902048] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/17/2019] [Indexed: 06/10/2023]
Abstract
Epitope imprinting is a promising tool to generate antibody-like specific recognition sites. Recently, because of the ease of obtaining templates, the flexibility in selecting monomers, their resistance to harsh environments, and the high specificity toward targets, epitope-imprinted materials have attracted much attention in various fields, such as bioanalysis, clinical therapy, and pharmacy. Here, the discussion is focused on the current representative epitope imprinting technologies, including epitope bulk imprinting and epitope surface imprinting. Moreover, the application of epitope-imprinted materials to the recognition of peptides, proteins, and cells is reviewed. Finally, the remaining challenges arising from the intrinsic properties of epitope imprinting are discussed, and future development in the field is prospected.
Collapse
Affiliation(s)
- Kaiguang Yang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Senwu Li
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lukuan Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yuwan Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wen Zhou
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jiaqi Pei
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Zhen Liang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
16
|
Mo G, He X, Zhou C, Ya D, Feng J, Yu C, Deng B. A novel ECL sensor based on a boronate affinity molecular imprinting technique and functionalized SiO2@CQDs/AuNPs/MPBA nanocomposites for sensitive determination of alpha-fetoprotein. Biosens Bioelectron 2019; 126:558-564. [DOI: 10.1016/j.bios.2018.11.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/25/2018] [Accepted: 11/10/2018] [Indexed: 12/14/2022]
|
17
|
Zhao Z, Zhu C, Guo Q, Cai Y, Zhu X, Li B. Preparation of lysozyme-imprinted nanoparticles on polydopamine-modified titanium dioxide using ionic liquid as a stabilizer. RSC Adv 2019; 9:14974-14981. [PMID: 35516334 PMCID: PMC9064239 DOI: 10.1039/c9ra00941h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/06/2019] [Indexed: 12/18/2022] Open
Abstract
Molecular imprinting of proteins has evolved into an efficient approach for protein recognition and separation. However, maintaining the structural stability of proteins during the preparation process of molecularly imprinted polymers (MIPs) remains challenging. Ionic liquids (ILs), being capable of maintaining the stability of proteins, might enable effective imprinting and accurate recognition of proteins. In this study, lysozyme (Lyz)-imprinted titanium dioxide (TiO2) nanoparticles, TiO2@Lyz-MIPs, have been successfully prepared for selective recognition and separation of Lyz. This was achieved by the free radical polymerization of hydroxyethyl acrylate (HEA) and poly(ethylene glycol) dimethacrylate (PEGDMA) on polydopamine (PDA)-modified TiO2 nanoparticles using an IL, choline dihydrogen phosphate (chol dhp), as the stabilizer of Lyz. It was found that both PDA modification of TiO2 and the use of chol dhp as stabilizer improved the adsorption capacity of TiO2@Lyz-MIPs toward Lyz. When the concentration of HEA was 7 mg mL−1, the ratio of monomer to crosslinker was 20 : 1, and the concentration of chol dhp was 12.5 mg mL−1, the highest imprinting factor of 4.40 was achieved. TiO2@Lyz-MIPs exhibited relatively high adsorption capacity with the maximum adsorption capacity up to 120 mg g−1, which was more than four times higher than that of the non-imprinted polymers (NIPs) counterpart, TiO2@Lyz-NIPs. The adsorption rate of Lyz by TiO2@Lyz-MIPs was also much higher than that of TiO2@Lyz-NIPs. TiO2@Lyz-MIPs could successfully separate Lyz from diluted egg white, a complex mixture of proteins. Findings from this study indicate that effective recognition cavities toward Lyz were formed on the surface of Lyz-imprinted TiO2 nanoparticles prepared using IL as the template stabilizer. This approach may facilitate the development of MIPs for efficient protein recognition and separation. Molecular imprinting of proteins has evolved into an efficient approach for protein recognition and separation.![]()
Collapse
Affiliation(s)
- Zhongliang Zhao
- College of Chemistry, Chemical Engineering and Materials Science
- Orthopaedic Institute
- Medical College
- Soochow University
- Suzhou
| | - Caihong Zhu
- College of Chemistry, Chemical Engineering and Materials Science
- Orthopaedic Institute
- Medical College
- Soochow University
- Suzhou
| | - Qianping Guo
- College of Chemistry, Chemical Engineering and Materials Science
- Orthopaedic Institute
- Medical College
- Soochow University
- Suzhou
| | - Yan Cai
- College of Chemistry, Chemical Engineering and Materials Science
- Orthopaedic Institute
- Medical College
- Soochow University
- Suzhou
| | - Xuesong Zhu
- College of Chemistry, Chemical Engineering and Materials Science
- Orthopaedic Institute
- Medical College
- Soochow University
- Suzhou
| | - Bin Li
- College of Chemistry, Chemical Engineering and Materials Science
- Orthopaedic Institute
- Medical College
- Soochow University
- Suzhou
| |
Collapse
|
18
|
Ma W, An Y, Row KH. Preparation and evaluation of a green solvent-based molecularly imprinted monolithic column for the recognition of proteins by high-performance liquid chromatography. Analyst 2019; 144:6327-6333. [DOI: 10.1039/c9an01259a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A protein-based molecularly imprinted monolithic column was synthesized based on ionic liquids (ILs) and deep eutectic solvents (DESs) in a stainless steel column (50 mm × 4.6 mm id).
Collapse
Affiliation(s)
- Wanwan Ma
- Department of Chemistry and Chemical Engineering
- Inha University
- Incheon 402751
- Korea
| | - Yena An
- Department of Chemistry and Chemical Engineering
- Inha University
- Incheon 402751
- Korea
| | - Kyung Ho Row
- Department of Chemistry and Chemical Engineering
- Inha University
- Incheon 402751
- Korea
| |
Collapse
|
19
|
Tuwahatu CA, Yeung CC, Lam YW, Roy VAL. The molecularly imprinted polymer essentials: curation of anticancer, ophthalmic, and projected gene therapy drug delivery systems. J Control Release 2018; 287:24-34. [PMID: 30110614 DOI: 10.1016/j.jconrel.2018.08.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 08/10/2018] [Accepted: 08/11/2018] [Indexed: 02/06/2023]
Abstract
The development of polymeric materials as drug delivery systems has advanced from systems that rely on classical passive targeting to carriers that can sustain the precisely controlled release of payloads upon physicochemical triggers in desired microenvironment. Molecularly imprinted polymers (MIP), materials designed to capture specific molecules based on their molecular shape and charge distribution, are attractive candidates for fulfilling these purposes. In particular, drug-imprinted polymers coupled with active targeting mechanisms have been explored as potential drug delivery systems. In this review, we have curated important recent efforts in the development of drug-imprinted polymers in a variety of clinical applications, especially oncology and ophthalmology. MIP possesses properties that may complement the traditional delivery systems of these two disciplines, such as passive enhanced permeability and retention effect (EPR) in cancer tumors, and passive drug diffusion in delivering ophthalmic therapeutics. Furthermore, the prospects of MIP integration with the emerging gene therapies will be discussed.
Collapse
Affiliation(s)
- Christian Antonio Tuwahatu
- Department of Materials Science and Engineering and State Key Laboratory of Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Chi Chung Yeung
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yun Wah Lam
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Vellaisamy Arul Lenus Roy
- Department of Materials Science and Engineering and State Key Laboratory of Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
20
|
Komiyama M, Mori T, Ariga K. Molecular Imprinting: Materials Nanoarchitectonics with Molecular Information. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20180084] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Makoto Komiyama
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8577, Japan
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Taizo Mori
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Katsuhiko Ariga
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
21
|
Dabrowski M, Lach P, Cieplak M, Kutner W. Nanostructured molecularly imprinted polymers for protein chemosensing. Biosens Bioelectron 2018; 102:17-26. [DOI: 10.1016/j.bios.2017.10.045] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/04/2017] [Accepted: 10/21/2017] [Indexed: 02/08/2023]
|
22
|
Novel electro-polymerized protein-imprinted materials using Eriochrome black T: Application to BSA sensing. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.12.191] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Jetzschmann KJ, Yarman A, Rustam L, Kielb P, Urlacher VB, Fischer A, Weidinger IM, Wollenberger U, Scheller FW. Molecular LEGO by domain-imprinting of cytochrome P450 BM3. Colloids Surf B Biointerfaces 2018; 164:240-246. [PMID: 29413602 DOI: 10.1016/j.colsurfb.2018.01.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/24/2018] [Indexed: 01/16/2023]
Abstract
HYPOTHESIS Electrosynthesis of the MIP nano-film after binding of the separated domains or holo-cytochrome BM3 via an engineered anchor should result in domain-specific cavities in the polymer layer. EXPERIMENTS Both the two domains and the holo P450 BM3 have been bound prior polymer deposition via a N-terminal engineered his6-anchor to the electrode surface. Each step of MIP preparation was characterized by cyclic voltammetry of the redox-marker ferricyanide. Rebinding after template removal was evaluated by quantifying the suppression of the diffusive permeability of the signal for ferricyanide and by the NADH-dependent reduction of cytochrome c by the reductase domain (BMR). FINDINGS The working hypothesis is verified by the discrimination of the two domains by the respective MIPs: The holoenzyme P450 BM3 was ca. 5.5 times more effectively recognized by the film imprinted with the oxidase domain (BMO) as compared to the BMR-MIP or the non-imprinted polymer (NIP). Obviously, a cavity is formed during the imprinting process around the his6-tag-anchored BMR which cannot accommodate the broader BMO or the P450 BM3. The affinity of the MIP towards P450 BM3 is comparable with that to the monomer in solution. The his6-tagged P450 BM3 binds (30 percent) stronger which shows the additive effect of the interaction with the MIP and the binding to the electrode.
Collapse
Affiliation(s)
- K J Jetzschmann
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476 Potsdam, Germany
| | - A Yarman
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476 Potsdam, Germany; Faculty of Science, Molecular Biotechnology, Turkish-German University, Sahinkaya Cad. 86, 34820 Beykoz, Istanbul, Turkey
| | - L Rustam
- Institut für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - P Kielb
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - V B Urlacher
- Institute of Biochemistry, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - A Fischer
- Institut für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - I M Weidinger
- Department of Chemistry and Food Chemistry, Technische Universität Dresden, Zellescher Weg 19, 01069 Dresden, Germany
| | - U Wollenberger
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476 Potsdam, Germany
| | - F W Scheller
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476 Potsdam, Germany.
| |
Collapse
|
24
|
Yang C, Zhang Y, Cao WQ, Ji XF, Wang J, Yan YN, Zhong TL, Wang Y. Synthesis of Molecularly Imprinted Cryogels to Deplete Abundant Proteins from Bovine Serum. Polymers (Basel) 2018; 10:E97. [PMID: 30966133 PMCID: PMC6414991 DOI: 10.3390/polym10010097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 12/26/2022] Open
Abstract
Molecularly imprinted polyacrylamide cryogels were synthesized with pending templates (bovine serums of different concentrations). As the serum concentrations increased in the monomer solutions, the resulting cryogels could adsorb and deplete more proteins from serum samples. Due to the addition of vinyltriethoxysilane (VTEOS) in the prepolymerizing solutions, the polymers came as organic⁻inorganic hybrid materials. It endued the silica-modified amphoteric polyacrylamide cryogels with improved mechanical strengths. Scanning electron micrography (SEM), Infrared (IR) spectrometry, thermogravimetry-differential thermal analysis (TG-DTA), and X-ray photoelectron spectroscopy (XPS) were carried out to characterize these macroporous polymers. Amphoteric cryogels proved to be favorable materials recognizing and binding proteins. When used as liquid chromatography stationary phases, they were capable of simultaneously adsorbing various serum proteins. Electrophoresis showed that abundant proteins were gradually depleted by the cryogels prepared from increased ratios of bovine serums in the monomer solutions. As abundant proteins are always imprinted first, this sample per se imprinting method provides an effective and convenient way to deplete abundant proteins from complex samples such as serums, meanwhile concentrating and collecting scarce species therein.
Collapse
Affiliation(s)
- Chun Yang
- School of Chemistry & Chemical Engineering, Yangzhou University, 180 Siwangting RD, Yangzhou 225002, China.
| | - Yan Zhang
- School of Chemistry & Chemical Engineering, Yangzhou University, 180 Siwangting RD, Yangzhou 225002, China.
| | - Wei-Qin Cao
- School of Chemistry & Chemical Engineering, Yangzhou University, 180 Siwangting RD, Yangzhou 225002, China
| | - Xiao-Feng Ji
- School of Chemistry & Chemical Engineering, Yangzhou University, 180 Siwangting RD, Yangzhou 225002, China.
| | - Jian Wang
- School of Chemistry & Chemical Engineering, Yangzhou University, 180 Siwangting RD, Yangzhou 225002, China.
| | - Ya-Nan Yan
- School of Chemistry & Chemical Engineering, Yangzhou University, 180 Siwangting RD, Yangzhou 225002, China.
| | - Tao-Lin Zhong
- School of Chemistry & Chemical Engineering, Yangzhou University, 180 Siwangting RD, Yangzhou 225002, China
| | - Yu Wang
- School of Chemistry & Chemical Engineering, Yangzhou University, 180 Siwangting RD, Yangzhou 225002, China.
| |
Collapse
|
25
|
Santos ART, Moreira FTC, Helguero LA, Sales MGF. Antibody Biomimetic Material Made of Pyrrole for CA 15-3 and Its Application as Sensing Material in Ion-Selective Electrodes for Potentiometric Detection. BIOSENSORS 2018; 8:E8. [PMID: 29351206 PMCID: PMC5872056 DOI: 10.3390/bios8010008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/05/2018] [Accepted: 01/10/2018] [Indexed: 01/15/2023]
Abstract
This work reports a very simple approach for creating a synthetic antibody against any protein of interest and its application in potentiometric transduction. The selected protein was Breast Cancer Antigen (CA 15-3), which is implicated in breast cancer disease and used to follow-up breast cancer patients during treatment. The new material with antibody-like properties was obtained by molecular-imprinting technology, prepared by electropolymerizing pyrrol (Py, 5.0 × 10-3 mol/L) around Breast Cancer Antigen (CA 15-3) (100 U/mL) on a fluorine doped tin oxide (FTO) conductive glass support. Cyclic voltammetry was employed for this purpose. All solutions were prepared in 4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer, of pH 6.5. The biomarker was removed from the imprinted sites by chemical action of ethanol. The biomimetic material was then included in poly vinyl chloride (PVC) plasticized membranes to act as potentiometric ionophore, having or not a lipophilic ionic additive added. The corresponding selective electrodes were evaluated by calibration curves (in buffer and in synthetic serum) and by selectivity testing. The best analytical performance was obtained by selective electrodes including the plastic antibody and no lipophilic additive. The average limits of detection were 1.07 U/mL of CA 15-3, with a linear response from 1.44 to 13.2 U/mL and a cationic slope of 44.5 mV/decade. Overall, the lipophilic additives yielded no advantage to the overall potentiometric performance. The application of the MIP-based electrodes to the analysis of spiked synthetic serum showed precise and accurate results.
Collapse
Affiliation(s)
- Alexandra R T Santos
- BioMark/CINTESIS@ISEP, Instituto Superior de Engenharia do Instituto Politécnico do Porto, 4249-015 Porto, Portugal.
- Departamento de Ciências Médicas, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - Felismina T C Moreira
- BioMark/CINTESIS@ISEP, Instituto Superior de Engenharia do Instituto Politécnico do Porto, 4249-015 Porto, Portugal.
| | - Luísa A Helguero
- Departamento de Ciências Médicas, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - M Goreti F Sales
- BioMark/CINTESIS@ISEP, Instituto Superior de Engenharia do Instituto Politécnico do Porto, 4249-015 Porto, Portugal.
| |
Collapse
|
26
|
Yang F, Deng D, Dong X, Lin S. Preparation of an epitope-imprinted polymer with antibody-like selectivity for beta2-microglobulin and application in serum sample analysis with a facile method of on-line solid-phase extraction coupling with high performance liquid chromatography. J Chromatogr A 2017; 1494:18-26. [DOI: 10.1016/j.chroma.2017.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/10/2017] [Accepted: 03/07/2017] [Indexed: 10/20/2022]
|
27
|
Luo J, Huang J, Wu Y, Sun J, Wei W, Liu X. Synthesis of hydrophilic and conductive molecularly imprinted polyaniline particles for the sensitive and selective protein detection. Biosens Bioelectron 2017; 94:39-46. [PMID: 28249205 DOI: 10.1016/j.bios.2017.02.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/14/2017] [Accepted: 02/22/2017] [Indexed: 12/20/2022]
Abstract
In this work, a novel kind of water-dispersible molecular imprinted conductive polyaniline particles was prepared through a facile and efficient macromolecular co-assembly of polyaniline with amphiphilic copolymer, and applied as the molecular recognition element to construct protein electrochemical sensor. In our strategy, an amphiphilic copolymer P(AMPS-co-St) was first synthesized using 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and styrene (St) as monomer, which could co-assemble with PANI in aqueous solution to generate PANI particles driven by the electrostatic interaction. During this process, ovalbumin (OVA) as template protein was added and trapped into the PANI NPs particles owing to their interactions, resulting in the formation of molecular imprinted polyaniline (MIP-PANI) particles. When utilizing the MIP-PANI particles as recognition element, the resultant imprinted PANI sensor not only exhibited good selectivity toward template protein (the imprinting factor α is 5.31), but also a wide linear range over OVA concentration from 10-11 to 10-6mgmL-1 with a significantly lower detection limit of 10-12mgmL-1, which outperformed most of reported OVA detecting methods. In addition, an ultrafast response time of less than 3min has also been demonstrated. The superior performance is ascribed to the water compatibility, large specific surface area of PANI particles and the electrical conductivity of PANI which provides a direct path for the conduction of electrons from the imprinting sites to the electrode surface. The outstanding sensing performance combined with its facile, quick, green preparation procedure as well as low production cost makes the MIP-PANI particles attractive in specific protein recognition and sensing.
Collapse
Affiliation(s)
- Jing Luo
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Jing Huang
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yunan Wu
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jun Sun
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Wei
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoya Liu
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
28
|
Gravimetric Viral Diagnostics: QCM Based Biosensors for Early Detection of Viruses. CHEMOSENSORS 2017. [DOI: 10.3390/chemosensors5010007] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Jetzschmann KJ, Zhang X, Yarman A, Wollenberger U, Scheller FW. Label-Free MIP Sensors for Protein Biomarkers. SPRINGER SERIES ON CHEMICAL SENSORS AND BIOSENSORS 2017. [DOI: 10.1007/5346_2017_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Liu D, Ulbricht M. A highly selective protein adsorber via two-step surface-initiated molecular imprinting utilizing a multi-functional polymeric scaffold on a macroporous cellulose membrane. RSC Adv 2017. [DOI: 10.1039/c6ra28403e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Protein-imprinted cellulose membranes with tailored binding selectivity have been prepared by two-step surface grafting based on an orthogonal photochemical initiation.
Collapse
Affiliation(s)
- Dejing Liu
- Lehrstuhl für Technische Chemie II
- Universität Duisburg-Essen
- 45141 Essen
- Germany
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II
- Universität Duisburg-Essen
- 45141 Essen
- Germany
| |
Collapse
|
31
|
Xu X, Guo P, Luo Z, Ge Y, Zhou Y, Chang R, Du W, Chang C, Fu Q. Preparation and characterization of surface molecularly imprinted films coated on multiwall carbon nanotubes for recognition and separation of lysozyme with high binding capacity and selectivity. RSC Adv 2017. [DOI: 10.1039/c6ra28063c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
32
|
Okutan E, Tümay SO, Yeşilot S. Colorimetric Fluorescent Sensors for Hemoglobin Based on BODIPY Dyes. J Fluoresc 2016; 26:2333-2343. [DOI: 10.1007/s10895-016-1929-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/26/2016] [Indexed: 12/20/2022]
|
33
|
YANG C, ZHOU XL, LIU YR, ZHANG Y, WANG J, TIAN LL, YAN YN. Extensive Imprinting Adaptability of Polyacrylamide-based Amphoteric Cryogels Against Protein Molecules. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1016/s1872-2040(16)60954-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Menger M, Yarman A, Erdőssy J, Yildiz HB, Gyurcsányi RE, Scheller FW. MIPs and Aptamers for Recognition of Proteins in Biomimetic Sensing. BIOSENSORS 2016; 6:E35. [PMID: 27438862 PMCID: PMC5039654 DOI: 10.3390/bios6030035] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/04/2016] [Accepted: 07/11/2016] [Indexed: 12/12/2022]
Abstract
Biomimetic binders and catalysts have been generated in order to substitute the biological pendants in separation techniques and bioanalysis. The two major approaches use either "evolution in the test tube" of nucleotides for the preparation of aptamers or total chemical synthesis for molecularly imprinted polymers (MIPs). The reproducible production of aptamers is a clear advantage, whilst the preparation of MIPs typically leads to a population of polymers with different binding sites. The realization of binding sites in the total bulk of the MIPs results in a higher binding capacity, however, on the expense of the accessibility and exchange rate. Furthermore, the readout of the bound analyte is easier for aptamers since the integration of signal generating labels is well established. On the other hand, the overall negative charge of the nucleotides makes aptamers prone to non-specific adsorption of positively charged constituents of the sample and the "biological" degradation of non-modified aptamers and ionic strength-dependent changes of conformation may be challenging in some application.
Collapse
Affiliation(s)
- Marcus Menger
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, Potsdam D-14476, Germany.
| | - Aysu Yarman
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 25-26, Potsdam D-14476, Germany.
- Turkish-German University, Faculty of Science, Molecular Biotechnology, Sahinkaya Cad. No. 86, Bekoz, Istanbul 34820, Turkey.
| | - Júlia Erdőssy
- MTA-BME "Lendület" Chemical Nanosensors Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, Budapest H-1111, Hungary.
| | - Huseyin Bekir Yildiz
- Department of Materials Science and Nanotechnology Engineering, KTO Karatay University, Konya 42020, Turkey.
| | - Róbert E Gyurcsányi
- MTA-BME "Lendület" Chemical Nanosensors Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, Budapest H-1111, Hungary.
| | - Frieder W Scheller
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, Potsdam D-14476, Germany.
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 25-26, Potsdam D-14476, Germany.
| |
Collapse
|
35
|
Erdőssy J, Horváth V, Yarman A, Scheller FW, Gyurcsányi RE. Electrosynthesized molecularly imprinted polymers for protein recognition. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.12.018] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Li S, Yang K, Deng N, Min Y, Liu L, Zhang L, Zhang Y. Thermoresponsive Epitope Surface-Imprinted Nanoparticles for Specific Capture and Release of Target Protein from Human Plasma. ACS APPLIED MATERIALS & INTERFACES 2016; 8:5747-5751. [PMID: 26906290 DOI: 10.1021/acsami.5b11415] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Among various artificial antibodies, epitope imprinted polymer has been paid increasingly attention. To modulate the "adsorption and release" behavior by environment stimuli, N-isopropylacrylamide, was adopted to fabricate the thermoresponsive epitope imprinted sites. The prepared imprinted materials could adsorb 46.6 mg/g of target protein with the imprinting factor of 4.0. The template utilization efficiency could reach as high as 8.21%. More importantly, in the real sample, the materials could controllably capture the target protein from the human plasma at 45 °C and release it at 4 °C, which demonstrated the "on-demand" application potentials of such materials in the biomolecule recognition field.
Collapse
Affiliation(s)
- Senwu Li
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Kaiguang Yang
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Nan Deng
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yi Min
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Lukuan Liu
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
- University of Chinese Academy of Sciences , Beijing 100049, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology , Dalian 116024, China
| | - Lihua Zhang
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Yukui Zhang
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| |
Collapse
|
37
|
Quantum-dots-encoded-microbeads based molecularly imprinted polymer. Biosens Bioelectron 2016; 77:886-93. [DOI: 10.1016/j.bios.2015.10.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 09/04/2015] [Accepted: 10/09/2015] [Indexed: 11/20/2022]
|
38
|
Yang X, Tang Y, Alt RR, Xie X, Li F. Emerging techniques for ultrasensitive protein analysis. Analyst 2016; 141:3473-81. [PMID: 26898911 DOI: 10.1039/c6an00059b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Many important biomarkers for devastating diseases and biochemical processes are proteins present at ultralow levels. Traditional techniques, such as enzyme-linked immunosorbent assays (ELISA), mass spectrometry, and protein microarrays, are often not sensitive enough to detect proteins with concentrations below the picomolar level, thus requiring the development of analytical techniques with ultrahigh sensitivities. In this review, we highlight the recent advances in developing novel techniques, sensors, and assays for ultrasensitive protein analysis. Particular attention will be focused on three classes of signal generation and/or amplification mechanisms, including the uses of nanomaterials, nucleic acids, and digital platforms.
Collapse
Affiliation(s)
- Xiaolong Yang
- Department of Chemistry and Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada.
| | | | | | | | | |
Collapse
|
39
|
Molecularly imprinted plasmonic nanosensor for selective SERS detection of protein biomarkers. Biosens Bioelectron 2016; 80:433-441. [PMID: 26874111 DOI: 10.1016/j.bios.2016.01.092] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/29/2016] [Accepted: 01/31/2016] [Indexed: 11/21/2022]
Abstract
Molecularly imprinted plasmonic nanosensor has been prepared via the rational design of an ultrathin polymer layer on the surface of gold nanorods imprinted with the target protein. This nanosensor enabled selective fishing-out of the target protein biomarker even from a complex real sample such as human serum. Sensitive SERS detection of the protein biomarkers with a strong Raman enhancement was achieved by formation of protein imprinted gold nanorods aggregates, stacking of protein imprinted gold nanorods onto a glass plate, or self-assembly of protein imprinted gold nanorods into close-packed array. High specificity and sensitivity of this method were demonstrated with a detection limit of at least 10(-8)mol/L for the target protein. This could provide a promising alternative for the currently used immunoassays and fluorescence detection, and offer an ultrasensitive, non-destructive, and label-free technique for clinical diagnosis applications.
Collapse
|
40
|
Li S, Yang K, Zhao B, Li X, Liu L, Chen Y, Zhang L, Zhang Y. Epitope imprinting enhanced IMAC (EI-IMAC) for highly selective purification of His-tagged protein. J Mater Chem B 2016; 4:1960-1967. [DOI: 10.1039/c5tb02505b] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Selectivity of epitope imprinted sites is introduced on the IMAC surface through epitope surface imprinting. The obtained epitope imprinting enhanced IMAC (EI-IMAC) could purify His-tagged proteins with high selectivity without any major interference from the host proteins.
Collapse
Affiliation(s)
- Senwu Li
- National Chromatographic R. & A. Center
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Kaiguang Yang
- National Chromatographic R. & A. Center
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Baofeng Zhao
- National Chromatographic R. & A. Center
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Xiao Li
- National Chromatographic R. & A. Center
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Lukuan Liu
- National Chromatographic R. & A. Center
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Yuanbo Chen
- National Chromatographic R. & A. Center
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Lihua Zhang
- National Chromatographic R. & A. Center
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Yukui Zhang
- National Chromatographic R. & A. Center
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| |
Collapse
|
41
|
Yang X, Dong X, Zhang K, Yang F, Guo Z. A molecularly imprinted polymer as an antibody mimic with affinity for lysine acetylated peptides. J Mater Chem B 2016; 4:920-928. [DOI: 10.1039/c5tb02620b] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Molecularly imprinted polymer with affinity for acetylated lysines prepared by the combination of epitope and surface-confined imprinting strategy.
Collapse
Affiliation(s)
- Xu Yang
- College of Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071
- China
| | - Xiangchao Dong
- College of Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071
- China
| | - Kai Zhang
- Department of Biochemistry and Molecular Biology & Tianjin Key Laboratory of Medical Epigenetics
- Tianjin Medical University
- Tianjin 300070
- China
| | - Fangfang Yang
- College of Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071
- China
| | - Zhenchang Guo
- Department of Biochemistry and Molecular Biology & Tianjin Key Laboratory of Medical Epigenetics
- Tianjin Medical University
- Tianjin 300070
- China
| |
Collapse
|
42
|
Tang AN, Duan L, Liu M, Dong X. An epitope imprinted polymer with affinity for kininogen fragments prepared by metal coordination interaction for cancer biomarker analysis. J Mater Chem B 2016; 4:7464-7471. [DOI: 10.1039/c6tb02215d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A MIP with affinity for kininogen fragments was synthesized by epitope imprinting for biomarker analysis in serum.
Collapse
Affiliation(s)
- An-na Tang
- Research Centre for Analytical Sciences
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- Collaborative Innovation Center of Chemical Science and Engineering
- College of Chemistry
- Nankai University
| | - Lanping Duan
- Research Centre for Analytical Sciences
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- Collaborative Innovation Center of Chemical Science and Engineering
- College of Chemistry
- Nankai University
| | - Meijiao Liu
- Research Centre for Analytical Sciences
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- Collaborative Innovation Center of Chemical Science and Engineering
- College of Chemistry
- Nankai University
| | - Xiangchao Dong
- Research Centre for Analytical Sciences
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- Collaborative Innovation Center of Chemical Science and Engineering
- College of Chemistry
- Nankai University
| |
Collapse
|
43
|
Ertürk G, Mattiasson B. From imprinting to microcontact imprinting-A new tool to increase selectivity in analytical devices. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1021:30-44. [PMID: 26739371 DOI: 10.1016/j.jchromb.2015.12.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/14/2015] [Indexed: 12/18/2022]
Abstract
Molecular imprinting technology has been successfully applied to small molecular templates but a slow progress has been made in macromolecular imprinting owing to the challenges in natural properties of macromolecules, especially proteins. In this review, the macromolecular imprinting approaches are discussed with examples from recent publications. A new molecular imprinting strategy, microcontact imprinting is highlighted with its recent applications.
Collapse
Affiliation(s)
- Gizem Ertürk
- Hacettepe University, Department of Biology, Ankara, Turkey
| | - Bo Mattiasson
- Department of Biotechnology, Lund University, Lund, Sweden; CapSenze HB, Medicon Village, Lund, Sweden.
| |
Collapse
|
44
|
Li H, Li D. Preparation of a pipette tip-based molecularly imprinted solid-phase microextraction monolith by epitope approach and its application for determination of enkephalins in human cerebrospinal fluid. J Pharm Biomed Anal 2015; 115:330-8. [DOI: 10.1016/j.jpba.2015.07.033] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/25/2015] [Accepted: 07/22/2015] [Indexed: 12/11/2022]
|
45
|
Li Q, Yang K, Li S, Liu L, Zhang L, Liang Z, Zhang Y. Preparation of surface imprinted core-shell particles via a metal chelating strategy: specific recognition of porcine serum albumin. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1640-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
Vlakh EG, Korzhikov VA, Hubina AV, Tennikova TB. Molecular imprinting: a tool of modern chemistry for the preparation of highly selective monolithic sorbents. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4501] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Kashefi Mofrad SMR, Naeimpoor F, Hejazi P, Nematollahzadeh A. Synthesis of lysozyme imprinted column with macroporous structure and enhanced selectivity: Utilization of cryogelation technique and electrostatic functional monomers. J Appl Polym Sci 2015. [DOI: 10.1002/app.42880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Seyed Mohammad Reza Kashefi Mofrad
- Biotechnology Research Laboratory, School of Chemical Engineering; Iran University of Science and Technology; P.O. Box 16846-13114 Tehran Iran
| | - Fereshteh Naeimpoor
- Biotechnology Research Laboratory, School of Chemical Engineering; Iran University of Science and Technology; P.O. Box 16846-13114 Tehran Iran
| | - Parisa Hejazi
- Biotechnology Research Laboratory, School of Chemical Engineering; Iran University of Science and Technology; P.O. Box 16846-13114 Tehran Iran
| | - Ali Nematollahzadeh
- Chemical Engineering Department; University of Mohaghegh Ardabili; Ardabil Iran
| |
Collapse
|
48
|
Cieplak M, Szwabinska K, Sosnowska M, Chandra BKC, Borowicz P, Noworyta K, D'Souza F, Kutner W. Selective electrochemical sensing of human serum albumin by semi-covalent molecular imprinting. Biosens Bioelectron 2015; 74:960-6. [PMID: 26258876 DOI: 10.1016/j.bios.2015.07.061] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/10/2015] [Accepted: 07/26/2015] [Indexed: 11/27/2022]
Abstract
We devised and prepared a conducting molecularly imprinted polymer (MIP) for human serum albumin (HSA) determination using semi-covalent imprinting. The bis(2,2'-bithien-5-yl)methane units constituted the MIP backbone. This MIP was deposited as a thin film on an Au electrode by oxidative potentiodynamic electropolymerization to fabricate an electrochemical chemosensor. The HSA template imprinting, and then its releasing from the MIP was confirmed by the differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS), XPS, and PM-IRRAS measurements as well as by AFM imaging. Semi-covalent imprinting provided a very well defined locations of recognition sites in the MIP molecular cavities. These sites populated the imprinted cavities or the MIP surface only. The DPV and EIS response of the MIP film coated electrode to the HSA analyte was linear in the range of 0.8 to 20 and 4 to 80 µg/mL HSA, respectively, with the limit of detection of 16.6 and 800 ng/mL, respectively. The impressively high imprinting factor reached, exceeding 20, strongly confirmed that semi-covalent imprinting resulted in formation of a large number of very well defined molecular cavities with high affinity to the HSA molecules. The MIP selectivity against low-(molecular weight) interferences, common for physiological fluids, such as blood and urea, was very high. There was no response to the presence of these interferences at concentrations encountered in the samples analyzed. Moreover, the chemosensor selectivity to the myoglobin and cytochrome c interferences was excellent while that to lysozyme was slightly lower but still high. The chemosensor was useful for determination of abnormal HSA concentration in a control blood serum.
Collapse
Affiliation(s)
- Maciej Cieplak
- Institute of Physical Chemistry, Polish Academy of Sciences (IPC PAS), Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Katarzyna Szwabinska
- Institute of Physical Chemistry, Polish Academy of Sciences (IPC PAS), Kasprzaka 44/52, 01-224 Warsaw, Poland; Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Marta Sosnowska
- Institute of Physical Chemistry, Polish Academy of Sciences (IPC PAS), Kasprzaka 44/52, 01-224 Warsaw, Poland; Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA
| | - Bikram K C Chandra
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA
| | - Pawel Borowicz
- Institute of Physical Chemistry, Polish Academy of Sciences (IPC PAS), Kasprzaka 44/52, 01-224 Warsaw, Poland; Institute of Electron Technology, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Krzysztof Noworyta
- Institute of Physical Chemistry, Polish Academy of Sciences (IPC PAS), Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry, Polish Academy of Sciences (IPC PAS), Kasprzaka 44/52, 01-224 Warsaw, Poland; Faculty of Mathematics and Natural Sciences, School of Science, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-815 Warsaw, Poland
| |
Collapse
|
49
|
Tang P, Zhang H, Huo J, Lin X. Super-Paramagnetic Nanoparticles by Surface Imprinting on Graphene Oxide Modified Iron (II, III) with Application for the Determination of Ovalbumin by Absorption Spectroscopy. ANAL LETT 2015. [DOI: 10.1080/00032719.2015.1033721] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
50
|
Çulha S, Armutcu C, Uzun L, Şenel S, Denizli A. Synthesis of l-lysine imprinted cryogels for immunoglobulin G adsorption. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 52:315-24. [DOI: 10.1016/j.msec.2015.03.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 01/25/2015] [Accepted: 03/23/2015] [Indexed: 11/24/2022]
|