1
|
Zhang Y, Li Q, Zhang B. Application of ELISA in Cultural Heritage: Recent Advances and Challenges. Crit Rev Anal Chem 2024:1-11. [PMID: 39012660 DOI: 10.1080/10408347.2024.2379853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Organic residue analyses have long been the primary focus and challenge in the fields of scientific archaeology and cultural heritage. Enzyme-linked immunosorbent assay (ELISA) has emerged as a valuable method for detecting organic residues owing to its high sensitivity and specificity. Organic components have been observed within four categories of archaeological artifacts: mortars, adhesives, animal and plant remains, and daily use artifacts. Therefore, in this article, we critically analyzed the advantages and limitations of ELISA in detecting organic residues by tracking its recent application in the abovementioned categories. The current focus of ELISA applications is on the preparation of customized antibodies, development of multicomponent detection methods, and meeting on-site identification demands. Additionally, understanding organic residue degradation mechanisms and the proper handling of archaeological samples are also key factors in these applications. Integration of ELISA with biomolecular science and electrochemistry has allowed the development of comprehensive detection and analyses. In the future, ELISA will be capable of handling more complex and diverse analyses, revealing highly intricate information from archaeological samples.
Collapse
Affiliation(s)
- Yufan Zhang
- Department of Cultural Heritage and Museology, Zhejiang University, Hangzhou, PR China
| | - Qiang Li
- Department of Cultural Heritage and Museology, Zhejiang University, Hangzhou, PR China
| | - Bingjian Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, PR China
| |
Collapse
|
2
|
Gaetani C, Gheno G, Borroni M, De Wael K, Moretto LM, Ugo P. Nanoelectrode ensemble immunosensing for the electrochemical identification of ovalbumin in works of art. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Comparison of analytical tools appropriate for identification of proteinaceous additives in historical mortars. Anal Bioanal Chem 2017; 410:189-200. [PMID: 29143879 DOI: 10.1007/s00216-017-0709-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/28/2017] [Accepted: 10/12/2017] [Indexed: 10/18/2022]
Abstract
Natural organic additives such as eggs, lard, resins, and oils have been added to mortars since ancient times, because the ancient builders knew of their positive effect on the mortar quality. The tradition of adding organic materials to mortars was commonly handed down only verbally for thousands years. However, this practice disappeared in the nineteenth century, when the usage of modern materials started. Today, one of the most recent topics in the industry of building materials is the reusing of natural organic materials and searching for the forgotten ancient recipes. The research of the old technological approaches involves currently the most advanced analytical techniques and methods. This paper is focussed on testing the possibility of identification of proteinaceous additives in historical mortars and model mortar samples containing blood, bone glue, curd, eggs and gelatine, by Fourier transform infrared (FTIR) and Raman spectroscopy, gas chromatography - mass spectrometry (GC-MS), matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF MS), liquid chromatography-electrospray ionisation-quadrupole-time of flight mass spectrometry (LC-ESI-Q-TOF MS) and enzyme-linked immunosorbent assay (ELISA). All these methods were applied to the mortar sample taken from the interior of the medieval (sixteenth century) castle in Namest nad Oslavou in the Czech Republic and their comparison contributed to the rough estimation of the protein additive content in the mortar. The obtained results demonstrate that only LC-ESI-Q-TOF MS, MALDI-TOF MS and ELISA have the sufficiently low detection limits that enable the reliable identification of collagens in historical mortars. Graphical abstract Proteomics analyses of historical mortars.
Collapse
|
4
|
You Q, Liu M, Liu Y, Zheng H, Hu Z, Zhou Y, Wang B. Lanthanide-Labeled Immunochromatographic Strip Assay for the On-Site Identification of Ancient Silk. ACS Sens 2017; 2:569-575. [PMID: 28723195 DOI: 10.1021/acssensors.7b00086] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The on-site identification of ancient silks has long been a key challenge in archeology. Therefore, a rapid, cost-effective, sensitive analytical approach is highly desirable. In this paper, a lanthanide-labeled immunochromatographic strip which is suitable for the on-site identification of ancient silks is described. Compared with the conventional colloidal gold-based immunochromatographic strip, this strip shows much higher analytical sensitivity and better quantitative discrimination. The limit of detection (LOD) of the strip for silk fibroin (SF) was calculated as 8.09 ng/mL, approximately 185 times lower than that of the colloidal gold-based immunochromatographic strip. No cross-reactions with other possible interfering antigens were observed. Moreover, the strip also shows good reproducibility, with a mean recovery of 94.15-102.55% and coefficient of variation of 5.22-17.57% in the repeated tests. Based on the advantages of portability and cost-effectiveness, as well as sensitivity, specificity, and reproducibility, the lanthanide-labeled immunochromatographic strip is a promising tool for on-site detection of ancient relics in archeological fieldwork.
Collapse
Affiliation(s)
| | | | | | - Hailing Zheng
- Key
Scientific Research Base of Textile Conservation, State Administration
for Cultural Heritage, China National Silk Museum, Hangzhou 310002, China
| | | | - Yang Zhou
- Key
Scientific Research Base of Textile Conservation, State Administration
for Cultural Heritage, China National Silk Museum, Hangzhou 310002, China
| | | |
Collapse
|
5
|
Manfredi M, Barberis E, Gosetti F, Conte E, Gatti G, Mattu C, Robotti E, Zilberstein G, Koman I, Zilberstein S, Marengo E, Righetti PG. Method for Noninvasive Analysis of Proteins and Small Molecules from Ancient Objects. Anal Chem 2017; 89:3310-3317. [DOI: 10.1021/acs.analchem.6b03722] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marcello Manfredi
- Dipartimento
di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121, Alessandria, Italy
- ISALIT, Via G. Bovio 6, 28100, Novara, Novara, Italy
| | - Elettra Barberis
- Dipartimento
di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121, Alessandria, Italy
- ISALIT, Via G. Bovio 6, 28100, Novara, Novara, Italy
| | - Fabio Gosetti
- Dipartimento
di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121, Alessandria, Italy
| | | | - Giorgio Gatti
- Dipartimento
di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121, Alessandria, Italy
| | - Clara Mattu
- Politecnico di Torino - sede di Alessandria, Viale T. Michel, 5 15121 Alessandria, Italy
| | - Elisa Robotti
- Dipartimento
di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121, Alessandria, Italy
| | | | - Igor Koman
- Translational
Medicine Institute, Ariel University, Ariel, 40700 Israel
| | | | - Emilio Marengo
- Dipartimento
di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, 15121, Alessandria, Italy
| | - Pier Giorgio Righetti
- Department
of Chemistry, Materials and Chemical Engineering “‘Giulio Natta”’, Politecnico di Milano, Via Mancinelli 7, Milano 20131, Italy
| |
Collapse
|
6
|
Electrochemical Immunosensor for Detection of IgY in Food and Food Supplements. CHEMOSENSORS 2017. [DOI: 10.3390/chemosensors5010010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Zotta T, Tabanelli G, Montanari C, Ianniello R, Parente E, Gardini F, Ricciardi A. Tween 80 and respiratory growth affect metabolite production and membrane fatty acids inLactobacillus caseiN87. J Appl Microbiol 2017; 122:759-769. [DOI: 10.1111/jam.13373] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 11/08/2016] [Accepted: 12/05/2016] [Indexed: 12/28/2022]
Affiliation(s)
- T. Zotta
- Istituto di Scienze dell'Alimentazione-CNR; Avellino Italy
| | - G. Tabanelli
- Centro Interdipartimentale di Ricerca Industriale Agroalimentare; Università degli Studi di Bologna; Sede di Cesena Italy
| | - C. Montanari
- Centro Interdipartimentale di Ricerca Industriale Agroalimentare; Università degli Studi di Bologna; Sede di Cesena Italy
| | - R.G. Ianniello
- Scuola di Scienze Agrarie; Forestali; Alimentari e Ambientali; Università degli Studi della Basilicata; Potenza Italy
| | - E. Parente
- Dipartimento di Scienze; Università degli Studi della Basilicata; Potenza Italy
| | - F. Gardini
- Centro Interdipartimentale di Ricerca Industriale Agroalimentare; Università degli Studi di Bologna; Sede di Cesena Italy
- Dipartimento di Scienze e Tecnologie Agroalimentari; Alma Mater Studiorum; Università degli Studi di Bologna; Cesena Italy
| | - A. Ricciardi
- Scuola di Scienze Agrarie; Forestali; Alimentari e Ambientali; Università degli Studi della Basilicata; Potenza Italy
| |
Collapse
|
8
|
Wu M, Zhang B, Sun G, Jiang L. Determination of lacquer contained in samples of cultural relics by enzyme-linked immunosorbent assay. NEW J CHEM 2017. [DOI: 10.1039/c7nj00831g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As an environmentally friendly natural polymer material, lacquer is durable, anti-bacterial, corrosion-resistant and decorative.
Collapse
Affiliation(s)
- Meng Wu
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| | - Bingjian Zhang
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
- Department of Cultural Heritage and Museology
| | - Guoping Sun
- Zhejiang Provincial Institute of Antiquity and Archaeology
- Hangzhou 310014
- China
| | - Leping Jiang
- Zhejiang Provincial Institute of Antiquity and Archaeology
- Hangzhou 310014
- China
| |
Collapse
|
9
|
Cartechini L, Palmieri M, Vagnini M, Pitzurra L. Immunochemical Methods Applied to Art-Historical Materials: Identification and Localization of Proteins by ELISA and IFM. Top Curr Chem (Cham) 2016; 374:5. [PMID: 27572988 DOI: 10.1007/s41061-015-0006-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/08/2015] [Indexed: 12/30/2022]
Abstract
Despite the large diffusion of natural organic substances in art-historical materials, their characterization presents many challenges due to the chemical complexity and instability with respect to degradation processes. Among natural products, proteins have been largely used in the past as binders but also as adhesives or additives in coating layers. Nevertheless, biological identification of proteins in art-historical objects is one of the most recent achievements obtained in heritage science thanks to the development of specifically tailored bio-analytical strategies. In the context of this active emerging discipline, immunological methods stand out for sensitivity, specificity and versatility for both protein recognition and localization in micro-samples. Furthermore, the growing use of immunological techniques for advanced diagnostics and clinical applications ensures continuous improvement in their analytical performance. Considering such, this review provides an overview of the most recent applications of enzyme linked immunosorbent assay and immunofluorescence microscopy techniques in the field of heritage materials. Specifically, the main strengths and potentials of the two techniques as well as their limits and drawbacks are presented and discussed herein.
Collapse
Affiliation(s)
- Laura Cartechini
- Isitituto di Scienze e Tecnologie Molecolari, ISTM-CNR, 06123, Perugia, Italy.
| | - Melissa Palmieri
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123, Perugia, Italy.,Dipartimento di Medicina Sperimentale, Università degli Studi di Perugia, 06132, Perugia, Italy
| | - Manuela Vagnini
- Laboratorio di Diagnostica per i Beni Culturali di Spoleto, 06049, Spoleto, Italy
| | - Lucia Pitzurra
- Dipartimento di Medicina Sperimentale, Università degli Studi di Perugia, 06132, Perugia, Italy
| |
Collapse
|
10
|
Dallongeville S, Garnier N, Rolando C, Tokarski C. Proteins in Art, Archaeology, and Paleontology: From Detection to Identification. Chem Rev 2015; 116:2-79. [PMID: 26709533 DOI: 10.1021/acs.chemrev.5b00037] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sophie Dallongeville
- Miniaturisation pour la Synthèse, l'Analyse & la Protéomique (MSAP), USR CNRS 3290, Université de Lille 1 Sciences et Technologies , 59655 Villeneuve d'Ascq Cedex, France
| | - Nicolas Garnier
- SARL Laboratoire Nicolas Garnier , 63270 Vic le Comte, France
| | - Christian Rolando
- Miniaturisation pour la Synthèse, l'Analyse & la Protéomique (MSAP), USR CNRS 3290, Université de Lille 1 Sciences et Technologies , 59655 Villeneuve d'Ascq Cedex, France
| | - Caroline Tokarski
- Miniaturisation pour la Synthèse, l'Analyse & la Protéomique (MSAP), USR CNRS 3290, Université de Lille 1 Sciences et Technologies , 59655 Villeneuve d'Ascq Cedex, France
| |
Collapse
|
11
|
Touloupakis E, Cicchi B, Benavides AMS, Torzillo G. Effect of high pH on growth of Synechocystis sp. PCC 6803 cultures and their contamination by golden algae (Poterioochromonas sp.). Appl Microbiol Biotechnol 2015; 100:1333-1341. [PMID: 26541331 PMCID: PMC4717179 DOI: 10.1007/s00253-015-7024-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/31/2015] [Accepted: 09/08/2015] [Indexed: 11/29/2022]
Abstract
Culturing cyanobacteria in a highly alkaline environment is a possible strategy for controlling contamination by other organisms. Synechocystis PCC 6803 cells were grown in continuous cultures to assess their growth performance at different pH values. Light conversion efficiency linearly decreased with the increase in pH and ranged between 12.5 % (PAR) at pH 7.5 (optimal) and decreased to 8.9 % at pH 11.0. Photosynthetic activity, assessed by measuring both chlorophyll fluorescence and photosynthesis rate, was not much affected going from pH 7.5 to 11.0, while productivity, growth yield, and biomass yield on light energy declined by 32, 28, and 26 % respectively at pH 11.0. Biochemical composition of the biomass did not change much within pH 7 and 10, while when grown at pH 11.0, carbohydrate content increased by 33 % while lipid content decreased by about the same amount. Protein content remained almost constant (average 65.8 % of dry weight). Cultures maintained at pH above 11.0 could grow free of contaminants (protozoa and other competing microalgae belonging to the species of Poterioochromonas).
Collapse
Affiliation(s)
- Eleftherios Touloupakis
- Istituto per lo Studio degli Ecosistemi, CNR, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Italy
| | - Bernardo Cicchi
- Istituto per lo Studio degli Ecosistemi, CNR, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Italy
| | - Ana Margarita Silva Benavides
- Escuela de Biología, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica
- Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica
| | - Giuseppe Torzillo
- Istituto per lo Studio degli Ecosistemi, CNR, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Italy.
| |
Collapse
|
12
|
Hu W, Zhang H, Zhang B. Identification of Organic Binders in Ancient Chinese Paintings by Immunological Techniques. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2015; 21:1278-1287. [PMID: 26428439 DOI: 10.1017/s1431927615015147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The identification and localization of organic binders in artworks are big challenges in archaeology and conservation science. Immunological techniques, such as enzyme-linked immunosorbent assay (ELISA) and immunofluorescence microscopy (IFM) have the potential to become powerful tools for the analysis of organic materials in ancient samples. In this study, ELISA and IFM techniques were combined to identify chicken ovalbumin, glue from several mammalian species, bovine milk, and fish glue in ancient Chinese painting samples. As binders, egg ovalbumin was found in two painting samples and animal glue was found in three samples, which were dated from the 4th to 8th centuries. The results clearly demonstrate that ELISA and IFM can be used to validate results from ancient samples.
Collapse
Affiliation(s)
- Wenjing Hu
- 1Department of Chemistry,Zhejiang University,Hangzhou 310027,P.R. China
| | - Hui Zhang
- 2Department of Cultural Heritage and Museology,Zhejiang University,Hangzhou 310028,P.R. China
| | - Bingjian Zhang
- 1Department of Chemistry,Zhejiang University,Hangzhou 310027,P.R. China
| |
Collapse
|
13
|
Touloupakis E, Cicchi B, Torzillo G. A bioenergetic assessment of photosynthetic growth of Synechocystis sp. PCC 6803 in continuous cultures. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:133. [PMID: 26379769 PMCID: PMC4571542 DOI: 10.1186/s13068-015-0319-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 08/18/2015] [Indexed: 05/11/2023]
Abstract
BACKGROUND Synechocystis sp. PCC 6803, a model organism used for bioenergy and bioplastic production, was grown in continuous culture to assess its most important bioenergetic parameters. RESULTS Biomass yield on light energy of 1.237 g mol photons(-1) and maintenance energy requirement of 0.00312 mol photons g(-1) h(-1) were calculated. This corresponded to a light conversion efficiency of 12.5 %, based on the model of Pirt which was about 35 % lower than the theoretical one based on the stoichiometric equation for the formation of biomass on carbon dioxide, water, and nitrate. The maximum F v/F m ratio recorded in the Synechocystis cultures was 0.57; it progressively declined to 0.45 as the dilution rate increased. An over-reduction of reaction centers at a high dilution rate was also recorded, together with an increased VJ phase for the chlorophyll fluorescence transient. In contrast, the chlorophyll optical cross section increased by about 40 % at the fastest dilution rate, and compensated for the decline in F v/F m, thus resulting in a constant total photosynthesis rate (photosynthesis plus respiration). Chlorophyll content was maximum at the lowest dilution rate and was 48 % lower at the highest one, while phycocyanin, and total carotenoids decreased by about 42 % and 37 %, respectively. Carotenoid analysis revealed increased echinenone, zeaxanthin, and myxoxanthophyll contents as the dilution rate increased (40.6, 63.8 and 35.5 %, respectively, at the fastest dilution rate). A biochemical analysis of the biomass harvested at each different dilution rates showed no changes in the lipid content (averaging 11.2 ± 0.6 % of the dry weight), while the protein content decreased as the dilution rate increased, ranging between 60.7 ± 1.1 and 72.6 ± 0.6 %. Amino acids pattern did not vary with the dilution rate. Carbohydrate content ranged from 9.4 to 16.2 % with a mean value of 11.2 ± 1.4 %. CONCLUSIONS The present work provides useful information on the threshold of light conversion efficiency in Synechocystis, as well as basic bioenergetic parameters that will be helpful for future studies related to its genetic transformation and metabolic network reconstruction.
Collapse
Affiliation(s)
- Eleftherios Touloupakis
- Istituto per lo Studio degli Ecosistemi, CNR, Sede di Firenze, Via Madonna del Piano, 10, 50019 Sesto Fiorentino, Italy
| | - Bernardo Cicchi
- Istituto per lo Studio degli Ecosistemi, CNR, Sede di Firenze, Via Madonna del Piano, 10, 50019 Sesto Fiorentino, Italy
| | - Giuseppe Torzillo
- Istituto per lo Studio degli Ecosistemi, CNR, Sede di Firenze, Via Madonna del Piano, 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
14
|
Development of an enzyme-linked-immunosorbent-assay technique for accurate identification of poorly preserved silks unearthed in ancient tombs. Anal Bioanal Chem 2015; 407:3861-7. [DOI: 10.1007/s00216-015-8621-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 11/26/2022]
|
15
|
LIU M, XIE J, ZHENG H, ZHOU Y, WANG B, HU Z. Identification of Ancient Silk Using an Enzyme-linked Immunosorbent Assay and Immuno-fluorescence Microscopy. ANAL SCI 2015; 31:1317-23. [DOI: 10.2116/analsci.31.1317] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Miaomiao LIU
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University
| | - Jun XIE
- Institute of Textile Conservation, Zhejiang Sci-Tech University
| | - Hailing ZHENG
- Key Scientific Research Base of Textile Conservation, State Administration for Cultural Heritage, China National Silk Museum
| | - Yang ZHOU
- Key Scientific Research Base of Textile Conservation, State Administration for Cultural Heritage, China National Silk Museum
| | - Bing WANG
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University
| | - Zhiwen HU
- Institute of Textile Conservation, Zhejiang Sci-Tech University
| |
Collapse
|
16
|
Identification of animal glue and hen-egg yolk in paintings by use of enzyme-linked immunosorbent assay (ELISA). Anal Bioanal Chem 2013; 405:6365-71. [DOI: 10.1007/s00216-013-7045-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/02/2013] [Accepted: 05/04/2013] [Indexed: 10/26/2022]
|